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SUMMARY

Electron cryotomography enables 3D visualization of cells in a near-native state at molecular 

resolution. The produced cellular tomograms contain detailed information about a plethora of 

macromolecular complexes, their structures, abundances, and specific spatial locations in the cell. 

However, extracting this information in a systematic way is very challenging, and current methods 

usually rely on individual templates of known structures. Here, we propose a framework called 

“Multi-Pattern Pursuit” for de novo discovery of different complexes from highly heterogeneous 
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sets of particles extracted from entire cellular tomograms without using information of known 

structures. These initially detected structures can then serve as input for more targeted refinement 

efforts. Our tests on simulated and experimental tomograms show that our automated method is a 

promising tool for supporting large-scale template-free visual proteomics analysis.

In Brief

Xu et al. presents a framework called “Multi-Pattern Pursuit” for discovering frequently occurring 

structural patterns in cellular electron cryotomograms. Test results on simulated and experimental 

datasets shows that the method is a promising tool for automated, largescale, and template-free 

visual proteomics analysis inside single cells.

Graphical Abstract

INTRODUCTION

Nearly every major process in a cell is orchestrated by the interplay of macromolecular 

assemblies and often requires a nonrandom spatial organization in the cell. Therefore, when 

modeling complex biological functions, it is crucial to know the structure, abundance, and 

locations of the entire set of macromolecular complexes. Currently, proteomics studies 

extract protein component lists often from lysed cells, but little is known about how proteins 

and their complexes are spatially arranged in a crowded cell, limiting the plausibility to 

model biological functions and 3D architecture of cells (Singla et al., 2018).
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Electron cryotomography (ECT) can generate 3D reconstructions of cells in hydrated, close 

to native states at molecular resolution (Mahamid et al., 2016; Chang et al., 2014). New 

imaging technologies and automation allows labs to obtain hundreds of electron 

cryotomograms within several days, potentially containing millions of complexes. It is 

therefore now possible to detect both structures and spatial positions of large complexes in 

individual cells. However, the structural discovery of unknown complexes in tomograms still 

remains very challenging due to a number of factors. First, complexes can vary significantly 

in shape, size, and cellular abundance. Second, identifying individual complexes is 

significantly more difficult in cellular tomograms than in tomograms of purified complexes, 

due to high crowding levels (Lučič et al., 2013) and possibly small copy numbers. Third, 

experimental structures of most complexes are unknown, which limits the use of template 

libraries for template-matching methods. Fourth, cell tomograms often have low signal-to-

noise ratio (SNR) and low contrast, as the sample is thick (>300 nm). In addition, the 

tomogram image is modulated by the contrast transfer function effect. Finally, the limited 

range of tilt angles leads to a partial sampling of images and missing structural components 

in the Fourier space, resulting in anisotropic resolution and distortions (i.e., the missing 

wedge effect). Therefore, unlike large organelles, which can be detected by visual 

inspection, the systematic structural classification and recovery of all accessible complexes 

in cellular tomograms is difficult and can only be ventured with the aid of highly efficient, 

automatic, and both template-free and template-based analysis methods.

The pioneering work to quantitatively analyze the spatial organizations of complexes in 

cellular tomograms used “template matching” (Beck et al., 2009; Bohm et al., 2000; 

Frangakis et al., 2002; Kuhner et al., 2009; Nickell et al., 2006). This approach uses a given 

complex’s known high-resolution structure (e.g., X-ray crystallography, NMR, cryoelectron 

microscopy single-particle reconstruction) to simulate an ECT reconstruction, the template, 

which is then used to search for matches in the tomogram. Naturally this approach is limited 

to localizing complexes with known structures, which represent only a small fraction of all 

the complexes in the cell. Assessing the reliability of detected matches is also challenging 

(Yu and Frangakis, 2014) because the template structure can misfit its targets, due to either 

conformational changes or additional bounded components to the structure in vivo, or 

because the template structure is from a different organism and exhibits a different 

conformation.

