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miR-431-5p regulates cell proliferation and
apoptosis in fibroblast-like synoviocytes in
rheumatoid arthritis by targeting XIAP
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Abstract

Background: miR-431-5p is dysregulated in various cancers and plays an important function in the development of
cancer. However, its role in fibroblast-like synoviocytes (FLSs) in patients with rheumatoid arthritis (RA) remains to
be understood.

Methods: Quantitative real-time polymerase chain reaction was used to detect the relative expression of miR-431-5p
in synovial tissues and FLSs. Cell proliferation assays helped examine RA FLS proliferation. Flow cytometry was
performed to determine apoptosis and cell cycle progression in RA FLSs. We used dual-luciferase assays to determine
the correlation between miR-431-5p and its putative target, X-linked inhibitor of apoptosis (XIAP). Quantitative real-time
PCR and western blotting were used to measure XIAP levels in synovial tissues and transfected RA FLSs.

Results: miR-431-5p was downregulated in synovial tissues and FLSs of patients with RA. Upregulation of miR-431-5p
prohibited cell proliferation and the G0/G1-to-S phase transition but promoted apoptosis in RA FLSs, while miR-431-5p
inhibition showed the opposite results. miR-431-5p directly targeted XIAP in RA FLSs and reversely correlated with XIAP
levels in synovial tissues. Notably, XIAP silencing partially restored the effects of miR-431-5p inhibition in RA FLSs.

Conclusion: miR-431-5p regulates cell proliferation, apoptosis, and cell cycle of RA FLSs by targeting XIAP, suggesting
its potential in the treatment of RA.
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Background
Rheumatoid arthritis (RA) is a chronic inflammatory auto-
immune disease with a global prevalence of 0.5–1.0% [1].
Patients with RA may develop clinical hallmarks of joint
swelling, arthralgia, and stiffness in the morning; without
medical intervention, these symptoms aggravate as disease
progresses [2]. Although there has been significant ad-
vancement in the treatment regimens for RA, patients con-
tinue to experience progressive articular damage with time
(detectable in radiographs) and have high rates of articular

deformity and other complications such as interstitial lung
disease and cardiovascular diseases [3, 4]. Therefore, it is
imperative to gain a comprehensive understanding of the
pathogenesis of RA to develop effective preventive and
therapeutic strategies.
Fibroblast-like synoviocytes (FLSs) constitute a major

portion of the synovial intima and are pivotal to the
development of RA. A healthy synovium is comprised of
a superficial synovial lining named intima and a deeper
zone called sub-lining or sub-intima. The intima is 2–3
cells thick in healthy individuals and 70–80% is FLSs [5].
However, RA patients possess hyperactivated FLSs that
have tumor cell-like properties, including excessive pro-
liferation with repressed apoptosis, migration, invasion,
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and persistent production of various inflammatory cy-
tokines, chemokines, and matrix metalloproteinases [6].
These hallmarks contribute to the thickening of the
synovium and formation of pannus, thereby culminat-
ing in articular deformity. However, there are no cur-
rently available drugs that target hyperactivated FLSs as
treatment for RA.
MicroRNAs (miRNAs) are short 22-nucleotide tran-

script that are expressed in multiple organs and tissues
[7] and involved in the pathogenesis of RA by modulat-
ing lymphocyte differentiation [8], bone homeostasis [9,
10], angiogenesis [11], and other properties of FLSs [10,
12–14]. We have shown that miRNAs are important for
FLSs proliferation, apoptosis, and inflammation in indi-
viduals with RA [15, 16]. Studies have recently demon-
strated that miR-431-5p is dysregulated in various
human cancers, such as lung, liver, colon cancer, and
squamous cell carcinoma [17–20]. However, the role of
miR-431-5p in RA remains to be understood. We hy-
pothesized that miR-431-5p is dysregulated in RA FLSs.
In this study, we have demonstrated that miR-431-5p

was downregulated in RA FLSs and targeted the X-linked
inhibitor of apoptosis protein (XIAP) to regulate cell pro-
liferation, apoptosis, and cell cycle. These findings will
help develop and test novel strategies for treating RA.

