www.nature.com/scientificreports

SCIENTIFIC
REPORTS

natureresearch

‘ W) Check for updates

Graph-based exploitation of gene
ontology using GOxploreR

for scrutinizing biological
significance

Kalifa Manjang?, Shailesh Tripathi', Olli Yli-Harja%3®, Matthias Dehmer*> &
Frank Emmert-Streib®¢*

Gene ontology (GO) is an eminent knowledge base frequently used for providing biological
interpretations for the analysis of genes or gene sets from biological, medical and clinical problems.
Unfortunately, the interpretation of such results is challenging due to the large number of GO terms,
their hierarchical and connected organization as directed acyclic graphs (DAGs) and the lack of

tools allowing to exploit this structural information explicitly. For this reason, we developed the R
package GOxploreR. The main features of GOxploreR are (l) easy and direct access to structural
features of GO, (ll) structure-based ranking of GO-terms, (l1l) mapping to reduced GO-DAGs including
visualization capabilities and (IV) prioritizing of GO-terms. The underlying idea of GOxploreRis to
exploit a graph-theoretical perspective of GO as manifested by its DAG-structure and the containing
hierarchy levels for cumulating semantic information. That means all these features enhance

the utilization of structural information of GO and complement existing analysis tools. Overall,
GOxploreR provides exploratory as well as confirmatory tools for complementing any kind of
analysis resulting in a list of GO-terms, e.g., from differentially expressed genes or gene sets, GWAS or
biomarkers. Our R package GOxploreR is freely available from CRAN.

The gene ontology (GO) consortium funded by the National Institute of Health (NIH) started in 1998. Initially,
GO contained only three model organisms but extended since then to over 3200"% The ontology is structured into
three distinct aspects of gene function, namely, molecular function (MF), cellular component (CC), and biologi-
cal process (BP) together with over 45, 000 terms and 130, 000 relations. However, the majority of information
is centered around ten model organisms (human, mouse, rat, zebrafish, drosophila, C. elegans, D. discoideum,
S. cerevisiae, S. pombe, A. thalia and E. coli)*. In addition, GO includes annotations by linking specific gene
products to GO-terms. This allows the connection between genes and GO-terms for deriving organism-specific
information. Currently, GO is the most comprehensive and widely used knowledge base concerning functional
information about genes®®.

A reason for the widespread applicability of GO is its generality. That means instead of providing solutions to
particular problems, GO provides generic information that can be connected to any list of genes or gene products
regardless of the type of upstream analysis that generated such a list. For instance, investigations that can lead to
a list of genes are from studies about differentially expressed genes or gene sets, GWAS (genome-wide associa-
tion study), biomarkers or gene regulatory networks’'*. These studies could be of biological, medical, clinical
or pharmacological nature making GO useful across the life and health sciences.

Interestingly, despite the widespread usage of GO for a number of different application types”'*'*, for explor-
ing the GO knowledge base from a graph theoretical perspective'®!” the available tools are surprisingly sparse and

!Predictive Society and Data Analytics Lab, Tampere University, Tampere, Korkeakoulunkatu 10, 33720 Tampere,
Finland. 2Computational Systems Biology, Tampere University, Tampere, Korkeakoulunkatu 10, 33720 Tampere,
Finland. 3Institute for Systems Biology, Seattle, WA, USA. “Department of Biomedical Computer Science and
Mechatronics, UMIT-The Health and Life Science University, 6060 Hall in Tyrol, Austria. *College of Artificial
Intelligence, Nankai University, Tianjin 300350, China. ®Institute of Biosciences and Medical Technology, Tampere
University, Tampere, Korkeakoulunkatu 10, 33720 Tampere, Finland. *email: frank.emmert-streib@tuni.fi

SCIENTIFIC REPORTS| (2020)10:16672 | https://doi.org/10.1038/s41598-020-73326-3

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-73326-3&domain=pdf

www.nature.com/scientificreports/

only very basic functions are available for obtaining structural information'®-2°. However, no dedicated functions
are ready-for-use that give us, e.g., information about the GO-level of a GO-term, the category (regular node,
jump node or leaf node) of a GO-term, the adjacency matrix of the GO-DAG of BP terms or all GO-terms on a
specific GO-level, to name just a few. Furthermore, existing tools do not provide means for reducing the overall
complexity of GO that would be amenable, for instance, for a visualization. Given the size of GO containing
thousands of GO-terms, such a simplification would be highly desirable.

For these reasons, we created the R package GOxploreR to fill this gap. Our package provides direct access
to structural information allowing the efficient exploitation of graph-theoretical properties of a DAG (directed
acyclic graph) for further analysis. We provide also information on a low level. For instance, given a list of Entrez
Gene IDs our package includes an (online) function to provide the BP, MF or CC of GO-terms associated with
these genes. To retrieve the most current GO-terms, we use the biomartR package to query the Ensembl website.
However, for obtaining fast information, we added also an offline version of these functions with pre-assembled
information. This functionality is supported for ten organisms.

Aside from functions for the quantification of structural properties of GO-DAGs, we provide also visuali-
zation capabilities. Due to the size of GO our visualizations aim at a simplified representation. Specifically, by
categorizing GO-terms into three classes—called regular nodes (RN), jump nodes (JN) and leaf nodes (LN)—we
obtain a simplified representation of a GO-DAG with at most three nodes on each GO-level and the connections
among them. These categories simplify the semantic attributes of GO-terms significantly yet provide important
information regarding their connectivity. In this way, the GO-DAG of human for BP with 29, 699 GO-terms is
reduced to a simplified DAG with 39 nodes, which is amenable for a visualization. We provide also extensions
of such a visualization by, e.g., filtering for a set of GO-terms. This leads to a further reductions of complexity
and can be utilized for compact visualizations of large lists of significant genes, gene sets or pathways. Finally,
we provide a function for prioritizing a list of GO-terms as obtained, e.g., from differentially expressed genes,
that reflects the structural positions of these GO-terms and their biological-semantic importance within the
entire GO-DAG.

In general, one of the main applications of GO is the identification of over- or under-represented GO-terms
for a specified gene list (as a result, e.g., from identifying differentially expressed genes) utilizing a hypergeometric
test (also known as Fisher’s exact test)?*%. A problem with this is that GO has a hierarchical structure in the form
of a directed acyclic graph (DAG), which means that the GO-terms are dependent on each other. However, the
above approaches ignore this dependency structure. For compensating this omission, semantic measures have
been suggested, e.g., utilizing frequencies to assess the similarity/distance between GO-terms?®. Alternatively,
information about the connection of GO-terms has been included to a certain degree for enrichment analysis,
e.g..”*. Although such approaches are more informative, in practice, they are often ignored and the structure-less
methods are preferred because they are simpler to apply and interpret. Another problem is that different semantic
measures seem to be preferable for particular biological data and applications, which further complicates the
selection of such measures enormously®.