To obtain novel structural information, a few alignment and subtomogram averaging (e.g., 

Schmid and Booth, 2008) and classification (e.g., Bartesaghi et al., 2008; Xu et al., 2012) 

approaches have been developed recently. Subtomogram averaging assumes that all 

subtomograms contain the same structure and iteratively searches for rigid transform 

parameters for each subtomogram to align all subtomograms. By contrast, classification 

methods often search iteratively for both rigid transform and categorization parameters to 

separate subtomograms into structurally homogeneous groups before averaging. Such a 

classification is much more challenging than averaging. Due to the computationally 

intensive nature of 3D image processing (especially the subtomogram alignment), current 

classification methods are often tailored to high-quality hand-picked subtomograms usually 

containing a relatively small number of structural classes, and are often focused on 

separating subtle conformational or compositional states of a single complex of interest 
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(e.g., Bartesaghi et al., 2008; Chen et al., 2014; Kuybeda et al., 2013; Scheres et al., 2009). 

In such cases, the subtomograms are usually obtained by template matching often followed 

by visual inspection and preselection of high-quality patterns. Although reference-free 

classification may be applied to such subtomograms, at heart they depend on a template, 

obtained from a known structure. These approaches have several drawbacks, limiting their 

use in detecting unknown structures on a proteome-wide scale, i.e., from a highly 

heterogeneous set of subtomograms obtained through automated template-free particle 

picking, without the knowledge of structures. In cellular tomograms, automated template-

free particle picking produces large numbers of subtomograms containing large numbers of 

complex classes. For obtaining a high SNR in each class a sufficiently large copy number is 

needed, and therefore it is necessary to iteratively process a very large number (tens to 

hundreds of thousands) of subtomograms. However, the computational cost of template-free 

classification methods is proportional to the number of subtomograms multiplied by the 

number of structural classes. Therefore, these applications are computationally extremely 

demanding and not feasible when applied to subtomogram classification on a proteome-wide 

scale.

Recently, deep learning has been used for classification of heterogeneous sets of simulated 

subtomograms and has achieved fairly good accuracy (Xu et al., 2017; Yu and Frangakis, 

2011). In another paper (Chen et al., 2017), the authors trained convolution neural networks 

to identify ribosomes, double membrane, microtubules, vesicles, and so forth. These 

supervised learning methods are important steps in moving toward identification of known 

patterns in electron cryotomograms; however, they depend on user input of ground truth 

structures of complexes.

To our knowledge, no subtomogram classification method exists that is specifically 

optimized for and can be applied to largescale applications in a high structural heterogeneity 

and unsupervised setting. Therefore, current whole-cell approaches are restricted to a 

focused analysis of one or a few target complexes of interest, whose low-resolution 

structures are often known.

Here, we address this problem through pattern mining, which searches for high-quality 

structural patterns reoccurring in a cellular tomogram. A structural pattern is defined as a set 

of aligned subtomograms, which likely contain the same structure and when averaged 

produce the density map of the complex. To identify patterns, we propose a framework 

called MultiPattern Pursuit (MPP) (Figure 1), specifically designed for supporting large-

scale template-free pattern mining among highly heterogeneous particles to detect structural 

patterns of variable shapes and sizes from cellular tomograms. MPP takes as input a large set 

of subtomograms obtained through automated particle picking from entire cell tomograms 

and produces the shape, abundance, positions, and orientations of the patterns. To our 

knowledge, our approach and software is one of the first that is specifically optimized to 

tackle this difficult unsupervised problem at a proteome-wide scale. It consists of a number 

of methodological innovations, including the MPP framework, imputation-based dimension 

reduction, reference-guided adaptive subtomogram masking, adaptive smoothing, pose 

normalization-based prefiltering, and a genetic algorithm for structure refinement.
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There are substantial differences between MPP and existing template-free classification 

methods, in terms of both methodology and scope. Our software is specifically designed to 

handle (1) large sets of subtomograms extracted from cellular tomograms (tens of 

thousands); (2) subtomograms of relatively large numbers (tens to hundreds) of different 

structural classes, with widely varying shapes, sizes, and abundances; and (3) subtomograms 

extracted from a crowded environment, which may include fragments of neighboring 

complexes. Also, our aim is not to determine a high-resolution structure of an individual 

complex, but de novo discovery of many coarse structures and their relative abundance in a 

heterogeneous sample. These coarse structures can then be further refined to higher 

resolution by other methods or can serve as templates for a secondary analysis of the 

tomograms, for instance through machine learning approaches or template matching. The 

identity of some patterns can be determined by fitting to known structures but in future this 

will require methods for integrating additional information about the sample, which is not 

the focus of this study.