Methods
Patient samples
Synovial tissues of patients with RA (8 females) and normal
synovial tissues of patients (6 females) receiving emergent
traumatic amputation as healthy controls were collected
from the Department of Orthopedics at Shengjing Hospital
of China Medical University. All the patients met the 2010
ACR/EULAR classification criteria for RA [21] and were
newly diagnosed without any DMARDs use. The clinical
characteristics of RA patients were shown in Supplemen-
tary Table 1. Written informed consent was obtained from
all the patients. All the experimental protocols used in this
study were performed with the approval of the Ethics Com-
mittee of Shengjing Hospital of China Medical University.

Cell culture and transfection
Immortalized FLS cell lines rather than primary FLS,
healthy human fibroblast-like synoviocytes (HFLS), and
human fibroblast-like synoviocytes from patients with
RA (HFLS-RA) were commercially obtained from the
Jennio Biotech Co., Ltd. (Guangzhou, China). HFLS and
HFLS-RA cells were cultured in minimum essential
medium (Corning, USA) and Dulbecco’s modified Eagle
medium (Corning), respectively, supplemented with 10%
fetal bovine serum (Gibco, USA), penicillin (100 U/mL),
and streptomycin (100 mg/mL; Hyclone, USA). TNF-α
(10 ng/mL) was used to stimulate HFLS-RA cells. The

only one cell line, HFLS-RA, was used to perform
follow-up functional assays.
miR-431-5p mimics, inhibitor, mimics and inhibitor nega-

tive control (NC), miR-410-3p mimics, and siRNAs against
XIAP were synthesized by GenePharma (Suzhou, China).
The sequences were as follows: miR-431-5p mimics: 5′-
UGUCUUGCAGGCCGUCAUGCACAUGACGGCCUGC
AAGACAUU-3′; miR-431-5p inhibitor: 5′-UGCAUGACG
GCCUGCAAGACA-3′; miR-410-3p mimics: 5′-AAUAUA
ACACAGAUGGCCUGUAGGCCAUCUGUGUUAUAUU
UU-3′; mimics NC: 5′-UUCUCCGAACGUGUCACGUT
T-3′ (sense) and 5′-ACGUGACACGUUCGGAGAATT-3′
(antisense); inhibitor NC: 5′-CAGUACUUUUGUGUAGU
ACAA-3′; XIAP siRNA#1: 5′-GGUCAGUACAAAGUUG
AAATTUUUCAACUUUGUACUGACCTT-3′; XIAP siRN
A#2: 5′-GCAGGUUGUAGAUAUAUCATTUGAUAUAU
CUACAACCUGCTT-3′; XIAP siRNA#3: 5′-CAUGGA
UAUACUCAGUUAATTUUAACUGAGUAUAUCCAUG
TT-3′. HFLS-RA cells were transfected with the 50 nM of
the siRNAs using Lipofectamine 3000 (Invitrogen, USA) ac-
cording to the manufacturers’ instructions.

Cell counting kit (CCK)-8 assay
HFLS-RA cells were first seeded into five 96-well plates
at a density of 5 × 103 cells/well with 60–70% conflu-
ence. We added 100 μL of fresh medium supplemented
with 10 μL of the CCK-8 reagent (Promega, USA) into
each well before and after transfection for 24 h, 48 h, 72
h, and 96 h. We measured OD490 using a microplate
reader (BioTke, USA) after 4 h of incubation.

5-Ethynyl-2′-deoxyuridine (EdU) assay
HFLS-RA cells were seeded into a 96-well plate at a dens-
ity of 5 × 103 cells/well with 60–70% confluence. After
transfection for 30 h, the old media were replaced with
100 μL of fresh media supplemented with 50 μM EdU
reagent (Ribobio, China). After incubation for 18 h at
37 °C, HFLS-RA cells were fixed using 4% paraformalde-
hyde and sequential treatment of Triton X-100 (Beyotime,
China), Apollo mix, and DAPI. We acquired images from
five random fields using a fluorescence microscope.

