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Reconstructing lost BOLD signal in individual
participants using deep machine learning
Yuxiang Yan1,2,10, Louisa Dahmani1,3,10, Jianxun Ren1,4,10, Lunhao Shen1,4, Xiaolong Peng 1, Ruiqi Wang1,

Changgeng He1,4, Changqing Jiang 4, Chen Gong4, Ye Tian 4, Jianguo Zhang5, Yi Guo6, Yuanxiang Lin7,

Shijun Li1, Meiyun Wang3,11✉, Luming Li4,8,11✉, Bo Hong2,11✉ & Hesheng Liu 1,8,9,11✉

Signal loss in blood oxygen level-dependent (BOLD) functional neuroimaging is common and

can lead to misinterpretation of findings. Here, we reconstructed compromised fMRI signal

using deep machine learning. We trained a model to learn principles governing BOLD activity

in one dataset and reconstruct artificially compromised regions in an independent dataset,

frame by frame. Intriguingly, BOLD time series extracted from reconstructed frames are

correlated with the original time series, even though the frames do not independently carry

any temporal information. Moreover, reconstructed functional connectivity maps exhibit

good correspondence with the original connectivity maps, indicating that the model recovers

functional relationships among brain regions. We replicated this result in two healthy data-

sets and in patients whose scans suffered signal loss due to intracortical electrodes. Critically,

the reconstructions capture individual-specific information. Deep machine learning thus

presents a unique opportunity to reconstruct compromised BOLD signal while capturing

features of an individual’s own functional brain organization.
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The blood oxygen level-dependent (BOLD) signal, acquired
during functional magnetic resonance imaging (fMRI), is
subject to a number of artifacts, such as magnetic sus-

ceptibility artifacts and interference from metal implants. For
example, intracortical electrodes implanted in patients interfere
with the BOLD signal, potentially due to their lead connectors,
resulting in a significant signal loss in brain regions close to the
connection site on the skull1. This hampers studies that investi-
gate whole-brain activity and functional connectivity and may
result in misinterpretation of findings. To date, there are no post-
processing MRI methods that can mitigate such interference.

A newly proposed deep machine learning model, called deep
convolutional generative adversarial networks (DCGAN), provides
a possible solution for reconstructing lost information2–6. In the
DCGAN approach, two networks—a generator and a discriminator
—are pitted one against the other and are trained and optimized
simultaneously. Remarkably, it does not simply assemble pieces of
images it was trained on, but rather generates new images that are
internally cohesive. For example, DCGAN models can successfully
fill in missing portions of photographs of human faces7 and create
pictures of human faces, birds, and even art. Like photographs,
BOLD images carry internally cohesive information. Embedded
within resting-state data, for example, is information about BOLD
signal fluctuations in each cortical surface vertex8, from which we
can extract meaningful information such as functional connectivity
and task-evoked brain activity9.

Here, we show that DCGAN can be harnessed to learn indi-
vidual patterns of brain activity and generate BOLD signals in
artificially and non-artificially compromised cortical regions. We
trained a deep learning model on a sample of the Brain Genomics
Superstruct Project (GSP) data set10, containing intact BOLD
frames from healthy young adult participants (Fig. 1a). We used
the trained model to reconstruct BOLD images, frame by frame,
in an independent test sample from the GSP data set, in which we

had artificially removed cortical surface regions of different sizes
(Fig. 1b). Although the individual input frames did not carry
information about the evolution of the BOLD signal through
time, we set out on the ambitious goal of investigating the times
series and functional connectivity (FC) maps extracted from the
reconstructed frames. We hypothesized that the reconstructed
times series and FC maps would bear high similarity to the ori-
ginal ones. Additionally, the large amount of resting-state data
that was available enabled us to calculate individual-level func-
tional connectivity11,12. We thus tested whether machine learning
can be used to reconstruct individual-specific information, or
whether its ability is limited to generating images based on group-
level information. We replicated our analyses using the Human
Connectome Project (HCP) data set13 and compared our
DCGAN reconstructions to those generated through a simple
diffusion-based algorithm. Finally, we tested the DCGAN model
in a clinical application, where we acquired a unique data set by
collecting extensive resting-state fMRI data both before and after
electrode implantation surgery in patients with Parkinson’s dis-
ease. We sought to reconstruct regions in the post-operative scans
that suffered substantial interference from the deep-brain sti-
mulation (DBS) electrodes and connectors. The availability of
pre-implantation scans meant we had a reference against which
to compare the reconstructed images, assuming functional con-
nectivity is stable and unchanged by the implantation surgery.
We hypothesized that the reconstructed BOLD signals from the
post-surgical data would be highly similar to the pre-surgical
BOLD signals and that they would reflect patterns of activity that
are specific to the individual.

Results
Reconstructed BOLD signals are correlated with original
signals. The DCGAN model was trained on a resting-state fMRI
data set of 80 randomly chosen participants (240 frames for each
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Fig. 1 Method for reconstructing lost signal in blood oxygen level-dependent (BOLD) images using deep convolutional generative adversarial
networks (DCGAN). a The DCGAN model can be used to fill in the missing information. 19,200 BOLD frames from 80 participants are flattened and fed to
the DCGAN model for training. The DCGAN model consists of two networks, a generator, and a discriminator. The generator aims to learn the distribution
of the BOLD activity within the frames used as input and makes a projection from a random vector z, sampled from latent space Z, to a flattened BOLD
frame G(z). The discriminator is trained to distinguish the real BOLD frames from the BOLD patterns simulated by the generator. The generator and
discriminator are optimized simultaneously through the two-player minimax game. b The trained generator is used to reconstruct the compromised BOLD
frames. We first created compromised BOLD frames by removing the BOLD signal in predefined regions (here, in the temporal cortex, shown as a white
mask). Each compromised BOLD frame is flattened and inputted to the trained generator. Vector z is iteratively optimized by the gradient-descent method
in the latent space to minimize the difference between the generated BOLD frames G(z) and the authentic data x outside the masked region. The vector is
then projected to the flattened map G(zn) via the generator. Then, G(zn) is projected back into a 2562-vertex mesh representing the reconstructed BOLD
activity in a single frame.
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participant, in vertex space) from the publicly available GSP
database10. In an independent test data set comprised of 20
participants, we artificially removed the BOLD signal in various
cortical surface regions and used the trained generator to
reconstruct compromised BOLD frames in vertex space.

We found that the reconstructed BOLD frames appear similar
to the original intact images (see Fig. 2a for an example). To
quantitatively evaluate the reconstructive accuracy of the
DCGAN model, we concatenated the reconstructed frames and
compared the reconstructed and original time series. This is a
particularly challenging endeavor, as images are reconstructed at
each time point, and each frame does not independently hold
temporal information. To conduct this comparison, we assessed
the correlation between the original and reconstructed BOLD
time series for each vertex within each of the artificially
compromised regions, located in different lobes (see “Methods”
for more details), and calculated the overall average of these
correlations across all participants. Table 1 shows the correlation
r coefficients and statistical values of this model (along with those
of other models and data sets, described later). We found
significant positive correlations, using multilevel linear models
corrected for multiple comparisons using the Bonferroni correc-
tion: temporal cortex region: r= 0.33 ± 0.02 (95% confidence
intervals (CI) [0.32, 0.34], t(19)= 65.49, bootstrapped p < 0.001),
lateral frontal cortex region: r= 0.16 ± 0.07 (CI [0.12, 0.19],

t(19)= 9.74, p < 0.001), medial frontal cortex region: r= 0.23 ±
0.04 (CI [0.21, 0.25], t(19)= 23.24, p < 0.001), parietal cortex
region: r= 0.25 ± 0.03 (CI [0.24, 0.27], t(19)= 37.03, p < 0.001),
and occipital cortex region: r= 0.37 ± 0.06 (CI [0.34, 0.40],
t(19)= 26.65, p < 0.001) (Table 1). Although these correlations
are low to moderate, the sheer fact that the DCGAN model was
able to learn individual-specific features and capture part of
the BOLD fluctuations in regions with complete signal loss is
impressive. Figure 2b shows an example of a reconstruction of the
lateral temporal cortex in one participant, where the correlations
between the reconstructed and original time series of two
randomly selected vertices are r= 0.67, p < 0.001 for Vertex 1
and r= 0.46, p < 0.001 for Vertex 2. Importantly, within the
compromised region, the reconstructed BOLD signals exhibit
various patterns of activity that are not necessarily correlated with
each other. For example, the correlation between the time series
of the two vertices above is r=−0.08, p= 0.22 (Fig. 2b).