In contrast, the R package GOxploreR is different to the above approaches in the following way. Specifically
its main features include (I) a direct access to structural features of GO, (II) a structure-based ranking of GO-
terms, (III) a mapping from a GO-DAG to a reduced GO-DAG, (IV) a visualization of reducuded GO-DAGs
and (V) an algorithm for prioritizing GO-terms. That means the providesd features are meant to complement,
e.g., approaches for identifying enriched GO-terms by providing alternative approaches for the analysis of GO-
terms. Overall, GOxploreR can help in improving some of the above discussed shortcomings by providing
novel ways for graph-based exploitations of the GO knowledge base to simplify the interpretation of large sets
of significant GO-terms by utilizing structural information from the underlying DAG. Due to the fact that such
a list of GO-terms can come from any type of upstream analysis, GOxploreR is a very versatile and flexible
tool with respect to potential applications in the life and health sciences.

This paper is organized as follows. In the next section, we describe the underlying methodology of GOx~—
ploreR and the provided functionality. Then we showcase the applicability of GOxploreR by highlighting
some of its features and implemented functions. This paper finishes with a discussion of the available functions,
a comparison to existing tools and concluding remarks.

Methods

In this section, we provide technical information about the main features provided by GOxploreR. First, we
discuss how one obtains a directed acyclic graph (DAG) for given GO-terms. Then we discuss organism-specific
GO-DAGs and a mapping that converts such a DAG into a reduced GO-DAG. Finally, we discuss an algorithm
for prioritizing GO-terms.

Determiningthe GO-DAG. The problem with existing packages is that none provides a function to directly
obtain a GO-DAG for a domain, i.e., BB, MF or CC, in the form of an adjacency matrix. Instead, they provide
local information which needs to be used for deducing such a tree tediously. For instance, GOdb provides the
function GOBPCHILDREN to get the children of a GO term for BP. For the other two domains similar functions
are available. The problem is that a children node does not need to be on the next hierarchy level but can jump
further down the DAG. For an example see Fig. 1. In this figure, the child of node 2 is node 8 which is located on
level 4, i.e., the child jumps from level 1, the location of its parent, to level 4.

The following example demonstrates how one can deduce a GO-DAG from this information. First, we list all
children of a GO term (as obtained via the command GOBPCHILDREN).

SCIENTIFIC REPORTS |

(2020) 10:16672 | https://doi.org/10.1038/s41598-020-73326-3

www.nature.com/scientificreports/

Figure 1. An example for a toy GO-DAG containing 9 GO-terms, whereas each node corresponds to one
GO-term. The children of a node can jump over levels, as shown in red for the connection between node 2 and
8.

CH(x1) = {x2, %3} (1)
CH (x2) = {xs} 2)
CH (x3) = {x4, x5 3)
CH (x4) = {xg, %7} (4)
CH(xs) = 0 (5)
CH (xg) = {xg, %0} (6)
CH(x7;) = 0 (7)
CH(xg) = 0 (8)
CH(x9) = 0)

The root node is unique and we assign it the level 0, i.e., L(x;) = 0. The children for the root node receive as first
assignment for a level the value L(x;) + 1 = 1, i.e,

L(xy) = {1} (10)

L(x3) = {1} (11)

We wrote the right-hand side as a set because if such a node appeares again, we just add the new level value to
this set. Going through the list of children, we assign each children of a node x; the value L(x;) + L

CH (x2) — L(xg) = {2} (12)

CH(x3) = L(x4) = (2}, L(x5) = {2} (13)

SCIENTIFICREPORTS| (2020)10:16672 | https://doi.org/10.1038/s41598-020-73326-3

www.nature.com/scientificreports/

CH(x4) — L(x6) = {3}, L(x7) = {3} (14)

CH (xg) — L(xg) = {2,4}, L(x9) = {4} (15)

From the last line we see that xg appears once on level 2 and once on level 4, which is correct if one looks at Fig. 1.
However, there is just one correct level for xg and this is level 4. In general, if more than one level is assigned to
anode then the correct one is the largest of these values.

Such a GO-DAG can be constructed for every domain, i.e., biological process, molecular function and cellular
component. In our package, we call the resulting graphs:

® g.GO-DAG.BP: A DAG for all GO-terms of biological processes.
® §.GO-DAG.MF: A DAG for all GO-terms of molecular functions.
® g.GO-DAG.CC: A DAG for all GO-terms of cellular components.

Organism-specific GO-DAG. Starting from a GO-DAG for a domain, as constructed in the previous sec-
tion and using a list of all genes from an organisms, we can map these genes to GO-terms. For a particular organ-
ism, not all GO-terms may be present but only a subset. Such a subset can then be mapped back to the entire
GO-DAG of the knowledge base. This gives a subtree of the general GO-DAG that is organism-specific. Using
the function GetDAG (organism = o.name, domain = "BP") one obtains, e.g.,a GO-DAG of BPs for
the organism given by ‘o.name’ For all domains, the following functions can be used:

® GetDAG(organism = o.name, domain = "BP"): A sub-DAG for all GO-terms of biological
processes for organism o.name’

® GetDAG(organism = o.name, domain = "MF"): A sub-DAG for all GO-terms of molecular
functions for organism o.name.

® GetDAG (organism = o.name, domain = "CC"):A sub-DAG for all GO-terms of cellular com-

ponents for organism ‘o.name’

Reduced GO-DAG. Visualizing one of the GO-DAGs determined above (for all GO-terms or for organism-
specific GO-terms) is usually challenging because of the size of such graphs containing thousands of GO-terms
corresponding to nodes in a graph. For this reason, we derive a simplified GO-DAG, containing only dozens of
nodes, that can be easily visualized to obtain a global overview of all used GO-terms.

In order to simplify a GO-DAG, we introduce the following categorization of GO-terms, excluding the root
node. This categorization is applied to each level separately:

® A GO-term is in category ’leaf node’ (LN) if it has no children.
® A GO-term is in category regular node’ (RN) if all its children are on the next level.
® A GO-term is in category ’jump node’ (JN) if it has children and at least one of these is not on the next level.

We apply this categorization for all GO-terms. This results in the mapping
GO-term X — GO-term category on level L

That means we have functions of the form
(D) =fX) (16)

with ¢ € {LN, RN, JN} and] € N. For instance, from Fig. 1 follows 3 — RN on level 1 and 2 — JN on level 1,
which can be written formally as

(RN, 1) =f(3) (17)

(N, =£(2) (18)

Algorithmically, the implementation is described in 1.