Apoptosis assay
HFLS-RA cells were seeded into 6-well plates at a dens-
ity of 5–10 × 104 cells/well with 70% confluence. These
cells were collected after 48 h of transfection. After incu-
bation with Annexin V-FITC and PI staining reagents
(Dojindo, Japan) at room temperature for 15 min (pro-
tected from light), we measured the rates of apoptosis
using the FACSAria flow cytometer (BD, USA).

Cell cycle assay
HFLS-RA cells were seeded in 6-well plates at a density of
5–10 × 104 cells/well with 70% confluence. After transfection
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for 48 h, HFLS-RA cells were collected and fixed with 75%
ethanol at − 20 °C for at least 2 h. After incubation with the
PI staining buffer (Promega, USA) at room temperature for
15min (protected from light), we determined the number of
cells in the different phases using the FACSAria flow cyt-
ometer (BD).

Luciferase assay
Wild-type (WT) and mutant sequences of the 3′ untrans-
lated region (UTR) of XIAP with the putative miR-431-5p
binding sites were synthesized and cloned into the pmirGLO
vector (Promega). HFLS-RA cells were co-transfected with
miR-431-5p mimics/mimics NC and WT/mutant constructs
for 48 h and subjected to the dual-luciferase reporter assay
(Promega) according to the manufacturers’ instructions.

Quantitative real-time polymerase chain reaction (qRT-PCR)
Total RNA was isolated from synovial tissues and HFLS-
RA cells using RNAiso Plus (Takara, Japan). We reverse
transcribed 1 μg of RNA using the Mir-X™ miRNA First-
Strand Synthesis kit and PrimeScript™ reagent kits (Takara)
for the miRNA and mRNA samples, respectively. Gene
expression was measured using the SYBR® qRT-PCR kit
(Takara) and normalized to that of GAPDH (mRNA) or U6
(miRNA). Relative expression of genes was calculated using
the 2−△△Ct method. The primers using for PCR were as
follows: 5′-TGTCTTGCAGGCCGTCATGC − 3′ (for-
ward) for hsa-miR-431-5p; 5′-ACACACTTCGGGTTTC
ACGA-3′ (forward) and 5′-AAGTCCCTTCGTCTCCCT
CA-3′ (reverse) for XIAP; 5′-ATGTTGCAACCGGGAA
GGAA-3′ (forward) and 5′-AGGAAAAGCATCACCCGG
AG-3′ (reverse) for GAPDH.

Western blotting
Synovial tissues and FLSs were lysed using RIPA buffer
(Beyotime). Total protein levels were measured using a
BCA kit (Beyotime). Thereafter, 40 μg of protein was sepa-
rated using 10% SDS-PAGE and electro-blotted onto
PVDF membranes. The membranes were blocked using
5% non-fat milk, incubated with primary antibodies
against XIAP (1:500), YY1 (1:500), and GAPDH (1:5000;
Proteintech, China), and incubated with secondary anti-
bodies (Proteintech). Protein bands were analyzed using
Image J and normalized to GAPDH levels.

Statistical analysis
All experiments were performed independently in tripli-
cates. We used Student’s t test and one-way analysis of
variance followed by Dunn’s multiple comparisons post
hoc test to determine significance between differences in
two or multiple groups, respectively. Data from the cell
proliferation assay were compared using two-way ana-
lysis of variance. GraphPad Prism (v.7.0, CA) was used

to analyze the data. P < 0.05 was considered statistically
significant.

Results
miR-431-5p was downregulated in RA
qRT-PCR showed a downregulation of miR-431-5p in
synovial tissues from patients with RA as compared to
that in the healthy cohort (p = 0.0007, Fig. 1a). Further-
more, we detected miR-431-5p levels in immortalized cell
lines and HFLS and HFLS-RA cells. Accordingly, miR-
431-5p was downregulated in HFLS-RA cells compared to
that in HFLS cells (p < 0.0001, Fig. 1b). Moreover, miR-
431-5p was reduced in HFLS-RA cells with TNF-α treat-
ment compared with that without TNF-α treatment (p =
0.001, Fig. 1c), suggesting that dysregulated miR-431-5p
might be involved in the development of RA.