We also assessed BOLD reconstructive accuracy by generating
FC maps for all reconstructed vertices and comparing them to the
FC maps of the corresponding vertices in the original intact
BOLD frames. As an example, in Fig. 2c, we show the similarity
between reconstructed and original FC maps for the same two
temporal vertices as in Fig. 2b, in a representative participant. The
FC map similarity is very high, with r= 0.96, p < 0.001 for Vertex
1 and r= 0.81, p < 0.001 for Vertex 2. In Fig. 3, we show original
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Fig. 2 The reconstructed BOLD signals are highly similar to the original signals. a Here we show an example of an intact BOLD frame from a
representative participant in the GSP data set, which we used to create an artificially compromised BOLD frame by removing the signal in a predefined
region (here, a region within the temporal cortex). The compromised BOLD frame is fed to the trained DCGAN model, which then generates a
reconstructed BOLD frame based on the information within the compromised frame. b The time series of two vertices in the reconstructed region are
shown (solid lines), along with these vertices’ original time series taken from the intact BOLD frame (dashed lines). Each white circle represents a vertex.
The reconstructed time series are highly similar to the original time series, as they exhibit high correlations (r= 0.67 for the left-most vertex outlined in red
(Vertex 1) and r= 0.46 for the right-most vertex outlined in blue (Vertex 2)). To illustrate that the DCGAN model does not simply generate time series
that follow the same fluctuations over time, we correlated the time series of the two generated vertices. The resulting correlation is r=−0.08, indicating
that the DCGAN model takes into account the variability in activity between different vertices. c We investigated the functional connectivity (FC) maps of
the original and reconstructed vertices. The two reconstructed FC maps show high similarity to the original FC maps (r= 0.96 for Vertex 1 and r= 0.81 for
Vertex 2). These findings indicate that the DCGAN model is able to learn time-varying and functional connectivity characteristics of BOLD activity within
individuals and to generate images that are highly realistic.
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(top row) and DCGAN-reconstructed (middle row) FC maps
sourced from one randomly selected vertex within each of the
artificially compromised regions in the same participant. All
reconstructed FC maps yielded high similarity to the original
ones: r= 0.96, p < 0.001 for the temporal vertex (also shown in
Fig. 2c), r= 0.84, p < 0.001 for the lateral frontal vertex, r= 0.89,
p < 0.001 for the medial frontal vertex, r= 0.84, p < 0.001 for the
lateral parietal vertex, and r= 0.88, p < 0.001 for the occipital
vertex. We then evaluated the average reconstructive accuracy
across all participants. When taking into account all the vertices
within the compromised regions, multilevel linear models,
corrected for multiple comparisons using the Bonferroni correc-
tion, revealed that the cortical FC maps of the reconstructed
vertices are highly similar to those of the original vertices in all
regions. The average correlation between corresponding FC maps
is r= 0.62 ± 0.06 (CI [0.60, 0.65], t(19)= 47.88, p < 0.001) for the
temporal cortex, r= 0.60 ± 0.04 (CI [0.58, 0.62], t(19)= 65.04,
p < 0.001) for the lateral frontal cortex, r= 0.61 ± 0.05 (CI [0.58,
0.63], t(19)= 51.87, p < 0.001) for the medial frontal cortex, r=
0.70 ± 0.03 (CI [0.68, 0.71], t(19)= 110.62, p < 0.001) for the
parietal cortex, and r= 0.79 ± 0.05 (CI [0.76, 0.81], t(19)= 68.39,
p < 0.001) for the occipital cortex (Table 1).

We also evaluated reconstructive accuracy according to the
size of the compromised regions (Supplementary Fig. 1a) by

correlating the reconstructed and original FC maps. When there
are no compromised regions (0%; Supplementary Fig. 1b), the
reconstructive accuracy is very high, r= 0.85 ± 0.00, p < 0.001 (CI
[0.85, 0.85]). Once the compromised region covers 10% of the
cortical surface, the mean reconstructive accuracy drops to r=
0.51 ± 0.10, p < 0.001 (CI [0.46, 0.56]). From there, there is a
steady decrease in reconstructive accuracy as the mask of
compromised regions increases in size (F(2.62,23.55)= 93.68,
p < 0.001, ηp2= 0.91) (Supplementary Fig. 1b). When the mask
size reaches 40% of the cortical surface, the reconstructive
accuracy is r= 0.35 ± 0.12, p < 0.001 (CI [0.28, 0.41]). It should be
noted that a complete signal loss in 40% of the cortical surface
may represent an extreme case; nevertheless, the reconstruction
still recovers some important characteristics of a given indivi-
dual’s functional connectivity.

We replicated our findings by performing the same time series
and FC-based analyses in a data set sporting higher spatial and
temporal resolutions: the HCP data set13. Again, the data of 80
randomly chosen participants were used to train our DCGAN
model, and the data of 20 independent participants were used to
test reconstruction. Multilevel linear models revealed significant
positive correlations between the original and reconstructed
time series in all regions: temporal cortex: r= 0.31 ± 0.05
(CI [0.29, 0.33], t(19)= 27.60, p < 0.001), lateral frontal cortex:

Table 1 Time series and functional connectivity map reconstruction accuracy following various models.

Reconstruction accuracy r St. dev. t p Reconstruction accuracy r St. dev. t p

Time series Functional connectivity maps
GSP DCGAN GSP DCGAN

Temporal cortex 0.33 0.02 65.49 <0.001 Temporal cortex 0.62 0.06 47.88 <0.001
Lateral frontal cortex 0.16 0.07 9.74 <0.001 Lateral frontal cortex 0.60 0.04 65.04 <0.001
Medial frontal cortex 0.23 0.04 23.24 <0.001 Medial frontal cortex 0.61 0.05 51.87 <0.001
Lateral parietal cortex 0.25 0.03 37.03 <0.001 Lateral parietal cortex 0.70 0.03 110.62 <0.001
Occipital cortex 0.37 0.06 26.65 <0.001 Occipital cortex 0.79 0.05 68.39 <0.001

GSP (no GSR) DCGAN GSP (no GSR) DCGAN
Temporal cortex 0.33 0.02 69.29 0.001 Temporal cortex 0.61 0.06 42.19 <0.001
Lateral frontal cortex 0.17 0.08 9.93 <0.001 Lateral frontal cortex 0.62 0.05 59.56 <0.001
Medial frontal cortex 0.23 0.04 23.64 <0.001 Medial frontal cortex 0.60 0.06 46.13 <0.001
Lateral parietal cortex 0.25 0.03 34.43 <0.001 Lateral parietal cortex 0.69 0.03 99.54 <0.001
Occipital cortex 0.37 0.07 25.33 <0.001 Occipital cortex 0.78 0.06 60.96 <0.001