RESULTS

Overview of the Method

MPP is an iterative constrained optimization process, which detects frequently occurring 

structural patterns that maximize a quality score and are distinct from each other with 

respect to their average density maps and the identity of subtomograms making up the 

patterns. MPP relies on a very efficient subtomogram alignment (Xu et al., 2012) algorithm 

based on constrained correlation (Förster et al., 2008; Xu and Alber, 2012) and fast 

rotational matching (Kovacs and Wriggers, 2002), and an efficient, robust, and flexible 

parallel architecture that supports high-throughput processing (Frazier et al., 2017).

To run MPP, the tomogram is first segmented into a library of subtomograms by automated 

particle picking (Figure 1A) (Pei et al., 2016). To increase computational efficiency, a 

prefiltering step using a pose normalization approach can provide coarse subtomogram 

alignments (STAR Methods: Prefiltering) and classifications (Figure 1A), which divides 

subtomograms into different groups that are processed separately by MPP (Figure 1B).

Each MPP run is divided into iterative steps, which are repeated until no new patterns are 

found (typically ~20–30 iterative cycles). Here, we provide an overview of the method 

(Figure 1B and STAR Methods: MPP Framework).

Generate patterns (step 1 in Figure 1B) (STAR Methods: Candidate Pattern Generation). 

Each MPP iteration starts by generating patterns, each containing subtomograms of similar 

objects in the same orientation. Patterns are generated from all subtomograms with their 

currently assigned rigid transformations (the first iteration uses random transformations). 

The transformations were calculated in the previous MPP iteration by aligning each 

subtomogram to selected candidate patterns and using the best alignment for each 

subtomogram (step 6 in Figure 1B). The MPP framework is an ensemble method, and 

multiple methods (clustering, sequential expansion, and genetic algorithm-based single 

pattern pursuit, STAR Methods: Candidate Pattern Generation) are applied independently to 

generate patterns from the same dataset. All patterns are then added to a growing pattern 

Xu et al. Page 5

Structure. Author manuscript; available in PMC 2020 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



library. Clustering of subtomograms is performed in a reduced dimensional space, which 

accounts for missing wedge effects by an imputation-based strategy. After pattern 

generation, the subtomograms in each pattern are averaged to generate the pattern density 

maps.

Determine the quality score of patterns and expand pattern library (steps 2 and 3 in 

Figure 1B; STAR Methods: Quality Score). We then determine a quality score for each 

pattern, which measures the variance in the voxel intensities between the constituent 

subtomograms. We use a spectral SNR-based Fourier shell correlation (SFSC) score, which 

measures SNR as a result of the variance in the voxel intensities at all spatial frequencies. It 

is computed efficiently in parallel, can account for missing wedge effects, and is calculated 

from all subtomograms, which reduces the underestimation of the resolution due to the 

sample size limit (Liao and Frank, 2010). The quality score and density averages for all 

newly generated patterns are then added to the pattern library (Figure 1B). MPP also 

contains procedures to remove redundant patterns from the pattern library.

Select a disjoint set of highest-quality candidate patterns from pattern library (step 4 in 

Figure 1; STAR Methods: Selection of Disjoint High-Quality Patterns). At each iteration, a 

new selection of candidate patterns is made from the pattern library. These candidate 

patterns serve as references for subtomogram alignments in the next iterative step. To make 

the optimal selection, we search for the combination of patterns that leads to the best 

combined SFSC quality score and include the highest number of subtomograms from the 

library without any substantial overlap in terms of subtomogram identities between selected 

patterns. After pattern selection, all subtomograms are optimally aligned to the density maps 

of each selected candidate pattern and the transformation for the best alignment score is 

stored for each subtomogram (align subtomograms against selected patterns, step 6 in Figure 

1). Depending on the set of candidate patterns, the transformation for a given subtomogram 

may vary between iterations, which can lead to new patterns or reassignment of 

subtomograms to different patterns.