SCIENTIFIC REPORTS |

(2020) 10:16672 | https://doi.org/10.1038/s41598-020-73326-3

www.nature.com/scientificreports/

Algorithm 1: CATEGORIZATION OF GO-TERMS

1 For a GO-DAG with L levels, M nodes, adjacency matrix A € RM*M and level function [= g(i) fori € {1,...,M} and
1e{0,...,L}

2 Initialize hash H # for nodes in GO-DAG

3 Initialize hash V # for nodes in simplified GO-DAG

4 Initialize hash F

5 Initialize matrix C € R(

6 Initialize vectors Ca,ca,h

7 forie{l,...,M} do

8 S = links(A(i,)) # find all nodes S linking from i (outgoing links from i)

o | li=g(i)

10 K=1/0

11 foreach node j € S do

12 lj = g(j) # find the level of node j

L K — lj

14 if S =/ then

15 | ¢i=LN

16 else if [; exists in K with [; > [;+ 1 then
17 L ci =IN

18 else if |S| > O then
19 | ci=RN

L+1)x3

20 set H{(ci,1;)} < i # store set of nodes i with ¢; and /;
21 | setCa(i) = c; # categorize node i
22 k=1 # node ID for nodes in simplified GO-DAG

N~
w
—

or /1 €{0,...,L} do

24 # summarize nodes of the same category

25 C(l,1) = |[H{(LN,!)}| # number of leaf nodes on level
26 C(1,2) = |[H{(RN,])}|

27 C(1,3) = [H{(IN,])}|

28 foreach C(l,¢) >0do

29 set V{k} = H{(c,I)} # mapping between old and new node IDs
30 set F{(c,])} =k

31 set h(k) = [# level function of simplified GO-DAG

32 set ca(k) =c

33 k=k+1

34 N = |V| # number of nodes in simplified GO-DAG

In addition to the node categorization, we need to find the connections between these nodes. This is realized
via the implementation shown in Algorithm 2.

Algorithm 2: CALCULATE NUMBER OF LINKS BETWEEN CATEGORY NODES.

1 ForA, F, M, N, h and Ca; see Algo 1

> Initialize adjacency matrix B with B € RV*V for simplified GO-DAG
3 for I; € {0,...,L} do

4 foreach node x on level I} do

5 c¢1 = Ca(x) # find the category of node x
6 ile{(C‘hll)}
;

8

9

S = Ch(x) # find all children of x using A
foreach y € S do
¢y = Ca(y) # find the category of node y

10 I, = g(y) # find the level of node y
11 izzF{(Cz,lz)}
12 B(i1,i) = B(i1,ip) + 1

SCIENTIFICREPORTS| (2020)10:16672 | https://doi.org/10.1038/s41598-020-73326-3

www.nature.com/scientificreports/

Figure 2. An example for the construction of a reduced GO-DAG. Left: An ordinary GO-DAG with 19 GO
terms is shown. Right: The reduced GO-DAG with 8 nodes summarizes the left graph. Note, the nodes in the
right graph are no GO-terms but node categories, i.e., either RN, JN or LN.

Overall, a GO-DAG is described by an adjacency matrix A and a level function g and analogously, a reduced
GO-DAG is described by adjacency matrix B and level function h and C (number of original nodes summarized
by a new category).

In Fig. 2 we show a complete example for this mapping. The GO-DAG on the left-hand side has 19 GO terms
and the resulting simplified GO-DAG on the right-hand side has only 8 nodes, whereas these nodes correspond
to the three GO categories (RN, JN & LN) defined above. As one can see, each level will contain at most 3 nodes
because this is the number of different categories. However, it is possible to have even fewer nodes, if a category
is absent on a level.

Importantly, this transformation can be applied to any GO-DAG, regardless if this DAG is for all GO terms
of, e.g., BPs, or for an organism-specific GO-DAG.

Prioritizing lists of GO-terms. In general, the comparison of GO-terms with respect to their biological-
semantic importance is complex. However, the comparison of GO-terms along a path is much simpler because
the higher a level of a GO-term is the more specific is its biological information®. That means vertically one
wants to traverse a DAG along a path as far down as possible. This implies that the GO-term at the end of a path
is most interesting compared to all other GO-terms along this path. This increase in the semantic meaning along
vertical paths is exploited by our algorithm for prioritizing lists of GO-terms.

Algorithm 3: PRIORITIZING A LIST OF GO-TERMS.

1 For a list, H, of GO-terms in domain XX, a GO-DAG of XX and level function g
2 Initialize a list R

3 n=|H|

4 foreach i € H do

5 L I; = g(i) # find level for each GO-term

6 while n > 0 do

7 r =rank({/;|H}) # ranking of all {/;} that are in H from high to low
8 R — arg(ry) # GO-term that belongs to the highest rank

9 for arg(ry) find shortest path(s), p, to root

10 delete all nodes in H that are on p\ arg(r;)

11 n=|H|

12 R contains the prioritized GO-terms.

SCIENTIFICREPORTS| (2020)10:16672 | https://doi.org/10.1038/s41598-020-73326-3

www.nature.com/scientificreports/

Figure 3. Shown is a path (green) in a GO-DAG, where nodes correspond to GO-terms. Along this path, the
biological semantics increases from node to node the further down one traverses the path.

Our algorithm applies the above described logic iteratively, by starting from the GO-term at the highest level
and searches all shortest paths to the root node. Then all GO-terms along these shortest paths are removed from
the list and the procedure starts over. See Fig. 3 for a visualization. In this figure, one shortest path from node
17 to the root node is shown. The pseudo-code of this is shown in Algorithm 3. Here XX corresponds to BP, MF
or CC. The algorithm guarantees that for a non-empty list, H, of GO-terms the resulting set, R, containing the
prioritized GO-terms consists of at least one GO-term. For instance, sayH = {5,9, 17}. Then our algorithm starts
at node 17 and searches all shortest paths to the root. One of these is highlighted in green in Fig. 3. As a result,
the nodes 5 and 9 are eliminated because they appear on a lower hierarchy level than node 17. In this case, the
final result of our algorithm gives R = {17}.

Overall, our prioritizing algorithm provides a parameter- and assumption-free, non-redundant ranking of
GO-terms that exploits only vertical structural information of GO.

Technical details about GO. For the construction of the various DAGs, we are only utilizing information
from GO-basic. The information about this can be obtained from the go-basic.obo file, which can be obtained
from the Gene Ontology website (http://geneontology.org/docs/download-ontology/). This file contains the
basic version of GO and it is guaranteed that the resulting DAG is acyclic and annotations can be propagated
through the graph. We would like to note that the relations included in this, i.e., "is_a", "part_of", regulates,
"negatively_regulates” and "positively_regulates” also guarantee transitivity (NB: transitivity is not obeyed by

"has_part" relations which are included in GO-core available from the go.obo file via the GeneOntology website).

Results
In the following sections, we highlight some of the features provided by the GOxploreR package and show
some example applications.

Structural exploration of GO. In Table 1, we show an overview of the organisms supported by the GOx -
ploreR package. Overall, at the moment ten organisms are supported corresponding also to the main organ-
isms within the GO database. The second column in Table 1 shows the option name as used for arguments in
functions.

For instance, the following command gives for the gene list ¢(10212, 9833)’ containing Entrezgene IDs infor-
mation about the associated GO-terms and hierarchy levels.