GSP diffusion GSP diffusion
Temporal cortex 0.24 0.06 18.20 <0.001 Temporal cortex 0.51 0.10 22.54 <0.001
Lateral frontal cortex 0.10 0.04 9.70 <0.001 Lateral frontal cortex 0.40 0.11 15.85 <0.001
Medial frontal cortex 0.17 0.05 16.11 <0.001 Medial frontal cortex 0.46 0.09 22.03 <0.001
Lateral parietal cortex 0.18 0.04 22.14 <0.001 Lateral parietal cortex 0.52 0.05 47.23 <0.001
Occipital cortex 0.29 0.08 16.46 <0.001 Occipital cortex 0.59 0.13 19.42 <0.001

HCP DCGAN HCP DCGAN
Temporal cortex 0.31 0.05 27.60 <0.001 Temporal cortex 0.60 0.07 38.04 <0.001
Lateral frontal cortex 0.12 0.04 14.33 <0.001 Lateral frontal cortex 0.44 0.05 39.47 <0.001
Medial frontal cortex 0.18 0.05 16.73 <0.001 Medial frontal cortex 0.46 0.06 32.53 <0.001
Lateral parietal cortex 0.24 0.05 19.71 <0.001 Lateral parietal cortex 0.62 0.03 81.92 <0.001
Occipital cortex 0.35 0.07 23.39 <0.001 Occipital cortex 0.65 0.06 46.90 <0.001

HCP (temporally smoothed) DCGAN HCP (temporally smoothed) DCGAN
Temporal cortex 0.31 0.05 27.32 <0.001 Temporal cortex 0.62 0.06 43.39 <0.001
Lateral frontal cortex 0.14 0.04 15.86 <0.001 Lateral frontal cortex 0.56 0.05 54.81 <0.001
Medial frontal cortex 0.20 0.05 17.41 <0.001 Medial frontal cortex 0.58 0.06 44.94 <0.001
Lateral parietal cortex 0.25 0.05 21.64 <0.001 Lateral parietal cortex 0.68 0.03 97.91 <0.001
Occipital cortex 0.37 0.06 27.52 <0.001 Occipital cortex 0.79 0.06 63.31 <0.001

HCP diffusion HCP diffusion
Temporal cortex 0.23 0.05 21.52 <0.001 Temporal cortex 0.47 0.08 26.32 <0.001
Lateral frontal cortex 0.07 0.04 8.44 <0.001 Lateral frontal cortex 0.38 0.06 29.60 <0.001
Medial frontal cortex 0.12 0.05 11.34 <0.001 Medial frontal cortex 0.36 0.07 21.59 <0.001
Lateral parietal cortex 0.17 0.05 14.26 <0.001 Lateral parietal cortex 0.58 0.04 66.37 <0.001
Occipital cortex 0.28 0.07 18.90 <0.001 Occipital cortex 0.63 0.07 39.20 <0.001

R coefficients and standard deviations are shown for correlations between original and reconstructed data. T and p-values indicate whether correlations are significantly different from 0.
DCGAN deep convolutional generative adversarial networks, GSP Genomic Superstruct Project, GSR global signal regression, HCP Human Connectome Project.
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r= 0.12 ± 0.04 (CI [0.11, 0.14], t(19)= 14.33, p < 0.001), medial
frontal cortex: r= 0.18 ± 0.05 (CI [0.16, 0.20], t(19)= 16.73, p <
0.001), parietal cortex: r= 0.24 ± 0.05 (CI [0.22, 0.27], t(19)=
19.71, p < 0.001), and occipital cortex: r= 0.35 ± 0.07 (CI [0.32,
0.39], t(19)= 23.39, p < 0.001) (Table 1). We reconstructed FC
maps, and multilevel linear models again revealed significant
positive correlations in all regions: temporal cortex: r= 0.60 ±
0.07 (CI [0.57, 0.63], t(19)= 38.04, p < 0.001), lateral frontal
cortex: r= 0.44 ± 0.05 (CI [0.42, 0.47], t(19)= 39.47, p < 0.001),
medial frontal cortex: r= 0.46 ± 0.06 (CI [0.43, 0.49], t(19)=
32.53, p < 0.001), parietal cortex: r= 0.62 ± 0.03 (CI [0.60, 0.63],
t(19)= 81.92, p < 0.001), and occipital cortex: r= 0.65 ± 0.06
(CI [0.62, 0.68], t(19)= 46.90, p < 0.001) (Table 1). Comparing
the HCP and GSP reconstructions, the GSP-trained model
yielded marginally more accurate time series reconstructions
when correcting for multiple comparisons (mean difference=
0.02, CI [0.004, 0.04], t(30.21)= 2.41, p= 0.022, η2= 0.16;
significant p threshold= 0.017) and significantly more accurate
FC map reconstructions (mean difference= 0.11, CI [0.10, 0.13],
t(38)= 12.88, p < 0.001, η2= 0.81) (Fig. 4a), despite the HCP data
set having higher spatial and temporal resolutions. We postulated
that the HCP data may have a lower temporal signal-to-noise
ratio (tSNR) than the GSP data set, and indeed this was the case
(t(139.43)= 49.31, bootstrapped p= 0.001, η2= 0.95) (Fig. 4b).
To counteract this, we temporally smoothed the HCP data by
averaging together every 4 frames before retraining and retesting
the model. This significantly increased tSNR (t(99)=−40.68, p <
0.001, η2= 0.94) (Fig. 4b) and yielded more accurate reconstruc-
tions than the raw HCP-trained model (time series: mean

difference=−0.01, CI [−0.02, −0.01], t(19)=−4.67, p < 0.001,
η2= 0.53; FC maps: mean difference=−0.09, CI [−0.10, −0.09],
t(19)=−143.21, p < 0.001; η2= 1.00) (Fig. 4a; see Table 1 for
reconstruction details on each cortical region). The tSNR of the
temporally smoothed HCP data remained lower than the GSP’s
(t(198)= 23.26, bootstrapped p= 0.001, η2= 0.73) (Fig. 4b),
however, the time series reconstructions are similar in accuracy to
the GSP’s (mean difference= 0.01, CI [−0.008, 0.03], t(32.12)=
1.16, p= 0.26, η2= 0.04), while the reconstructed FC maps are
marginally less accurate after Bonferroni correction (mean
difference= 0.02, CI [0.003, 0.04], t(38)= 2.43, p= 0.020, η2=
0.13; significant p threshold= 0.017) (Fig. 4a). These findings
indicate that tSNR has an important effect on machine learning
reconstructive accuracy.