Overexpression of miR-431-5p suppressed cell proliferation
in RA FLSs
To elucidate the effects of miR-431-5p on cell prolifera-
tion in RA FLSs, we used the miR-431-5p mimics and
inhibitor in HFLS-RA cells. The transfected HFLS-RA
cells showed a ~ 2000-fold enhancement in miR-431-5p
levels (p < 0.0001, Fig. 2a); HFLS-RA cells transfected with
the inhibitor showed > 2-fold reduction in the levels of
miR-431-5p (p < 0.0001). The NC samples showed no dif-
ference in miR-431-5p levels.
CCK-8 assays showed decreased proliferation in miR-

431-5p-overepxressing HFLS-RA cells (p < 0.05, Fig. 2b).
However, miR-431-5p inhibition significantly increased
cell proliferation (p < 0.05, Fig. 2b). EdU staining assays
were consistent with CCK-8 assay; miRNA mimics-
transfected cells showed a decrease in the number of
EdU-positive cells (p < 0.0001, Fig. 2c, d), while inhibition
of miR-431-5p increased the number of EdU-positive cells
compared to that of the control subsets (p < 0.0001, Fig.
2c, d). This suggests that upregulation of miR-431-5p sup-
presses HFLS-RA cell proliferation.

Overexpression of miR-431-5p induced apoptosis and
suppressed G0/G1-to-S phase transition in RA FLSs
We used flow cytometry to understand the role of miR-
431-5p on apoptosis and cell cycle progression. As shown
in Fig. 3a, miR-431-5p overexpression significantly en-
hanced apoptosis in HFLS-RA cells (p = 0.0004, Fig. 3d),
particularly during the early phase of apoptosis (p < 0.05,
Fig. 3b). Inhibiting miR-431-5p expression suppressed early
and end-phase apoptosis in HFLS-RA cells (p = 0.0201 and
p < 0.0001, respectively). However, apoptotic ratios showed
no difference among five groups in the late phase of apop-
tosis in HFLS-RA cells.
Further, we explored the function of miR-431-5p on cell

cycle progression in HFLS-RA cells. Flow cytometry
showed that the ratio of G0/G1 phase HFLS-RA cells was
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Fig. 1 miR-431-5p was downregulated in RA. a Relative expression of miR-431-5p in synovial tissues of patients with RA (n = 8) and healthy
controls (n = 6) by qRT-PCR. b Relative expression of miR-431-5p in HFLS and HFLS-RA cells by qRT-PCR. c Relative expression of miR-431-5p in
HFLS-RA cells with or without TNF-α treatment by qRT-PCR. Each experiment was performed independently in triplicates. ***P < 0.001, ****P <
0.0001, compared with the NC groups

Fig. 2 Overexpression of miR-431-5p suppressed cell proliferation in RA FLSs. a qRT-PCR for the relative expression of miR-431-5p in HFLS-RA cells
transfected with miR-431-5p mimics or inhibitor. b Cell proliferation pattern of HFLS-RA cells transfected with miR-431-5p mimics or inhibitor for 0 h,
24 h, 48 h, 72 h, and 96 h using the CCK-8 assay. c, d Cell proliferation of HFLS-RA cells transfected with miR-431-5p mimics or inhibitor for 48 h by EdU
staining assay. Each experiment was performed independently in triplicates. *P < 0.05, ***P < 0.001, ****P < 0.0001, compared with the NC groups
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significantly higher in cells transfected with the miR-431-
5p mimics (p = 0.0253, Fig. 3e, f), while the ratio of G0/G1
phase HFLS-RA cells was lower in cells depleted of miR-
431-5p as compared to that in their respective control
subsets (p < 0.05). Thus, miR-431-5p may inhibit G0/G1-
to-S phase transition in HFLS-RA cells. Conclusively,
overexpression of miR-431-5p might suppress cell prolif-
eration through inducing apoptosis and the G0/G1-to-S
phase transition in RA FLSs.