SCIENTIFIC REPORTS |

(2020) 10:16672 | https://doi.org/10.1038/s41598-020-73326-3

http://geneontology.org/docs/download-ontology/

www.nature.com/scientificreports/

Organism Option name Genes | Levels | BP-terms
Human "Homo sapiens"/"Human" 19155 | 19 12436
Mouse "Mus musculus"/"Mouse" 20929 |18 12328
Caenorhabditis elegans "Caenorhabditis elegans"/"Worm" 14697 |17 3689
Drosophila melanogaster | "Drosophila melanogaster"/"Fruit fly" 12683 | 18 5323
Rat "Rattus norvegicus"/"Rat" 19383 |18 11584
Baker’s yeast "Saccharomyces cerevisiae"/"Yeast" 5502 |17 3050
Zebrafish "Danio rerio"/"Zebrafish" 20718 |18 5404
Arabidopsis thaliana "Arabidopsis thaliana"/"Cress" 25891 |17 4059
S. pombe "Schizosaccharomyces pombe"/"Fission yeast" | 5055 |16 2973
Escherichia coli "Escherichia coli"/"E.coli" 3449 |15 1491

Table 1. An overview of the organisms supported by the GOxploreR package.

> Gene2GOTermAndLevel (genes = c (10212, 9833), organism = "Human", domain = "BP")
entrezgene id goid ont. level
1 10212 GO:0006397 BP 8
2 10212 GO:0008380 BP 8
3 10212 GO:0006406 BP 12
4 10212 GO:0000398 BP 11
5 10212 GO:0006405 BP 8
6 10212 GO:0031124 BP 9
7 9833 G0O:0006468 BP 7
8 9833 G0O:0016310 BP 5
9 9833 G0:0018108 BP 9
10 9833 GO:0007049 BP 2
11 9833 GO:0006915 BP 4
12 9833 GO:0035556 BP 5
13 9833 G0:0008283 BP 1
14 9833 G0O:0043065 BP 7
15 9833 GO:0046777 BP 8
16 9833 G0O:0030097 BP 7
17 9833 G0O:0000086 BP 6
18 9833 G0O:0061351 BP 2
19 9833 G0O:0008631 BP 7

In case a list of GO-terms is already available the corresponding hierarchy levels can be obtained with the
command ‘GOTermXXOnLevel. Here XX’ is either BP, MF or CC. In the following, XX’ corresponds always
to one of these three domains.

> goterms <- c("G0:0009083","G0O:0006631","G0O:0006629","G0O:0014811","G0O:0021961")
GOTermBPOnLevel(goterm = goterms)
Term Level
GO:0009083 8
GO:0006631 7
GO:0006629 3
GO0:0014811 19
GO0:0021961 15

\Y

O R S

For the analysis of enriched GO-terms, one frequently wants to limit such an analysis to more informative
GO-terms which are located toward higher hierarchy levels. In order to obtain all GO-terms located on a specific
hierarchy level one can use the function ’Level2GOTermXX.

SCIENTIFICREPORTS| (2020)10:16672 | https://doi.org/10.1038/s41598-020-73326-3

www.nature.com/scientificreports/

> Level2GOTermBP(level = 17, organism = "Human")

[1] "GO:2000321" "GO:0010880" "GO:2000320" "GO:0045630" "GO:2000703"
[6] "GO:2000734" "GO:0031587" "GO:0045627" "GO:0045629" "GO:0045626"
[11] "GO:0021808" "GO:0060315" "GO:0060316" "GO:0021836" "GO:0021972"
[16] "GO:0031586" "GO:0021817" "GO:0097379" "GO:0021816" "GO:0097380"

It is interesting to highlight that the children of a GO-term in a GO-DAG can ’jump’ to different levels. For
instance, using the function ’'GOTermXX2ChildLevel’ gives the GO-terms as well as the corresponding hierarchy
levels of these.

> GOTermBP2ChildLevel(goterm = "GO:0007635")
$Terms
[11 "GO:0007636" "GO:0007637" "GO:0042048" "GO:0061366"

$Level
[1157 46

Here the GO-term "GO:0007635" is on level 3, however, its children are not only on level 4. The reason for
this is that in GO there are no cross links on the same level. That means the children of any GO-term are always
on a lower level because the terms are more specific. This implies that "GO:0007636" which is located on level 5
has (at least one) parent node located on level 4. In order to find this parent(s) we can use the following.

go <- Level2GOTermBP(level = 4)
L <- length(go)
go.par <- c()
for(i in 1:L){
go.ch <- GOTermBP2ChildLevel(goterm = go[i])$Terms
if(length(which(go.ch == "G0:0007636"))){
go.par <- c(go.par, go[i])
}
}

In this case there are 1166 GO-terms on level 4 and the only parent of "GO:0007636" is "GO:0007630".

It is important to note that GO does not only provide one DAG but several different ones. The reason for
this is that each organism has a specific number of genes, and from these genes one obtains only a subset of all
GO-terms that are connected to an organism. In total there are eleven GO-DAGs available from GOxploreR,
ten for the organisms and one for all GO-terms.

In order to demonstrate the differences in the GO-terms for different organisms, we show in Fig. 4 the distri-
bution of GO-terms of BP for human (top), zebrafish (middle) and E. coli (bottom). The x-axis corresponds to
the hierarchy level of the corresponding GO-DAG of BP. As one can see for human one has a GO-DAG with 19
hierarchy levels whereas for zebrafish one has 16 and for E. coli 14. Furthermore, also the number of GO-terms on
these levels is considerably different from each other as can be seen from the counts (number of GO-terms) on the
y-axis. In Table 1, we show an overview of the number of levels (column four) and the number of GO-terms of BP
(column five) for all ten organisms. For completeness, we want to mention that if one does not specify the organ-
ism in the command "Level2GOTermBP’ one can obtain a total number of 29698 GO-terms of BP for all levels.

Structure-based ranking of GO-terms. Maybe the most popular application of GO is the identification
of enriched GO-terms for a list of genes. Unfortunately, as a result from such an analysis it is not uncommon
to find large numbers of GO-terms making a focused discussion very difficult. However, a GO-DAG provides
information that can be utilized for an exploratory analysis of such a list. Specifically, the hierarchy levels of
GO-terms can be utilized. Despite the fact that a GO-level is not an absolute indicator for biological specificity it
provides still valuable information®. Using our function GOTermBPOnLevel gives the GO-levels of BP for a list
of GO-terms allowing, e.g., a simple ordering for complementing an enrichment analysis.