To assess the power of DCGAN, we compared its performance
to a simpler diffusion-based method for filling in compromised
cortical regions (see “Methods” section). The diffusion model was
able to reconstruct both time series and FC maps (Table 1). As
predicted, its reconstructions are less accurate than the DCGAN
model’s (time series: mean difference= 0.07, CI [0.06, 0.09],
t(19)= 9.15, p < 0.001, η2= 0.82; FC maps: mean difference=
0.18, CI [0.16, 0.19], t(19)= 27.62, p < 0.001, η2= 0.98) (Fig. 5).
As an example, in Fig. 3 we show FC maps generated from (i)
original (top row), (ii) DCGAN-reconstructed (middle row), and
(iii) diffusion-reconstructed (bottom row) vertices in all five
cortical areas. We replicated these results in the raw HCP data set
(reconstructed time series: mean difference= 0.07, CI [0.065,
0.067], t(19)= 176.20, p < 0.001, η2= 1.00; reconstructed FC
maps: mean difference= 0.06, CI [0.059, 0.064], t(19)= 53.50,
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Fig. 3 The DCGAN-generated functional connectivity maps are highly similar to the original maps, throughout cortex. The top row shows functional
connectivity (FC) maps of seeds from intact BOLD frames in the temporal, lateral frontal, medial frontal, lateral parietal, and occipital cortices. The middle
row shows the FC maps of the same seeds extracted from DCGAN-reconstructed BOLD frames. The similarity between the original and reconstructed FC
maps is high, with the following correlation coefficients: r= 0.96 for the temporal seed, r= 0.84 for the lateral frontal seed, r= 0.89 for the medial frontal
seed, r= 0.84 for the lateral parietal seed, and r= 0.88 for the occipital seed. The bottom row shows diffusion-reconstructed FC maps. While correlations
with original FC maps are also high, they are consistently lower than DCGAN correlations: r= 0.84 for the temporal seed, r= 0.80 for the lateral frontal
seed, r= 0.42 for the medial frontal seed, r= 0.71 for the lateral parietal seed, and r= 0.83 for the occipital seed.
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p < 0.001, η2= 0.99) (Fig. 5 and Table 1). This finding suggests
that our DCGAN model extrapolates information embedded
within nearby as well as distant cortical regions to reproduce
patterns of brain activity, while more naive methods can only rely
on nearby information.

The resting-state fMRI data used for reconstruction were
preprocessed with global signal regression (GSR), which intro-
duces spurious temporal anticorrelations in FC analysis14. While
progress has been made, there is still no consensus about whether
GSR should or should not be included in resting-state data
preprocessing15. To ensure the robustness of our results, we
retrained our DCGAN model using the same data, albeit
preprocessed without GSR. This data yielded lower reconstructive
accuracy for time series (mean difference=−0.001, CI [−0.003,
−0.0004], t(19)=−2.81, p= 0.01, η2= 0.29) and higher recon-
structive accuracy for FC maps (mean difference= 0.003, CI
[0.002, 0.005], t(19)= 4.87, p < 0.001, η2= 0.55) compared to
GSR-preprocessed data (Supplementary Fig. 2; see Table 1 for
reconstruction details on each cortical region). Importantly,
however, the effect was negligible in both cases, as evidenced
by the near-zero mean differences in r coefficients: −0.001 (CI
[−0.003, −0.0004]) for time series and 0.003 (CI [0.002, 0.005])
for FC maps (Supplementary Fig. 2). This finding indicates that
GSR does not affect machine learning reconstructive accuracy in
any meaningful way and that the information learned by the

DCGAN model is stable. The remaining analyses were conducted
on GSR-preprocessed GSP data.

Reconstructed BOLD signals are individual-specific. We
investigated whether the reconstructed BOLD signals reflect
general trends in BOLD activity or whether they capture patterns
of activity that are specific to the individual participant. To test
this, for each vertex within a compromised region, we calculated
the correlation between each individual’s reconstructed FC map
and (i) their original intact FC map; (ii) the group-averaged FC
map from the training data set; and (iii) the FC map of
each participant’s most similar individual (MSI; see “Methods”
section), i.e., the individual in the training data set that most
resembles their functional connectivity patterns. In Fig. 6a, we
show examples of FC maps and correlations for the same two
vertices as in the BOLD time series analyses above. The recon-
structed FC maps show the highest correlations with the original
FC maps. In Fig. 6b, we make the same comparisons but this time
across all vertices within the five cortical masks combined using a
repeated-measures ANOVA. Reconstructed and original FC maps
share many features and exhibit an average correlation of r=
0.66 ± 0.03 (CI [0.65, 0.68]), which is significantly different from 0
(t(19)= 116.77, p < 0.001). The average correlation between the
reconstructed FC maps and the training group-averaged FC maps
is r= 0.44 ± 0.02 (CI [0.44, 0.46]) and is also significantly dif-
ferent from 0 (t(19)= 85.33, p < 0.001).
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Bonferroni correction); FC maps: t(38)= 12.88, p < 0.001). Its reconstructive accuracy for time series is non-significantly different from the temporally
smoothed (t.s.) HCP’s (t(32.12)= 1.16, p= 0.26), and its FC map reconstructive accuracy is marginally greater when correcting for multiple comparisons
(t(38)= 2.43, p= 0.020). Temporally smoothed HCP data yielded more accurate reconstructions than the raw HPC data (time series: t(19)=−4.67, p <
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−40.68, p < 0.001). All statistical tests were two-sided and corrected for multiple comparisons. Source data are provided as a Source Data file. *p≤ 0.001.
†Marginally significant with Bonferroni-corrected p-value. n.s. non-significant.
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Finally, we compared the reconstructed FC maps of each
individual in the test data set to the FC maps of their MSI.
The average correlation between reconstructed and MSI FC
maps is r= 0.55 ± 0.02 (CI [0.54, 0.56]), which is significantly
different from 0 (t(19)= 116.86, p < 0.001). We statistically
compared these correlations and found them to be significantly
different from one another (F(2,38)= 927.69, p < 0.001, ηp2=
0.98). Post-hoc tests (bootstrapped paired t-tests) revealed that
the correlation between reconstructed and original FC maps is
greater than all other correlations (reconstructed vs. training
group-averaged maps: mean difference= 0.22, CI [0.21, 0.23],
t(19)= 34.53, bootstrapped p= 0.001, η2= 0.98; reconstructed
vs. MSI maps: mean difference= 0.11, CI [0.10, 0.12], t(19)=
20.70, bootstrapped p= 0.001, η2= 0.96). The fact that the
correlation between reconstructed and original FC maps is
higher than the correlation between reconstructed and training
group FC maps indicates that during the training process, the
generator did not simply learn general trends in BOLD activity
but was able to infer the co-activating patterns from the
individual-specific BOLD frames used as input in the test phase.
Critically, the reconstructed BOLD FC maps are more
representative of each individual’s own specific patterns of
functional connectivity than of any other individual in the
training data set, indicating that the DCGAN model is able to
capture individual-specific information about functional brain
organization.

Signals are successfully reconstructed in a clinical sample. We
tested the DCGAN model in 12 patients with Parkinson’s disease
(PD) whose BOLD signals were interfered with by metal
implants. Intracortical electrodes were implanted in these patients
for DBS treatment16,17. Wires outside the skull connecting the

simulator to the implanted electrodes strongly interfere with the
acquisition of the BOLD signal during post-surgical fMRI studies,
resulting in a signal loss in temporal, parietal, and occipital
regions (see Fig. 7 for examples in two representative patients)
and in abnormal measurements of functional connectivity.
Extensive resting-state fMRI data were acquired both before and
after electrode implantation surgery in these 12 patients. We first
identified the compromised region where vertices exhibited a
sharp contrast in signal amplitude before and after the electrode
implantation surgery. The compromised region covered on
average 8.36% of the cortical surface.