miR-431-5p directly bound XIAP in RA FLSs
The putative binding between miR-431-5p and XIAP was
predicted by TargetScan (Fig. 4a). As shown in Fig. 4b, the
miR-431-5p mimics reduced luciferase activity when co-
transfected with the construct containing the WT 3′ UTR
of XIAP (p = 0.0005). However, we observed no difference
in luciferase activity in cells co-transfected with the con-
struct containing XIAP 3′ UTR mutant, indicating bind-
ing between miR-431-5p and XIAP in HFLS-RA cells.
qRT-PCR and western blotting showed that miR-431-5p

mimics significantly reduced the mRNA and protein levels
of XIAP (p = 0.018 and p = 0.0069, respectively, Fig. 4c–e),

while XIAP levels were induced in HFLS-RA cells after
transfection with the inhibitor (p = 0.0108 and p = 0.0007,
respectively). These results confirmed the interaction be-
tween miR-431-5p and XIAP in RA FLSs.
To further explore the miR-431-5p/XIAP signaling in RA,

we determined the levels of XIAP in synovial tissues and
cells. As shown in Fig. 4f–h, the mRNA and protein levels
of XIAP were higher in synovial tissues of patients with RA
as compared to that in the healthy cohort (p= 0.0069 and
p= 0.0004, respectively). Consistently, the mRNA and pro-
tein levels of XIAP were upregulated in HFLS-RA cells as
compared to that in HFLS cells (p= 0.0006 and p= 0.0001,
respectively). Taken together, miR-431-5p may contribute
to the development of RA by regulating XIAP.
Our previous studies have shown another miRNA,

miR-410-3p, regulates cell proliferation, apoptosis, and
cell cycle by directly targeting YinYang 1 in RA FLSs
[16]. Since miR-431-5p shared overlapping effects with
miR-410-3p in RA FLSs, we explored whether miR-431-
5p and miR-410-3p also share similar mechanisms. As
shown in Supplementary Fig 1 A-C, there were no sig-
nificant differences of YY1 levels in HFLS-RA cells after

Fig. 3 Overexpression of miR-431-5p induced apoptosis and suppressed G0/G1-to-S phase transition in RA FLSs. a Flow cytometry of Annexin V-
FITC and PI-stained HFLS-RA cells transfected with miR-431-5p mimics or inhibitor for 48 h to determine cellular apoptosis. b–d Quantification of
early (b), late (c), and total (d) apoptotic ratios of HFLS-RA cells transfected with miR-431-5p mimics or inhibitor. e, f Flow cytometry and
quantification for cell cycle progression using PI-stained HFLS-RA cells transfected with miR-431-5p mimics or inhibitor for 48 h. Each experiment
was performed independently in triplicates. *P < 0.05, ***P < 0.001, ****P < 0.0001, compared with the NC groups
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Fig. 4 miR-431-5p directly bound XIAP in RA FLSs. a Binding between miR-431-5p and XIAP predicted by TargetScan. b Dual-luciferase reporter
assay showing binding between miR-431-5p and the 3′ UTR of XIAP. c qRT-PCR for the relative expression of XIAP in HFLS-RA cells transfected
with miR-431-5p mimics or inhibitor. d, e Western blotting to determine the levels of XIAP in HFLS-RA cells transfected with miR-431-5p mimics
or inhibitor. f qRT-PCR for the relative expression of XIAP in synovial tissues of patients with RA (n = 8) and healthy controls (n = 6). g, h Western
blots showing the levels of XIAP in synovial tissues of patients with RA (n = 3) and healthy controls (n = 3). i qRT-PCR for the relative expression
of XIAP in HFLS and HFLS-RA cells. j, k Western blots showing the levels of XIAP in HFLS and HFLS-RA cells. Each experiment was performed
independently in triplicates. *P < 0.05, **P < 0.01, ***P < 0.001, compared with the NC groups
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transfection with miR-431-5p mimics, inhibitor and their
respective NCs (all p > 0.05). However, XIAP levels were
significantly inhibited in HFLS-RA cells after transfec-
tion with miR-410-3p mimics (p = 0.0006 and p = 0.0001,
respectively, Supplementary Fig 2 A-C), suggesting that
miR-431-5p and miR-410-3p might exert similar effects
in RA FLSs through overlapping mechanisms.