For instance, in Fig. 5A, we show results for a list of enriched GO-terms of BP found from an analysis of the
breast cancer gene regulatory network?. Specifically, the hierarchy levels (x-axis) of these GO-terms (y-axis)
are shown in purple. For reasons of comparison, the maximal depth of paths in the GO-DAG passing through
these GO-terms is shown in red. As one can see, in all cases, the GO-terms are not at the end of these paths but
somewhere situated along the way toward the highest possible (maximal) level that can be reached by passing
through the corresponding GO-terms. This information is important because on one-hand one wants to inter-
rogate GO-terms that are biologically specific, i.e., are situated toward the highest hierarchy level of the GO-DAG
- for human this would be level 19. On the other-hand not every GO-term is connected to the highest level, i.e.,
there is no path that would allow to reach the maximal level. Hence, there is a trade-off between absolute and

SCIENTIFIC REPORTS |

(2020) 10:16672 |

https://doi.org/10.1038/s41598-020-73326-3

www.nature.com/scientificreports/

Human
1500 -
- 1000~
c
>
Q
o
B II I
R Il-__
0 5 10 15 20
level
Zebrafish
600~
S 400-
Q
o
- I I
o _-I Il_f
0 5 10 15 20
level
200~ -
E.coli
150 -
€
3
8 100-
N I I
0 --I -
0 5 10 15 20

level

Figure 4. Distribution of GO-terms of BP for human (top), zebrafish (middle) and E. coli (bottom). The x-axis
corresponds to the hierarchy level of the corresponding GO-DAG.

relative position of a GO-term within a GO-DAG. For this reason, the GO-terms in Fig. 5A are ranked according
to the distance between the two points (purple and red).
This trade-off can be formally quantified by the following score,

level (GO) level (GO)

s; = score = X
level,ax (GO) levelgo—pag(GO)

= p1(max path)p,(GO — DAG). (19)

Since the left-hand-side of Eq. (19), i.e, % € (0,1], as well as the right-hand-side, i.e.,
level (GO)

Tovdoo pac(GO) € (0, 1] the resulting score is also positive and at most one. Hence, the score, sy, is a product of two

probabilities, i.e., sy = p;(max path)p,(GO — DAG) allowing to optimize the trade-off between both objectives.

The resulting score s; is shown in Fig. 5B. As one can see, the ranking of GO-terms is similar to Fig. 5A but
not identical because Fig. 5A considers for the ranking only the relative distance between the actual and the
maximal attainable position in a GO-DAG. Hence, both figures provide slightly complementary information.
For our example GO:0006614 (SRP-dependent cotranslational protein targeting to membrane) and GO:0006613
(cotranslational protein targeting to membrane) have the highest score, which are interestingly directly con-
nected in the GO-DAG. Overall, in general this information enables an exploratory analysis of GO-terms which
complement the obtained p-values from an enrichment analysis.

In GOxploreR, such an analysis can be performed by using the commands distRankingGO and scoreRank-
ingGO, i.e., the results in Fig. 5A,B can be obtained by

SCIENTIFIC REPORTS |

(2020) 10:16672 | https://doi.org/10.1038/s41598-020-73326-3

www.nature.com/scientificreports/

A. G0:0006614
G0:0000087
G0:0000184
G0'0006613
G0'0006415
GO'0006612
G0:0000279
G0/0045047
G0:0000956
G0:0022403
GO'0006414
G0:0060337
G0:0006402
G0:0019083
G0'0006413
G0/0072599
G0:0071357
G0:0006412
G0:0019058
G0:0072594
G0:0006401
GO'0019080
G0:0006396
G0:0034340
G0:0016071
G0'0006259
GO'0043624
G0:0070972
G0/0045087
G0:0016032
G0/0032984
G0/0051249
GO'0010564
G0:0022411
G0:0000280
G0'0044764
G0'0048285
GO'0002684
GO'0050776
G0:0046649
G0/0051301
G0/0000278
G0/0045321
GO/0002682
G0:0007155
G0/0001775
G0:0022610

GO-terms

B. G0:0006614
G0:0006613
G0:0000184
G0:0006612

G0:0072599
G0:0006412
G0:0006401
G0:0006396
G0:0016071
G0:0019083
G0:0071357

GO:0006259
G0:0070972
G0:0019058
G0:0019080
G0:0051249
G0:0034340
G0:0043624
G0:0000279
G0:0010564
G0:0000280
G0:0045087
G0:0016032
G0:0032984
G0:0048285
G0:0002684
G0:0050776
G0:0046649
G0:0022403
GO 10022411

GO-terms

G0:0001775
G0:0022610

—o
—o
—o
—o
—o
— o
—o
— o
1 5 10 15
level
)
[J
)
)
)
®
)
)
®
®
)
®
®
®
®
)
®
®
®
)
)
®
)
®
[
[
®
)
®
®
)
®
®
[)
[
®
O
[
[
[
®
®
[
®
[
®
I. 1 1 1
0.00 0.25 0.50 0.75
score

19

1.00

Figure 5. (A) The hierarchy levels for a list of GO-terms (y-axis) are shown in purple and the hierarchy levels
for the maximal depth of paths in the GO-DAG passing through these GO-terms is shown in red. (B) Rank
ordered GO-terms according to the score s;.

SCIENTIFIC REPORTS |

(2020) 10:16672 |

https://doi.org/10.1038/s41598-020-73326-3

www.nature.com/scientificreports/

distRankingGO(goterm = Terms, domain = "BP", plot = TRUE)
scoreRankingGO(goterm = Terms, domain = "BP", plot = FALSE)

Reduced GO-DAG. The starting point for many different types of analyses is usually a visualization of the
data in order to derive an intuition about the information contained in the data. Unfortunately, for unfiltered
GO-terms such a visualization is not feasible because the entire GO-DAG of an organism is too large containing
thousands or even tens of thousands of GO-terms (see Table 1). For instance, even the smallest organism with
respect to GO-terms of BP consists of 1491 nodes in the corresponding GO-DAG, distributed over 15 hierarchy
levels. A graph of such a size cannot be visualized in an insightful way?®. For this reason, we introduce a so called
reduced GO-DAG that allows an easy visualization.

The underlying idea of such a reduced GO-DAG is a mapping from GO-terms into three node categories,
namely: regular nodes (RN), jump nodes (JN) and leaf nodes (LN). A GO-term is called a ’regular node’ (RN)
if all its children are on the next level, a GO-term is a ’jump node’ (JN) if it has children and at least one of these
is not on the next level and a GO-term is a "leaf node’ (LN) if it has no children at all. Such a mapping is obtain
by the function getGOcategory.

As an example, Fig. 6A shows the reduced GO-DAG of MF for C. elegans. This GO-DAG contains only 37
category nodes, i.e., RNs, JNs or LNs, which summarize all 2102 GO-terms of MF for this organism on 14 hierar-
chy levels. That means only category nodes are shown that contain at least one GO-term, allowing a system-wide
view of all MFs of C. elegans. Importantly, a reduced GO-DAG has the same number of hierarchy levels as the
original GO-DAG because the mapping into category nodes does not effect the hierarchy levels. This holds for
all GO-DAG. The following code demonstrates how the information shown in Fig. 6A can be obtained.

visSRDAGMF(organism = "Caenorhabditis elegans", plot = TRUE)

Similar visualizations are possible for all other organisms because even for human, there are only 52 (BP), 38
(MF), 43 (CC) nodes in the resulting reduced GO-DAG for the corresponding domains.