Once the DCGAN model reconstructed the BOLD signals in
the compromised regions, we investigated whether there was any
residual loss within these regions. We compared the normalized
amplitudes of the pre-operative BOLD signal with that of (i) the
post-operative compromised BOLD signal (Supplementary
Fig. 3a, left), and (ii) the post-operative reconstructed BOLD
signal (Supplementary Fig. 3a, right). While the post-operative
signal demonstrated substantial attenuation within the DBS-
compromised cortical regions, the reconstruction displayed no
residual signal loss. Using the pre-operative average signal
amplitudes as a reference, we calculated the normalized BOLD
amplitudes (%) of the masked-out vertices in the post-operative
images and reconstructed images. A multilevel linear model
shows that the BOLD amplitudes are significantly different under
pre-operative, post-operative, and reconstructed conditions
(F(2,1555.89)= 9695.62, p < 0.001). Examination of the parameter
estimates revealed that the post-operative BOLD amplitudes are
substantially and significantly attenuated in comparison to the
pre-operative BOLD amplitudes (mean difference=−32.54, CI
[−33.08, −32.01], t(1554.80)=−119.98, p < 0.001, η2= 0.90).
The reconstructed BOLD signals are not significantly different
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from the pre-operative BOLD signals (mean difference=−0.33,
CI [−0.20, 0.86], t(1554.44)= 1.21, p= 0.23, η2= 0.0009). The
average pre-operative, post-operative, and reconstructed normal-
ized BOLD amplitudes are shown in Supplementary Fig. 3b.

Next, we sought to evaluate the reconstructive accuracy using
functional connectivity analyses, similar to those conducted in the
healthy cohorts above. We did not consider the BOLD time series
here as the pre- and post-operative fMRI scans were obtained at
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different time points. However, functional brain organization, as
assessed with functional connectivity, is assumed to be relatively
stable over time18. Although the implantation surgery may cause
microlesion effects and lead to changes in brain circuits involving
the stimulation target (i.e., the subthalamic nucleus), the surgery
is unlikely to change functional connectivity in the area of signal
loss, which is relatively far from the location of the stimulator and
the motor network being modulated. As a proof of concept, we
investigated the functional connectivity of the right temporopar-
ietal region in the same two representative patients (note that
signal loss was observed only in the left hemisphere). We found
that the post-operative FC maps in the right hemisphere are
highly and significantly correlated with the pre-operative FC
maps, r= 0.75, standard error= 0.02 (CI [0.71, 0.79], t(10.98)=
42.96, p < 0.001, η2= 0.99). However, for the compromised
region in the left hemisphere, we found that the post-operative
FC maps are only weakly positively correlated with the pre-
operative FC maps, r= 0.37, standard error= 0.03 (CI [0.30,
0.44], t(11.02)= 11.24, p < 0.001, η2= 0.92). As an example, we
show cortical FC maps using a seed placed in two representative
patients’ compromised regions (Supplementary Fig. 4). Unlike
the weak and disorganized FC maps obtained from patients’
compromised left temporoparietal region, the FC maps generated
from seeds in the right temporoparietal region show high
similarity to their pre-operative FC maps (right hemisphere
seeds across the two patients in Supplementary Fig. 4: r= 0.83 ±
0.03, p < 0.001; left hemisphere seeds across both patients: r=
0.38 ± 0.13, p < 0.001) (Supplementary Fig. 4).

Having shown that FC maps are relatively stable following
electrode implantation, we next assessed the reconstructive
accuracy of our DCGAN model for the patients’ compromised
region in the left hemisphere. A multilevel linear model that took
into account all the vertices inside the compromised regions
showed that the reconstructed post-operative FC maps are
moderately positively correlated with the pre-operative FC maps,
r= 0.56, standard error= 0.02 (CI [0.52, 0.60]), and the
correlation is significantly different from 0 (t(10.83)= 30.50,
p < 0.001, η2= 0.99). As mentioned above, the post-operative FC
maps were also positively correlated with the pre-operative FC
maps, but this correlation was weak (r= 0.37, standard error=
0.03; CI [0.30, 0.44], t(11.02)= 11.24, p < 0.001, η2= 0.92).
Another multilevel linear model showed that the correlations
between reconstructed and pre-operative FC maps are signifi-
cantly higher than the correlations between post-operative and
pre-operative FC maps (mean difference= 0.18, CI [0.15, 0.20],
t(667.35)= 13.63, p < 0.001, η2= 0.22). As an example, we show
cortical FC maps using a seed placed in two representative
patients’ compromised regions (Fig. 8, same patients and seeds as
in Fig. 7 and Supplementary Figs. 3 and 4). As expected, the FC
maps obtained from the patients’ compromised post-operative
BOLD images do not capture the connectivity patterns observed
in the pre-surgical data. However, the FC maps generated from
the reconstructed BOLD images show high similarity to the pre-
operative FC maps (reconstructed vs. pre-operative across the two
patients in Fig. 8: r= 0.61 ± 0.01; post-operative vs. pre-operative
across both patients: r= 0.38 ± 0.13). These results indicate that
the BOLD signals reconstructed in the compromised regions
are representative of the patients’ intact functional connectivity
patterns.

Discussion
The current study aimed to reconstruct fMRI BOLD signal inside
cortical regions that suffered a signal loss due to various artifacts.
We used deep convoluted generative adversarial networks
(DCGAN), a recent advance in machine learning algorithms, to

leverage functional information embedded within BOLD frames
and reconstruct the signal in compromised regions, frame by
frame. We reconstructed BOLD signals in three cohorts: healthy
young adults (GSP and HCP data sets) with artificially compro-
mised cortical regions and patients whose fMRI scans suffered
from interference due to metal implants. Our results indicate
that such a machine learning technique successfully reconstructs
individual-specific BOLD signals and can approximate the
functional connectivity patterns observed in the intact or
unimpaired state.

The missing BOLD signal was reconstructed frame by frame,
following which we modeled the time series for all individual
vertices whose signal was compromised. We found the recon-
structed time series to be similar to the original time series. This
indicates that our model was able to recover dynamic brain
activity over time, at the level of single vertices within individual
participants. The same was found for the reconstructed and
original functional connectivity maps. These findings are intri-
guing, as the images were reconstructed at each time point
independently and single input frames did not carry time-varying
information. The generator was thus able to learn information
beyond what was presented at face value during the test phase,
and modeled accurate functional interactions between brain
regions and the changing dynamics of the BOLD signal through
time. The DCGAN model outperformed a more naive diffusion-
based reconstruction method, indicating that machine learning is
able to extrapolate information embedded within the whole
BOLD image, while simpler filling-in methods are restricted to
using nearby information, thereby limiting their ability to capture
principles of brain organization. Additional control analyses
revealed that global signal regression (GSR), a preprocessing step
that amplifies anticorrelations in the brain through its mathe-
matical mandate14,15, does not meaningfully impact the learning
of these principles. Of note, the temporal signal-to-noise ratio
(SNR) of the training data is an important factor that modulates
reconstructive accuracy.

The reconstruction of the compromised signals is based on
learning the functional relationships between different brain
regions in intact BOLD frames from a large data set. The trained
model deduces possible signal distributions in the compromised
region using the remaining intact BOLD amplitude patterns in
the individual. Thus, the generator learns functional activity
patterns that are specific to each individual and builds a high-
dimensional space that is sensitive to variations across indivi-
duals. Indeed, we show that the reconstructed BOLD signals
capture individual differences in patterns of activity. A given
individual’s reconstructed FC maps were more similar to their
original FC maps than to the training group-averaged maps or to
the ones belonging to the most similar individual from the
training data set. Therefore, the deep machine learning model
may be useful in recovering lost signal in clinical settings, where
the focus is on the individual.