The whole MPP process is repeated until a new iteration does not generate any new, 

nonredundant candidate patterns and has therefore converged to a final set of patterns. The 

output is the list of candidate patterns from final iteration, the subtomograms assigned to 

each pattern, and their rigid transformations, as well as the pattern density averages and 

locations in the tomogram.

Next, we assessed the performance of our method. We applied MPP to three experimental 

cellular tomograms from different bacteria species and carried out two types of studies using 

benchmarks of realistically simulated tomograms.

Individually Simulated Subtomograms

First, we assessed MPP with simulated subtomograms as expected under low crowding 

conditions. We simulated 11,230 realistic and distorted subtomograms, containing a 

benchmark mixture of 22 different complexes from the PDB (Berman et al., 2000) with a 

wide range of size, shape, and abundance (STAR Methods: Simulation of Realistic 

Tomograms–Individually Simulated Subtomograms) (Figure 2B). To our knowledge, this is 
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a substantially larger number of subtomograms and structural classes than any previously 

published classification.

Subtomograms were simulated at voxel spacing of 1.0 nm and resolution of 4 nm. Results 

converged after 32 iterations and MPP detected 12 patterns from the highly distorted 

subtomograms, despite the relatively low resolution (Figures 2A and 2B; Table S1). In 

general, subtomograms of a given complex were highly abundant in no more than one 

detected pattern (Figure 2A). All 12 patterns were enriched with one dominant complex, and 

the shapes of all detected pattern averages were very similar to the true complexes (Figures 

2A and 2B). Eight patterns uniquely matched complexes with a false discovery rate (FDR) 

of ≤10%. Among these, four patterns had 0% FDR, meaning that all the subtomograms in 

each pattern were from the same true class. Also, visually the structures are highly similar to 

the true complexes (Figure 2B). The structural consistency between the densities of the eight 

detected complexes and the ground truth structures is high and ranges from 4.7 nm to 5.3 nm 

(measured by Fourier shell correlation [FSC] with 0.5 cutoff), which is comparable with the 

applied resolution (Figure 2A and Table S1C). Overall the best performances were achieved 

with the largest complexes, e.g., glutamine synthetase (PDB: 2GLS, FDR = 0%, 88% 

particles detected), GroEL (PDB: 1KP8, FDR = 0%, 75% particles detected), and 50S 

ribosomal subunit (PDB: 2AWB, FDR = 0%, 57% particles detected). Four patterns had 

larger FDRs (PDB: 2BYU, 21%; 1W6T, 30%; 1VRG, 43%; 2BO9, 45%); however, in each 

of these patterns essentially only a single complex was falsely co-assigned. This complex 

had very similar shape to the target complex at the given resolution, which explains why the 

overall shape of the complex was still well predicted.

Seven complexes were not recovered (PDB: 1F1B, 1GYT, 1VPX, 2H12, 2IDB, 2GHO, and 

1QO1). The majority of these had relatively low abundance (<300 instances), relatively 

small size, and nondiscriminative shape features. Importantly, following MPP’s design 

strategy, the subtomograms of these complexes were not wrongly assigned to any pattern but 

were simply left out, emphasizing the importance of the pattern-mining approach in 

detecting high-quality patterns rather than attempting to classify all the subtomograms.

When repeating our calculations with different initial orientations for all subtomograms, the 

same complexes were detected with similar FDR ranges (eight complexes with FDR <10%). 

We also repeated our analysis with different random abundances for the complexes. With 

larger copy numbers, two additional complexes were detected: Aminopeptidase A (PDB: 

1GYT, FDR = 1%, 79% particles detected) and Transaldolase (PDB: 1VPX, FDR = 0%, 

48% particles detected). Our analysis suggests that a minimum copy number of 200–300 is 

necessary to reliably detect complexes at given resolution.