In case one has a list of GO-terms, one can also perform such a mapping only for this limited number of
GO-terms. Furthermore, also a visualization for this sub-set of all GO-terms can be obtained using the function
visRDAGMF. Overall, a reduced GO-DAG helps in simplifying the complexity provided by the gene ontology
especially with respect to the connectivity between the GO-terms. This enables a general visualization for an
exploratory analysis of system-wide information propagation capabilities.

Prioritizing GO-terms. Finally, GOxploreR provides a function called prioritizedGOTerms for prioritiz-
ing GO-terms. The idea is to go beyond the ordering of GO-terms for a provided list of GO-terms to eliminate
selected terms that are capturing redundant and less biologically specific information; see the discussion of
Fig. 6B below.

In order to realize an implementation for such a function, we apply the following strategy (see Methods Sec.
2.4 for technical details). Specifically, it is known that the comparison of GO-terms with respect to their biologi-
cal meaning is complex. However, the comparison of GO-terms that can be found along a path is much simpler
because the higher a level of a GO-term, the more specific is its biological information®. That means traversing
a path vertically toward higher levels increases the biological specificity of GO-terms implying that the GO-term
at the end of a path is the most interesting one. Hence, by eliminating all GO-terms that are together on a path,
except the one on the highest level, results in a prioritizing of terms with respect to the semantic meaning of
GO-terms. The function prioritizedGOTerms implements this strategy. In Fig. 6B, we show visualized of this.
Here one path is highlighted containing three GO-terms (GO:1, GO:2, and GO:3) whereas GO:3 has the highest
level. This results in an elimination of GO:1 and GO:2. Similarly, all other paths are explored resulting in GO:1
and GO:6 as output of the prioritizing algorithm.

As an example, we investigate a list of GO-terms that was obtained from analyzing a gene regulatory network
of S. cerevisiae®. The original list contains 30 different GO-terms of BP?, each significantly enriched with a
significant p-value. Application of our function prioritizedGOTerms for prioritizing GO-terms results in only 5
GO-terms, shown in Table 2. Each of these 5 GO-terms is located on a separate brunch of the underlying GO-
DAG between which no paths exist. Hence, despite of a certain similarity of the biological processes, e.g., for
metabolic or mitochondrial processes, each of these terms is from a different, separate semantic category because
otherwise connections with the DAG would exist. Such an analysis complements available p-values and gives
further information on which GO-terms a follow-up analysis could focus on.

Overall, the function prioritizedGOTerms can prioritize a list of GO-terms with information about the seman-
tic information content of a GO-DAG as provided by the level of GO-terms. If desired, a separate visualization
could be obtained only for these GO-terms by using the function visRDAGsubMF.

Discussion

In this paper, we introduced the R package GOxploreR and highlighted some of the functionality it provides.
Overall, GOxploreR provides functions and algorithms for four different types of analyses. Specifically, GOx -
ploreR enables a (1) direct access to structural features of GO, (2) structure-based ranking of GO-terms, (3)
mapping to a reduced GO-DAG and (4) prioritizing of GO-terms.

SCIENTIFIC REPORTS |

(2020) 10:16672 | https://doi.org/10.1038/s41598-020-73326-3

www.nature.com/scientificreports/

A. & LO: J=2 R=4 L=-2
5 S @ L1:J-5 R-9 L-6
i 6 % L2:J-21 R-20 L-53
. @ L3:J-10 R=59 L-114
@ L4:J-8 R-72 L-324
L5: J=3 R=48 L=201
L6: J=1 R=32 L=108
L7: J=3 R=22 L=T1
L8: J=1 R-8 L-48
L9: J=0 R=2 L-16
L10:J=0 R=1 L-=15
L11:J=0 R=1 L=1
L12:J=0 R=1 L=4
L13:J=0 R=0 L=1
L14:J=0 R=0 L=0
JN RN LN
B. GO root

search path

GO:1

remove

Input: {GO:1, GO:2, GO:3, GO:4, GO:5, GO:6} Output: {GO:3, GO:6}

Figure 6. (A) Shown is a reduced GO-DAG of MF for C. elegans. The whole GO-DAG contains only 37
category nodes, i.e., RN, JN or LN and summarizes all 2103 GO-terms of MF for this organism. (B) Underlying
idea for prioritizing GO-terms in a general DAG. Shown is one search path. Nodes in blue correspond to
GO-terms in a given list.

The first three features of GOxploreR permit an exploratory analysis of GO-terms and GO-DAGs whereas
the fourth feature provides a dedicated algorithm for a particular problem. Despite the fact that it is well-known
that GO has the structure of a DAG, there are surprisingly few tools allowing a direct assess to structural, i.e.,
graph-based information of GO. Hence, our features and the corresponding functions help in utilizing this rich
source of information which is in our opinion so far largely underexplored. A reason for this lack could be that
the conceptual realization and implementation of graph-based algorithms is not straight forward requiring
inter- and transdisciplinary knowledge of graphs and the underlying biology.

SCIENTIFICREPORTS| (2020)10:16672 | https://doi.org/10.1038/s41598-020-73326-3

www.nature.com/scientificreports/

GO-term GO-level Description p value # genes
GO:0006364 9 rRNA processing 1.6e-39 237
GO0:0032543 8 Mitochondrial translation 4.2e-167 100
GO0:0044257 6 Cellular protein catabolic process 2.0e-78 347
GO0:0019752 5 Carboxylic acid metabolic process 3.5e-67 370
GO:0007005 4 Mitochondrion organization 3.0e-168 282

Table 2. Using GOxploreR one can prioritize lists of GO-terms. The table shows results for significant
GO-terms from analyzing a gene regulatory network of S. cerevisiae® after the application of our prioritizing
algorithm. The GO-terms are for BP and complement p-values obtained from an independent enrichment
analysis.

One important novelty of GOxploreR is to provide a mapping from a GO-DAG to a reduce GO-DAG. This
leads to a tremendous reduction in complexity of graphs because a GO-DAG can contain thousands of nodes,
depending on the organism and the domain, i.e., BP, MF or CC. In contrast, a reduced GO-DAG has at most
three nodes of the categories, JN (jump node), RN (regular node) or LN (leaf node) on each hierarchy level.
The idea behind this mapping is inspired by the detection of differentially expressed genes (DEG)*. While the
expression level of a gene is continuous, a DEG analysis performs a kind of classification of the expression level
into two categories: active and inactive. This allows a reduction in the complexity of the gene expression level by
capturing simplified yet essential information. Our mapping from a GO-DAG to a reduce GO-DAG follows a
similar strategy by capturing simplified yet essential information of the connection between GO-terms. As far as
we know, GOxploreR is the only package that provides such a mapping and reduction in the GO complexity.