On that note, our method has several potential clinical appli-
cations. Revealing individual-based functional activity is critical
not only for understanding the functional network organization
of the human brain19 but also for personalized medicine, such as
when precise cortical mapping is required for neurosurgery or
neuromodulation20,21. Our individual-specific machine learning
method can, as we have shown, reconstruct the BOLD signal that
was lost due to intracortical electrode interference. We showed
that the model generates FC maps with high reconstructive
accuracy, as they exhibit high similarity to maps derived from
pre-surgical images. Thus, machine learning-based reconstruction
can impact the investigation of various disorders where intra-
cortical electrodes are used for diagnosis or therapy, such as in
epilepsy, Parkinson’s disease, depression, obsessive-compulsive
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disorder, among others. This method could also help mitigate
registration problems in fMRI that occur with data from patients
with brain lesions due to stroke or tumor resections, by filling in
the compromised regions prior to registration. It could also fill in
regions that are routinely cut off during acquisition, such as the
top of the brain or the lower portion of the cerebellum. Another
application would be to reconstruct whole frames in patient fMRI
data in which many frames were scrubbed due to excessive head
motion, a common pitfall in clinical studies. Finally, in both
clinical and non-clinical settings, machine learning could be used
to reconstruct the BOLD signal in regions that are susceptible to
signal loss and geometric distortion, such as the orbitofrontal
cortex and temporal cortex. However, this could only be done
once the model can be trained on uncompromised images, thus
appropriate data acquisition methods that can counteract these
susceptibility artifacts will first have to be developed.

We observed that the reconstructive accuracy differed from
region to region. Reconstructive accuracy may be affected by a
number of factors. One factor is the size of the compromised
region, as smaller regions yield better reconstructions. A second
factor is the shape of the region, as closer proximity to uncom-
promised vertices is likely to result in better reconstruction.
A third factor is whether the affected region has important large-
scale network connectivity, which would increase accuracy as
fMRI activity outside of the compromised region would bear
information relevant to the activity within the compromised
region. Additionally, the distribution of learned functional acti-
vation patterns is constrained by the training data set. More
efforts are necessary to evaluate the reconstructive accuracy of the
model when the compromised BOLDs are not acquired using the
same MRI and scanning parameters as the training data. Another
limitation of our study is that the DCGAN model dealt with 2D
images. Currently, it is not able to reconstruct whole-brain 3D
images as the computational power required is too high. We hope
that technological advances will soon enable this type of model-
ing. In the meantime, it may be possible to reconstruct signal in
small 3D volumes.

Besides 3D modeling, we propose one area of future study to
improve the current machine learning model, which would be to

consider the causal interactions across time frames. Currently, each
of the BOLD frames is used separately to supervise the learning
process of the adversarial networks. In this way, the connections
among cortical areas, which are not included in single BOLD
frames, are difficult to detect. Feeding DCGAN a combination of
BOLD frames may improve their modeling power.

In summary, we harnessed the learning power of deep con-
volutional neural networks to generate BOLD signals in regions
that experienced signal loss. We have replicated our findings in
multiple data sets and have shown that it is possible to reconstruct
lost BOLD signal in healthy individuals as well as in a clinical
sample with compromised fMRI. In all cases, the reconstructed
signals closely resemble the uncompromised signals. Notably, the
reconstructed signals are coherent with each individual’s func-
tional brain organization. Such a method could benefit persona-
lized clinical and non-clinical studies where brain regions suffer
signal dropout, distortion, or deformation.

Methods
Participants. We used the resting-state fMRI data of 100 healthy young
adult participants randomly chosen from the Brain Genomics Superstruct Project
(GSP)10 data set (50 women, 50 men; mean age: 22.0 ± 3.2 years), as well as the
“100 Unrelated Subjects” data set22 that was taken from the large publicly available
Human Connectome Project13 database (54 women, 46 men; age range 22–36). We
also analyzed the MRI data of 12 patients with Parkinson’s disease (PD; 5 women, 7
men; mean age= 55.3 ± 7.5) from a previous clinical trial (https://clinicaltrials.gov/
ct2/show/NCT02937727), who had intracortical electrodes implanted for deep-
brain stimulation (DBS) treatment. The patients underwent stereotactic implan-
tation of quadripolar DBS electrodes (PINS Medical, Model L301C) in the sub-
thalamic nucleus. Microelectrode recording and stimulation guided the electrode
implantation, and the electrodes were connected to extension leads (PINS Medical,
Model E202C), which were themselves connected to the implanted pulse generator
(PINS Medical, Model G106R). All participants provided written informed consent
in accordance with guidelines set by the Institutional Review Boards of Harvard
University, Partners Healthcare, or Beijing Tiantan Hospital of Capital Medical
University.

MRI data acquisition. GSP data set. Each healthy young participant from the GPS
data set underwent one structural scan and two resting-state fMRI scans (6 min
and 12 s per scan). Data were collected on matched 3 T Tim Trio scanners (Sie-
mens, Erlangen, Germany) using a 12-channel phased-array head coil. Structural
data included a high-resolution multi-echo T1-weighted magnetization-prepared
gradient-echo image (TR= 2200 ms, TE= 1.54 ms for image 1 to 7.01 ms for
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Fig. 8 The DCGAN model can reconstruct BOLD signals compromised by the implantation of a deep-brain stimulator in patients with Parkinson’s
disease.We generated the FC map of a given vertex (black circle) before and after surgery in two representative patients (left panels). Delineated in white
is the region that is affected by the implanted device, defined by identifying the vertices which showed a stark decrease in BOLD amplitude after the
implantation surgery. The post-operative FC maps are substantially different from the pre-operative FC maps due to the intracortical electrodes, with a
relatively low correlation of r= 0.28 in patient 1 and r= 0.47 in patient 2. We also generated FC maps for the same vertices, this time using the
reconstructed BOLD frames (right panels). The generated FC maps are highly similar to the intact pre-operative FC maps, as indicated by a correlation of
r= 0.60 for patient 1 and r= 0.62 for patient 2. Thus, the DCGAN model is able to reconstruct patients’ functional brain organizations.
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image 4, TI= 1100 ms, flip angle= 7°, voxel size: 1.2 × 1.2 × 1.2 mm, FOV= 230,
slices= 720). Resting-state fMRI images were acquired using the gradient-echo
echo-planar imaging (EPI) pulse sequence (TR= 3000 ms, TE= 30 ms, flip
angle= 85°, voxel size: 3 × 3 × 3mm voxels, FOV= 216, slices= 47 slices collected
with the interleaved acquisition with no gap between slices). Whole-brain coverage
including the entire cerebellum was achieved with slices aligned to the anterior
commissure-posterior commissure plane using an automated alignment procedure,
ensuring consistency across participants23. Participants were instructed to stay
awake, keep their eyes open, and minimize head movement; no other task
instruction was provided.

HPC data set. HCP participants underwent structural MRI scans (20 min) and
two resting-state fMRI scans (30 min each) on a 3 T Siemens Skyra MRI scanner
equipped with a 32-channel head coil. Structural images were acquired using a 3D
MPRAGE T1-weighted sequence (TR= 2400 ms, TE= 2.14 ms, TI= 1000 ms, flip
angle= 8°; voxel size: 0.7 × 0.7 × 0.7 mm, FOV= 224 mm, matrix= 320,
256 sagittal slices in a single slab). Functional images were acquired using a
multiplexed EPI pulse sequence (TR= 720 ms, TE= 33.1 ms, flip angle= 52°,
voxel size: 2 × 2 × 2 mm, FOV= 208 × 180 mm, 72 slices, multiband factor= 8,
echo spacing= 0.58 ms, bandwidth= 2290 Hz/px). To match the duration of the
GSP data, we truncated the HCP resting-state data to 8 min.