miR-431-5p regulated cell proliferation, apoptosis, and
cell cycle progression via XIAP in RA FLSs
To understand the mechanism employed by miR-431-5p
in regulating cell proliferation, apoptosis, and cell cycle
progression in RA FLSs, we manipulated the expression of
XIAP using siRNAs in HFLS-RA cells. As shown in
Fig. 5a–c, siRNAs against XIAP reduced the mRNA and
protein levels of XIAP in HFLS-RA (p < 0.05, p < 0.05, and
p > 0.05, respectively). Since the siRNAs showed varied
efficiency, we selected siRNA#1 and siRNA#2 for our sub-
sequent functional assays.
CCK-8 assay showed that promotion of cell prolifera-

tion mediated by miR-431-5p inhibition was partially re-
stored by XIAP silencing (all p < 0.05, Fig. 5d),
particularly at 48 h, 72 h, and 96 h. Consistently, EdU
staining indicated that the population of EdU-positive
cells was lower in the cells co-transfected with the
miRNA inhibitor and siRNAs against XIAP as compared
to that in the cells transfected with the miRNA inhibitor
(both p < 0.0001, Fig. 5e, f). Furthermore, inhibition of
apoptosis induced by miR-431-5p inhibitor was restored
by XIAP silencing (p < 0.0001 and p = 0.0001, respect-
ively). Moreover, flow cytometry showed that the ratio
of G0/G1 phase HFLS-RA cells was higher in cells co-
transfected with the miRNA inhibitor and siRNAs
against XIAP as compared to that in cells only trans-
fected with the inhibitor (p = 0.0084 and p = 0.0068, re-
spectively). This suggests that the increase in G0/G1-to-
S phase transition induced by the miR-431-5p inhibitor
was partially reduced by XIAP siRNAs. Thus, miR-431-
5p suppressed cell proliferation and G0/G1-to-S phase
transition and promoted apoptosis by targeting XIAP in
RA FLSs.

Discussion
RA is one of the most common autoimmune diseases in
humans. However, its pathogenesis remains unknown.
Research has shown the involvement of epigenetics in
the pathogenesis of autoimmune diseases, especially RA
[22]. miRNAs have recently been implicated in the de-
velopment of RA. Targeting miRNAs have resulted in
promising outcomes in animal models for RA [23, 24].
In this study, we have demonstrated that miR-431-5p is
downregulated in synovial tissues and FLSs from pa-
tients with RA, indicating its potential role in the devel-
opment of RA.

miR-431-5p is associated with the development of vari-
ous cancers, such as lung cancer, glioblastoma multiforme,
colon cancer, and hepatocellular carcinoma [17–19, 25].
miR-431-5p modulated cell proliferation, apoptosis, au-
tophagy, migration, invasion, and angiogenesis. Upregula-
tion of miR-431-5p prohibits cell proliferation and
invasion via ATG3 in colon cancer [19]. Furthermore,
miR-431-5p suppresses invasion by targeting UROC28 in
hepatocellular carcinoma [18]. Consistent with previous
studies, we observed that miR-431-5p overexpression sup-
presses cell proliferation and G0/G1-to-S phase transition
but promoted apoptosis in RA FLSs, suggesting the poten-
tial of miR-431-5p in targeting excessively proliferative
FLSs in patients with RA.
Among the targets of miR-431-5p predicted by Tar-