Another novelty of the GOxploreR package is to provide visualizations of reduced GO-DAGs. This feature
is directly enabled by the tremendous reduction in complexity of the mapping from a GO-DAG to a reduce GO-
DAG because the visualization of a DAG containing thousands of nodes (see Table 1) is not feasible. In contrast,
a reduce GO-DAG permits such a visualization allowing to obtain an overview of the biological information
processing of the entire ontology. Given the novelty of a mapping from a GO-DAG to a reduce GO-DAG other
packages that provide also visualization capabilities do not offer this particular visualization.

Finally, the GOxploreR package provides a prioritizing algorithm. The idea of this algorithm is to go beyond
the ordering of GO-terms for a given list of GO-terms, and to eliminate GO-terms capturing redundant biological
information. For the prioritizing of GO-terms in a list, we utilized the fact that the higher a level of a GO-term is
the more specific is its biological information®. That means vertically one wants to traverse a DAG as far down as
possible because the end of a path is most specific compared to all other GO-terms along this path. Our algorithm
applies this logic iteratively by starting from the GO-term at the highest level and searches all (shortest) paths to
the root node. Then all GO-terms along these shortest paths are removed from the list and the procedure starts
over; see Fig. 1 for a visualization. As a result, one obtains a prioritizing of GO-terms that is a parameter- and
assumption-free algorithm which removes redundant GO-terms by exploiting only vertical structural informa-
tion of a GO-DAG. Hence, the output of our prioritizing algorithm is a non-redundant ranking of GO-terms.

We would like to highlight that there is a crucial difference between our prioritizing algorithm and approaches
based on the semantic similarity of genes®*% The difference is that we utilize only vertical information from a
GO-DAG. This implies that there is no need for comparing GO-terms horizontally because they cannot be con-
nected by any path (besides over the root node). However, this horizontal comparison is usually the problem
since the biological significance of different GO-terms on the same hierarchy level can be different. This simpli-
fies the analysis yet allows the elimination of redundant GO-terms. The resulting list of GO-terms maybe be
further reduced, however, not without making additional assumptions, e.g., in the form of semantic similarity
measures. A common problem with the latter is that there is not one but many different measures for semantic
similarity all of which are non-trivial in their definition and interpretation®. In contrast, our prioritizing algo-
rithm is parameter- and assumption-free allowing to remove redundant GO-terms by exploiting only vertical
structural information along paths of a GO-DAG. Another fundamental difference between our prioritizing
algorithm and semantic similarity measures is that our algorithm focuses on GO-terms and not on genes. This
facilitates a general systems view on the underlying problem from which the GO-terms have been obtained as
represented by systems biology***°.

In Table 3, we compare the capabilities of the GOxploreR package with other software tools available for
analyzing GO. The first column shows the name of the software whereas the remaining columns refer to various
features. Specifically, the second column indicates if a software tool is available as an R package and the third
column refers to direct assess of structural information provided by a GO-DAG. Examples thereof are the hier-
archical level of a GO-term, the GO-terms on a certain hierarchy level or the adjacency matrix of a DAG. The
fourth column is about identifying the enrichment of GO terms, whereas the fifth column is about the availability
of reduced GO-DAGs and the sixth column refers to a prioritizing algorithm for a list of GO-terms.

As one can see from Table 3, the GOxploreR package is considerably different from all the other software
tools, hence, providing novel and complementary analyses functionality. Importantly, GOxplozreR is available
as R package allowing the easy utilization of it within existing analysis pipelines for their extensions. Hence,
GOxploreR does not provide dead-end functionality via web-interfaces but enables future biomedical data
science projects®®.

SCIENTIFIC REPORTS |

(2020) 10:16672 | https://doi.org/10.1038/s41598-020-73326-3

www.nature.com/scientificreports/

Direct structural information
Name R Package | to GO Enrichment | Reduced GO-DAG | Prioritizing GO-terms
GOxploreR Yes Yes No Yes Yes
OntologyTraverser” | Yes Partly Yes No No
Categorizer®® No No Yes No No
G-SESAME* No No No No No
GOrilla® No No Yes No No
GOGrapher*! No Partly No No No
agriGO* No No Yes No No
topGO* Yes Yes Yes No No
GOdb* Yes Yes No No No

Table 3. A comparison of the capabilities of various software tools for analyzing GO.

Conclusion

In this paper, we introduced the R package GOxploreR, available from CRAN (after acceptance of the paper).
GOxploreR isa versatile tool that can be applied to any list of GO-terms from an upstream analysis as a result
from studying, e.g., differentially expressed genes, GWAS, biomarkers, gene sets or gene regulatory network
studies’~". Its main features include:

A M

A direct access to structural features of GO.

A structure-based ranking of GO-terms.

A mapping from a GO-DAG to a reduced GO-DAG.
A visualization of reducuded GO-DAGs.

An algorithm for prioritizing GO-terms.

Given the lack of tools for exploring the DAG-structure of GO from a graph theoretical perspective, GOxploreR
complements non-structural analysis tools. Overall, GOxploreR has the potential to enhance studies inves-
tigating differentially expressed genes, GWAS (genome-wide association study), biomarkers, gene sets or gene
regulatory network studies significantly because the obtained information has a clear interpretation directly
derived from the gene ontology knowledge base and is not based on additional assumptions.

Received: 20 January 2020; Accepted: 17 August 2020
Published online: 07 October 2020

References

W N

v

10.

11.

12.

. Ashburner, M. et al. Gene ontology: tool for the unification of biology. Gene Ontol. Consort. Nat. Genet. 25, 25-29 (2000).

. Consortium, G. O. The gene ontology resource: 20 years and still GOing strong. Nucleic Acids Res. 47, D330-D338 (2018).

. Tweedie, S. et al. Flybase: enhancing drosophila gene ontology annotations. Nucleic Acids Res. 37, D555-D559 (2008).

. Boyle, E. I et al. GO::TermFinder-open source software for accessing gene ontology information and finding significantly enriched

gene ontology terms associated with a list of genes. Bioinformatics 20, 3710-3715 (2004).

. Binns, D. et al. Quickgo: a web-based tool for gene ontology searching. Bioinformatics 25, 3045-3046 (2009).
. Jacobson, M., Sedeno-Cortés, A. E. & Pavlidis, P. Monitoring changes in the gene ontology and their impact on genomic data

analysis. GigaScience 7, giy103 (2018).

. Young, M., Wakefield, M., Smyth, G. & Oshlack, A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome

Biol. 11, R14 (2010).

. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90

W97 (2016).

. Merico, D,, Isserlin, R., Stueker, O., Emili, A. & Bader, G. D. Enrichment map: a network-based method for gene-set enrichment

visualization and interpretation. PLoS ONE 5, 13984 (2010).

Arciero, C. et al. Functional relationship and gene ontology classification of breast cancer biomarkers. Int. J. Biol. Markers 18,
241-272 (2003).