Clinical data set. Each of the 12 patients with Parkinson’s disease underwent
four resting-state fMRI scans (6 min and 8 s per scan) at two time points: at
baseline before the DBS electrode implantation surgery and one month after. The
patients were instructed to stay awake and keep their eyes open. The deep-brain
stimulator was turned off during post-surgical fMRI scanning. The specific
absorption rate-estimated values were continuously monitored throughout the
scanning sessions. MRI data were collected on a Philips Achieva 3.0 Tesla TX
whole-body MR scanner using a 32-channel receive-only head coil. Structural
images were acquired using a sagittal magnetization-prepared rapid gradient-echo
T1-weighted sequence (TR= 7.6 ms, TE= 3.7 ms, TI= 1000ms, flip angle= 8°,
voxel size= 1 × 1 × 1mm, FOV= 256, slices= 180). Functional data were collected
using an echo-planar imaging sequence (TR= 2000 ms, TE= 30 ms, flip angle=
90°, voxel size= 2.875 × 2.875 × 4mm, FOV= 230, slices= 37).

Data processing. Structural data were processed using FreeSurfer version 4.5.0.
Surface mesh representations of the cortex from each individual participant’s
structural images were reconstructed and registered to a common spherical coor-
dinate system24. The structural and functional images were aligned using
boundary-based registration using the FsFast software package (http://surfer.nmr.
mgh.harvard.edu/fswiki/FsFast)25. The preprocessed resting-state fMRI data were
then aligned to the common spherical coordinate system via sampling from the
middle of the cortical ribbon in a single interpolation step26. We registered each
individual’s fMRI data to the FreeSurfer template which consisted of 40,962 ver-
tices in each hemisphere. A 6-mm full-width half-maximum (FWHM) smoothing
kernel was applied to the fMRI data in the surface space. The smoothed data were
downsampled to a mesh of 2562 vertices in each hemisphere using the mri_-
surf2surf function in FreeSurfer.

Resting-state fMRI data were processed using the following procedures: (i) slice
timing correction (SPM2; Wellcome Department of Cognitive Neurology, London,
UK)27; (ii) rigid body correction for head motion with the FSL package28,29; (iii)
normalization of global mean signal intensity across runs; and (iv) bandpass
temporal filtering (0.01–0.08 Hz), head-motion regression, whole-brain global
signal regression (GSR), and ventricular and white-matter signal regression in a
single step. To test the effects of GSR, we also preprocessed the data without GSR.
After preprocessing, each participant’s resting-state fMRI data were normalized to
[−1,1] by dividing the BOLD amplitude of each vertex by the maximum absolute
BOLD value observed in each session using Matlab R2014b. The normalized 2562-
vertex mesh of the BOLD frames was then flattened to 2-dimensional maps using
the tksurfer and mris_flatten functions in FreeSurfer24.

Machine learning. We used DCGAN to reconstruct lost or compromised BOLD
information. The neural network modeling was conducted in three steps using
Python 3.6.1. In the first step, the training phase, two competing models are
trained: a generator and a discriminator (Fig. 1a). The generator is trained to
encode BOLD information by feeding it intact BOLD frames from the training data
set. Using information within these frames, the generator creates new frames,
which the discriminator then classifies as being either authentic (real BOLD frame)
or artificial (generator-created BOLD frame). Both the generator and discriminator
simultaneously continue training with new frames, and through many iterations,
each becomes optimized. Training ends when an optimized discriminator classifies
the generated frames into one category or the other at chance level. In the second
step, we created artificially compromised BOLD frames by removing the BOLD
signal within certain predefined regions, using data from the test data set. In the
third step, the signal in the compromised region is reconstructed by feeding the
compromised BOLD images to the DCGAN generator (Fig. 1b). The generator
then produces new complete frames based on these. Using the mask of the com-
promised region, the region with a reconstructed signal from the newly generated
frame replaces the one in the compromised frame to form a complete BOLD
frame which includes the original information (BOLD signal outside of the com-
promised region) and the newly generated information (BOLD signal inside the

reconstructed region). Following this, we evaluated the similarity between the
reconstructed BOLD information and the original intact BOLD information. Each
of these steps is described in more detail below.

Step 1: Training a generative network to encode BOLD information. Eighty
participants were randomly selected from the Brain GSP data set10 to build the
training data set, which consisted of 19,200 intact flattened BOLD frames in vertex
space. The data from 20 other participants, again selected randomly from the GSP,
constituted the test data set, which was independent from the training data set. We
used a DCGAN model2 to create BOLD frames in vertex space based on each
individual participant’s data. The generator’s goal is to create images similar
enough to the original images that the discriminator is forced to randomly classify
them as authentic or simulated, while the goal of the discriminator is to correctly
classify images as either authentic or simulated.

In mathematical terms, the generator (G) samples data x from the true data
population pdata and produces parameters. It maps these parameters onto a random
vector z, which is sampled from latent space Z, and creates artificial images G(z),
which are part of the generated distribution pg. When the discriminator (D) detects
a difference between the distributions pdata and pg, the generator G tweaks its
parameters and generates images that are more similar to the authentic images.
This process is repeated until the generator produces a generated distribution pg
that so closely matches the true data distribution pdata that the discriminator D is
unable to detect a difference and classifies the authentic or generated images G(z)
randomly.

Convolutional neural networks (CNN) were used to build the generator and
discriminator4. During the adversarial training process, the generator and
discriminator were trained simultaneously. They were optimized using a Nash
equilibrium of costs two-player minimax game with value function V(G, D):

min
G

max
D

V D;Gð Þ ¼Ex�pdata xð Þ logD xð Þ½ �þ
Ez�pz zð Þ log 1� D G zð Þð Þð Þ½ �:

ð1Þ

The input z was a sample taken from 100 dimensional uniformly distributed
noise; in each dimension, the value varied from −1 to 1. The generator projected
the input z to a small convolutional representation and then converted the
representation into a 500 × 500 pixel image through four-layer fractionally strided
convolutions4. The discriminator estimated the input images through four-layer-
strided convolutions and fed the layers into single sigmoid outputs. Rectified Linear
Unit activation was used in the generator’s layers, except for the output layer,
which used the Tanh function30. Leaky rectified activation was used in all of the
discriminator’s layers31. A 64-size batch normalization was used in the training
procedure for stabilization32, and the sigmoid cross entropy was calculated to
measure the probability difference between two images. We used an Adam
optimizer during the optimizing procedure of the generator and discriminator33,
with a learning rate of 0.0002. The generator’s parameters were adjusted twice
during each iteration to balance the learning speed between the generator and the
discriminator.

Step 2: Creating the compromised BOLD frames. To allow the DCGAN model
to generate BOLD signals in compromised regions, we created frames in which we
removed the BOLD signal in predefined regions. We aimed to test the generator on
five regions spread across the cortical surface: the lateral frontal cortex, the medial
frontal, cortex, the lateral parietal cortex, the lateral temporal cortex, and the
occipital cortex. These were delineated using FreeSurfer’s Desikan–Killiany atlas34.
The Desikan–Killiany atlas labels of the artificially compromised regions are: 4, 13,
19, 20, 21, 28 for the lateral frontal cortex (329 eliminated vertices, 12.8% of the
cortical surface); 3,15, 27, 29 for the medial frontal cortex (223 eliminated vertices,
8.7% of the cortical surface); 9, 30, 32 for the lateral parietal cortex (429 eliminated
vertices, 16.7% of the cortical surface); 10 and 16 for the lateral temporal cortex
(140 eliminated vertices, 5.5% of the cortical surface); and 6, 12, 14, 22 for the
occipital cortex (188 eliminated vertices, 7.3% of the cortical surface). Masks M
were created separately to mask out each of the eliminated regions and leave intact
the other parts of the flattened BOLD activation map. After preprocessing, BOLD
signals within the masks were artificially set to 0 to create the compromised BOLD
frames.