When running MPP on a 300 CPU core cluster with 11,230 subtomograms, one iteration 

took about 7 h. Pairwise alignment between subtomograms and selected patterns is the most 

timeconsuming step and took about 6 h.
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Complexes under High Crowding Conditions (Subtomograms Extracted from Whole 
Tomograms Containing Crowded Mixtures)

Next, we tested MPP on realistically simulated tomograms of crowded cell cytoplasm, 

containing mixtures of the same 22 complexes (STAR Methods: Simulation of Realistic 

Tomograms–Crowded Mixture of Macromolecular Complexes). The crowding level of the 

simulated tomogram is 15.2%, which falls within the expected range for cell cytoplasm 

(Guigas et al., 2007) (Figures 3A and 3B). The distortion level of the simulated tomogram is 

similar to experimental tomograms of whole bacterial cells (STAR Methods: Estimation of 

Effective-SNR). We used automated “difference-of-Gaussian” particle picking (Voss et al., 

2009) to extract subtomograms that likely contain a target complex.

The automated particle picking favored extraction of larger complexes. Eleven out of the 22 

types of complexes were extracted with at least 200 instances, while 11 mostly smaller 

complexes had fewer than 140 extracted subtomograms. In total 4,901 particles out of 

10,000 instances were detected by particle picking (STAR Methods: Particle Picking and 

Subtomogram Extraction–Crowded Mixture of Macromolecular Complexes–Low 

Resolution). Because of crowding, the subtomograms of extracted target complexes may 

also contain fragments of neighboring structures. Therefore, we applied our method for 

automatically masking target complexes at each MPP iteration (STAR Methods: Target 

Complex Region Segmentation). This test case is substantially more challenging than the 

previous one because errors in automated particle picking and target complex segmentation 

can influence the MPP performance. Despite these challenges, MPP detected six patterns, 

four of which with FDRs of ≤23% and very well predicted shapes with structural 

consistencies between predicted averages and ground truth complexes ranging from 4.3 nm 

to 4.8 nm (FSC with 0.5 cutoff) (patterns 0, 1, 3, and 4, in Figures 3A and 3B; Table S2). 

Among these, one (50S ribosome/PDB: 2AWB, discovered as pattern 0) had an FDR of 0%. 

MPP also predicted two patterns that are a mixture of complexes (patterns 2 and 5) (Figure 

3A). These two have structural consistencies ≤6.5 nm and are very similar in shape to the 

most abundant complex in the pattern. One of these patterns (pattern 5, PDB: 2GLS) 

contained only two complexes of similar shapes. Detected pattern 2 has the smallest size and 

is a mixture of more than ten small complexes. Most of these complexes have low 

abundance after particle picking and are of similar shape, as shown by their tight clustering 

based on shape similarity (Figure S2). At the given resolution and crowding level, it is not 

possible to distinguish these small complexes. However, MPP still predicted their similar 

size and location.

To test the reproducibility of our approach, we simulated another tomogram with different 

random positions and orientations of the complexes. Now six patterns were successfully 

recovered at FDR <30%, including the largest complexes (PDB: 1KP8, 2AWB, 3DY4, and 

2GLS) and two additional complexes (PDB: 1LB3 and 1FNT) that were detected as a result 

of increased copy numbers after particle picking.

Next, the MPP analysis was performed on crowded tomograms simulated at higher 

resolution and lower voxel size (0.4 nm) (Figures 3C and 3D; STAR Methods: Simulation of 

Realistic Tomograms–Crowded Mixture of Macromolecular Complexes–High Resolution). 

We simulated ten different tomograms containing a total 35,172 particles (Figure 3C, right 
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panel: center slice of first tomogram). Automated particle picking extracted 18,876 

subtomograms. To test the robustness of the approach, we performed three independent MPP 

runs, starting each individual run with a different initial random orientation for each 

subtomogram. Despite a high crowding level, MPP showed excellent results and detected 14, 

13, and 12 complexes over three runs, respectively (Figures 3C and 3D; Table S3 for run 

#2). Twelve complexes were detected in all three runs. Two additional complexes were 

detected in two independent MPP runs, starting each time from different initial 

subtomogram orientations. For each run, nine complexes were detected with an FDR of 

<3%, and between four and six complexes were detected at an FDR of 0%. Some complexes 

could not be detected due to their low copy numbers (e.g., PDB: 1A1S, 7; 1W6T, 137). This 

observation showcases the importance of performing the analysis with very large sample 

sizes and the need for highly efficient methods such as MPP that can handle a large number 

of diverse subtomograms. Finally, we also propose a strategy to combine the results of 

independent MPP runs: all final patterns from each of the three different MPP runs can be 

combined into a single pattern library, which then can be used to select the best pattern 

combinations.