getScan, we focused on XIAP. XIAP is an inhibitor of
apoptosis that selectively binds to and inhibits caspases
[26]. Besides its well-known inhibitory role in apoptosis
[27], Yu et al. reported the overexpression of XIAP in
bladder cancer; XIAP also promotes lung metastasis
in vivo [28]. Interestingly, XIAP confers resistance to
cancer therapy and cell survival [29, 30]. Notably, XIAP
inhibitors have shown promising outcomes in cancer
therapy, including acute myeloid leukemia [31]. Dhar-
mapatni et al. and Niederer et al. reported that XIAP
was upregulated in synovium of RA [32, 33]. Particu-
larly, Niederer’s group confirmed that XIAP was
abundantly expressed throughout the entire synovial
tissue in RA, mainly in RA FLSs. Consistently, we
found that XIAP was upregulated in the synovial tis-
sues and cells of patients with RA; this was inversely
proportional to miR-431-5p levels. Furthermore, we
confirmed the binding between miR-431-5p and XIAP
and effect of miR-431-5p on XIAP levels in RA FLSs.
As expected, silencing XIAP expression partially
reversed the effects of miR-431-5p inhibition on cell
proliferation, apoptosis, and cell cycle progression in
RA FLSs (Fig. 6). These results indicate that miR-431-
5p exerts its protective roles by targeting XIAP in RA
FLSs.
Our previous studies identified downregulation of miR-

410-3p in RA FLSs and regulated cell proliferation, apop-
tosis, and cell cycle of RA FLSs [15]. Since miR-431-5p
shared similar effects with miR-410-3p in RA FLSs, we
wondered whether they also shared similar mechanism.
Interestingly, miR-431-5p had no impact on YY1 levels,
whereas overexpression of miR-410-3p significantly re-
duced XIAP levels in RA FLSs. These results suggest that
some miRNAs, such as miR-410-3p and miR-431-5p,
might exert synergetic effects through overlapping mecha-
nisms in RA FLSs.
Our findings demonstrated the dysregulation of miR-

431-5p and mechanism involved in the development of
RA. However, this study still has some limitations. Few
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synovial tissues were used to assess miR-431-5p and
XIAP levels; therefore, the results of comparison of miR-
431-5p levels in synovial tissues might be biased. Due to
difficulties of obtaining fresh synovial tissues, cells for all
functional assays in this study were immortalized cell
lines, rather than primary FLS, which might have some
minor discrepancy. However, immortalized cell lines,
such as HFLS-RA and MH7A cells, were commonly

used as tool cells for biological process analysis in RA
[34]. Furthermore, the therapeutic efficacy of miR-431-
5p needs to be explored in animal models of RA.
In conclusion, this study shows that miR-431-5p was

downregulated in synovial tissues and FLSs of patients
with RA. Upregulation of miR-431-5p in RA FLSs sup-
pressed cell proliferation and G0/G1-to-S phase transi-
tion and promoted apoptosis by targeting XIAP.

Fig. 5 miR-431-5p regulated cell proliferation via XIAP in RA FLSs. a qRT-PCR for the relative expression of XIAP in HFLS-RA cells transfected with
three siRNAs targeting XIAP. b, c Western blotting to determine the levels of XIAP in HFLS-RA cells transfected with three siRNAs against XIAP. d
Proliferation of HFLS-RA cells transfected with miR-431-5p inhibitor and/or siRNAs against XIAP for 0 h, 24 h, 48 h, 72 h, and 96 h using CCK-8
assay. Asterisk for siRNA#1 and pound sign for siRNA#2. e, f Proliferation of HFLS-RA cells transfected with miR-431-5p inhibitor and/or siRNAs
against XIAP for 48 h using EdU staining assay. Each experiment was performed independently in triplicates. *P < 0.05, ****P < 0.0001, compared
with the NC groups
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Conclusions
We investigated the expression of miR-431-5p in syn-
ovial tissues and FLSs in RA and further explored the ef-
fect of miR-431-5p on cell proliferation, apoptosis, and
cell cycle progression in RA FLSs. Here, we revealed that
miR-431-5p was downregulated in synovial tissues and
FLSs of patients with RA. Upregulation of miR-431-5p
in RA FLSs suppressed cell proliferation and G0/G1-to-S
phase transition and promoted apoptosis by targeting
XIAP. Our findings therefore suggest miR-431-5p as a
potential treatment target in RA.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13075-020-02328-3.

Additional file 1: Fig. S1. Effects of miR-431-5p on YY1 levels in RA
FLSs. A. qRT-PCR for the relative expression of YY1 in HFLS-RA cells trans-
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