We also sought to evaluate the reconstructive accuracy of our model according
to the size of the compromised regions. To do this, we created ten sets of
incrementally larger masks (Supplementary Fig. 1a). We selected at random 10
vertices among all 2562 cortical surface vertices, located in various cortical regions.
Each of these vertices served as the center of its mask set. Each mask set was
comprised of six masks, whose coverage went from 10 to 60% of the cortical
surface, with incremental steps of 10% (i.e., 10, 20, 30, 40, 50, 60%). The BOLD
signal inside these masks was eliminated to create 10 sets of BOLD images with
increasingly larger compromised regions.

Finally, for the patients with Parkinson’s disease, we created masks that
encompassed the regions in which interference was observed due to the implanted
DBS electrodes. We first calculated the absolute values of the surface-based BOLD
signal for each vertex, which were then averaged and normalized to [0,1] to achieve
a normalized BOLD signal strength for each vertex before and after implantation
surgery. Then, the pre- and post-operative BOLD amplitude maps were contrasted
and the vertices with strongly reduced amplitude post-operatively were extracted to
create a mask. The compromised regions comprised 193 vertices (7.5% of the
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cortical surface) in one patient and 200 vertices in the other (7.8% of the cortical
surface).

Step 3: Reconstructing compromised BOLD signals. The trained generator was
used to reconstruct the BOLD frames with artificially compromised regions, by
generating an image G(z) with maximal similarity to the original BOLD activation
x in the cortical regions outside of the mask. The generator’s loss function serves to
calculate the divergence between the real and simulated BOLD frames, and was
defined as:

L ¼
X

x:*M � G zð Þ:*Mð Þ2: ð2Þ
In order to minimize the loss function, an optimized z must be found in the

latent space. After random sampling, z was mapped to G(z) by the trained
generator. The location of z was rearranged iteratively during the optimization
process using the gradient-descent method to find the most similar generated
image G(z) with minimal L to x. The number of iterations was set to 500, with a
0.000002 learning rate.

In the reconstruction step, we used 4800 BOLD frames from the test data set of
20 participants. The reconstructed BOLD frames were built from the masked-out
flattened images. To do this, we first had to determine the spatial location of each
vertex on a flattened BOLD amplitude map. Each vertex was generated and
subsequently projected onto a flattened cortical surface map. The coordinates with
maximum value in the flattened map were regarded as the location of the generated
vertex. Using this method, we determined the correspondence between each of the
vertices and their spatial location on the flattened map. This allowed us to then take
the flattened map and to project it back into vertices on a BOLD frame. For each
participant, the simulated BOLD frames were assembled temporally to reconstruct
the BOLD time series.

Diffusion model. We compared our DCGAN model to a more naive recon-
struction model based on diffusion, whereby each compromised vertex was
assigned a BOLD value based on the average of the BOLD signal in adjacent
vertices. The process was started at the perimeter of the compromised region so
that those vertices could be filled in using the adjacent uncompromised vertices.
Then, reconstruction moved inwards, with new vertices being assigned a BOLD
value based on the adjacent vertices that were reconstructed in the previous step.
This process was reiterated until all compromised vertices were assigned a value.

Temporal signal-to-noise ratio. Temporal signal-to-noise ratio (tSNR) was
measured by dividing 1 by the standard deviation of the BOLD signal as described
in previous studies35,36 and then averaged across all voxels within the brain, across
frames, and across participants.

Statistical analysis. The reconstructive accuracy of the DCGAN model was
evaluated by calculating correlations between original and reconstructed BOLD
signal time series and functional connectivity. The similarity between the original
and reconstructed BOLD time series was only investigated in the first part of the
study with healthy adults. The reconstructed signal was compared to the original
signal. For the patient study, time series obtained at different time points cannot be
directly compared, for this reason, we did not compare the post-operative recon-
structed time series to the pre-operative time series in the patients with PD. As the
brain’s functional connectivity (FC) patterns are relatively stable through time, we
compared the FC maps generated from various seeds inside the compromised
regions, in both the healthy adult data sets and the PD data set. To show that
functional connectivity is relatively stable and unaffected by electrode implantation
surgery, we also generated FC maps using seeds in uncompromised regions.

For the time series comparisons at any given vertex, the similarity between
reconstructed and original signals was quantified by calculating the Pearson
correlation between the two time series. The correlation values within a given
masked region were then averaged across participants to represent the similarity
between the reconstructed and original BOLD signals in that region.

The cortical FC of the original and reconstructed BOLD signals was also
compared. For the original BOLD images, an FC map was created by calculating
the z value of the correlation between the BOLD signal at a given vertex and the
BOLD signals at all the vertices in the two cerebral hemispheres. For the
reconstructed BOLD images, the compromised regions were filled in with the
reconstructed BOLD signal to calculate the FC of the whole brain. The vectors
storing the FC of the original and reconstructed BOLD signals for a given vertex
were then correlated to determine their similarity. For each of the five cortical
masks, the statistical significance for the time series and FC map correlations was
assessed using multilevel linear models with vertices nested within participants.
Differences between various models or data sets were statistically assessed using
independent (e.g., GSP vs. HCP) and paired (e.g., raw HCP vs. temporally
smoothed HCP, DCGAN vs. diffusion) samples t-tests. Whenever the assumption
of normality was violated, bootstrapped p-values were calculated. Multiples
comparisons were corrected for using the Bonferroni correction.

To assess whether the reconstructed BOLD signals were representative of
individuals’ own BOLD signals or whether they simply reflected general trends in
BOLD activity learned from the training data set, we calculated the correlation
between the reconstructed BOLD FC map from the test data set and the group-

averaged FC map from the training data set in corresponding vertices. The
correlations were calculated using all vertices within the five cortical masks combined.

We also compared the reconstructed FC map of each participant in the test data
set to the intact FC map of the individual in the training data set that most
resembles them, called the most similar individual (MSI). To determine each
participant’s MSI, we correlated a given individual’s functional connectivity vectors
for the vertices inside all five cortical masks combined with the vectors of
corresponding vertices in each of the 80 training data set participants. The training
data set individual showing the highest similarity (highest correlation) to a given
participant from the test data set was identified as that participant’s MSI. The
statistical significance of each of these average correlations (reconstructed vs.
original, reconstructed vs. training, reconstructed vs. MSI) was assessed by
examining parameter estimates generated from a repeated-measures analysis of
variance (ANOVA), which also served to statistically compare whether these three
average correlations were different from one another. Finally, we used paired t-tests
as post-hoc tests to determine which pairs of correlations demonstrated a
significant difference. We used a repeated measures ANOVA to determine whether
the size of the compromised region significantly affected the reconstructive
accuracy of the generated frames across 10 cortical masks.

Statistical tests were performed using SPSS Statistics 20.0 (IBM, NY). All
statistical tests were two-sided, and 95% CI are reported. Effect sizes are reported
for group-level analyses: ηp2 for F-tests, ηp2 for t-tests, and r coefficients for
correlations. Means are presented along with their standard deviations (mean ± s.
d.) in the results section, except when indicated otherwise.

Data availability
The GSP data set is available at http://neuroinformatics.harvard.edu/gsp/. The HCP data
set is available at https://www.humanconnectome.org/study/hcp-young-adult/data-
releases. The DBS data set is available from the corresponding authors upon reasonable
request. Source data are provided with this paper.

Code availability
The code used in this article is available at http://nmr.mgh.harvard.edu/bid/DownLoad.
html.
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