Mooney, M. A., Nigg, J. T., McWeeney, S. K. & Wilmot, B. Functional and genomic context in pathway analysis of GWAS data.
Trends Genet. 30, 390-400 (2014).

Schaid, D. J. et al. Using the gene ontology to scan multilevel gene sets for associations in genome wide association studies. Genet.
Epidemiol. 36, 3-16 (2012).

. Cun, Y. & Frohlich, H. Biomarker gene signature discovery integrating network knowledge. Biology 1, 5-17 (2012).
. Hoehndorf, R., Schofield, P. N. & Gkoutos, G. V. The role of ontologies in biological and biomedical research: a functional perspec-

tive. Brief. Bioinform. 16, 1069-1080 (2015).

. Ten Blake, J. A. Quick tips for using the gene ontology. PLoS Comput. Biol. 9, 1003343 (2013).
. Emmert-Streib, F. & Dehmer, M. Networks for systems biology: conceptual connection of data and function. IET Syst. Biol. 5, 185

(2011).

. Aittokallio, T. & Schwikowski, B. Graph-based methods for analysing networks in cell biology. Brief. Bioinform. 7, 243-255 (2006).
. Carbon, S. et al. AmiGO: online access to ontology and annotation data. Bioinformatics 25, 288-289 (2008).

. Martin, D. et al. GOToolBox: functional analysis of gene datasets based on gene ontology. Genome Biol. 5, R101 (2004).

. Ye,]. et al. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 34, W293-W297 (2006).

. Beiflbarth, T. & Speed, T. P. Gostat: find statistically overrepresented gene ontologies within a group of genes. Bioinformatics 20,

1464-1465 (2004).

SCIENTIFIC REPORTS |

(2020) 10:16672 | https://doi.org/10.1038/s41598-020-73326-3

www.nature.com/scientificreports/

22. Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics 23, 257-258 (2006).

23. du Plessis, L., Skunca, N. & Dessimoz, C. The what, where, how and why of gene ontology? A primer for bioinformaticians. Brief.
Bioinform. 12, 723-735 (2011).

24. Grossmann, S., Bauer, S., Robinson, P. N. & Vingron, M. Improved detection of overrepresentation of gene-ontology annotations
with parent-child analysis. Bioinformatics 23, 3024-3031 (2007).

25. Mazandu, G. K. & Mulder, N. J. Information content-based gene ontology functional similarity measures: Which one to use for a
given biological data type?. PLoS ONE 9, 113859 (2014).

26. Dennis, G. et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 4, R60 (2003).

27. Emmert-Streib, E, de Matos Simoes, R., Mullan, P.,, Haibe-Kains, B. & Dehmer, M. The gene regulatory network for breast cancer:
integrated regulatory landscape of cancer hallmarks. Front. Genet. 5, 15 (2014).

28. Tripathi, S., Dehmer, M. & Emmert-Streib, F. NetBioV: an R package for visualizing large-scale data in network biology. Bioinfor-
matics 30, 2834-2836 (2014).

29. de Matos Simoes, R. & Emmert-Streib, F. Bagging statistical network inference from large-scale gene expression data. PLoS ONE
7, €33624 (2012).

30. Dudoit, S., Yang, Y. H., Callow, M. J. & Speed, T. P. Statistical methods for identifying differentially expressed genes in replicated
CDNA microarray experiments. Statistica Sinica 12, 111-139 (2002).

31. Gan, M., Dou, X. & Jiang, R. From ontology to semantic similarity: calculation of ontology-based semantic similarity. Sci. World
Jhttps://doi.org/10.1155/2013/793091 (2013).

32. Pesquita, C., Faria, D., Falcao, A. O., Lord, P. & Couto, F. M. Semantic similarity in biomedical ontologies. PLoS Comput. Biol. 5,
€1000443 (2009).

33. Pesquita, C. Semantic similarity in the gene ontology. In The Gene Ontology Handbook 161-173 (Humana Press, New York, 2017).

34. Emmert-Streib, F. & Glazko, G. Network biology: a direct approach to study biological function. Wiley Interdiscip. Rev. Syst. Biol.
Med. 3,379-391 (2011).

35. Vidal, M. A unifying view of 21st century systems biology. FEBS Lett. 583, 3891-3894 (2009).

36. Emmert-Streib, F. & Dehmer, M. Defining data science by a data-driven quantification of the community. Mach. Learn. Knowl.
Extraction 1,235-251 (2019).

37. Young, A., Whitehouse, N., Cho, J. & Shaw, C. OntologyTraverser: an R package for GO analysis. Bioinformatics 21, 275-276 (2004).

38. Na, D,, Son, H. & Gsponer, J. Categorizer: a tool to categorize genes into user-defined biological groups based on semantic similar-
ity. BMC Genomics 15, 1091 (2014).

39. Du, Z,, Li, L., Chen, C.-E, Yu, P. S. & Wang, J. Z. G-sesame: web tools for go-term-based gene similarity analysis and knowledge
discovery. Nucleic Acids Res. 37, W345-W349 (2009).

40. Eden, E., Navon, R,, Steinfeld, L, Lipson, D. & Yakhini, Z. Gorilla: a tool for discovery and visualization of enriched go terms in
ranked gene lists. BMC Bioinform. 10, 48 (2009).

41. Muller, B,, Richards, A. J., Jin, B. & Lu, X. Gographer: a python library for go graph representation and analysis. BV C Res. Notes
2, 122 (2009).

42. Tian, T. et al. agriGO v2. 0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 45, W122-W129
(2017).

43. Alexa, A. & Rahnenfuhrer, J. topgo: enrichment analysis for gene ontology. R package version 2 (2010).

44. Carlson, M. Go. db: A set of annotation maps describing the entire gene ontology (2016).

Acknowledgements
Matthias Dehmer thanks the Austrian Science Funds for supporting this work (project P30031).

Author contributions
EE.S conceived the study. K.M., S.T. and EE.S. conducted the analysis. K M., S.T., O.Y.H., M.D. and EE.S. inter-
preted the results. All authors wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-73326-3.

Correspondence and requests for materials should be addressed to EE.-S.
Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

o | icense, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020

SCIENTIFIC REPORTS |

(2020) 10:16672 | https://doi.org/10.1038/s41598-020-73326-3

https://doi.org/10.1155/2013/793091
https://doi.org/10.1038/s41598-020-73326-3
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Graph-based exploitation of gene ontology using GOxploreR for scrutinizing biological significance
	Methods
	Determining the GO-DAG.
	Organism-specific GO-DAG.
	Reduced GO-DAG.
	Prioritizing lists of GO-terms.
	Technical details about GO.

	Results
	Structural exploration of GO.
	Structure-based ranking of GO-terms.
	Reduced GO-DAG.
	Prioritizing GO-terms.

	Discussion
	Conclusion
	References
	Acknowledgements