Experimental Cellular Tomograms

We also tested MPP on three tomograms of whole bacteria, namely single cells of lysed 

Acetonema longum, intact Hylemonella gracilis, and intact Bdellovibrio bacteriovorus with 

voxel sizes of 1.2 nm, 0.49 nm, and 0.42 nm, respectively (Figure 4A and STAR Methods: 

Experimental Tomogram Acquisition). We performed automated, template-free particle 

picking to extract a total of ~30,000 subtomograms from the three cells. For intact cells (H. 
gracilis and B. bacteriovorus) only the subtomograms within the cellular region were 

extracted. However, A. longum appeared lysed and particles were noticeable also at the cell 

exterior, which was included in the analysis. We then applied preprocessing (STAR 

Methods: Prefiltering) and applied MPP separately for each cell type.

MPP discovered 12, 15, and 10 patterns of a relatively high-quality score for A. longum, H. 
gracilis, and B. bacteriovorus, respectively (Figures 4B and 4C; STAR Methods: Pattern 

Mining–Experimental Tomograms; Table S4; Videos S1, S2, and S3). The resolution of 

these patterns (gold standard FSC) ranged from 4.1 to 5.8 nm in A. longum, 3.5 to 10.5 nm 

in H. gracilis, and 4.8 to 15.0 nm in B. bacteriovorus. The shapes and positions of some 

patterns already give indications as to the identity of the complexes. For example, several 

different patterns clearly represented membrane particles lining the cell boundaries (Figures 

4B and 4C) (e.g., patterns 2, 3, and 7 for B. bacetriovorus, Table S4F; and patterns 5, 6, and 

9 for A. longum, Table S4B). The different membrane patterns varied in their locations, for 

instance different patterns for the inner and outer membranes. Some larger patterns have a 

very similar shape and size to GroEL (pattern 4 in A. longum) and ribosome (patterns 0, 1, 2 

in H. gracilis; and patterns 0, 1, 9 in B. bacteriovorus), and were also observed at large 

abundance (e.g., a total of 802 copies of ribosome-like patterns in H. gracilis). We refined 

these patterns further using the genetic algorithm method (STAR Methods: Candidate 

Pattern Generation–Genetic Algorithms). Figure 4C shows the high similarity between these 

structures and the GroEL and 70S ribosome templates simulated from their atomic 

structures.

Xu et al. Page 9

Structure. Author manuscript; available in PMC 2020 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Strikingly, we observed a remarkably good fit of the atomic structure of GroEL into the 

average density of pattern 4 in A. longum (Figure 5A). We also aligned all the 

subtomograms from each cell type against a collection of the 28 different template structures 

most abundant in cells. We found that the alignment scores for subtomograms of the GroEL-

like pattern 4 were statistically significantly higher to the GroEL template (PDB: 1KP8) than 

to any other template (one-sided Wilcoxon rank-sum test with p < 3.2−10, without multiple 

comparison adjustments, Figure S3A), confirming the clear visual similarity of pattern 4 

with GroEL. The second closest match was the GroEL/GroES complex (PDB: 1AON), 

although this template had significantly lower alignment scores. Also, we showed that the 

subtomograms of pattern 4 had the strongest matches to the GroEL template in terms of 

alignment scores, compared with all other extracted subtomograms of A. longum (p < 2.2 × 

10−220, Figure S3B). These tests indicate that our template-free approach yields similar 

results to a template-matching approach with GroEL as a template structure. All these 

observations support the hypothesis that the subtomograms in pattern 4 contain a bacterial 

analog of the GroEL complex. Interestingly, the high abundance of GroEL complexes (481 

instances) is observed only in the A. longum cell and may be related to a stress response. We 

note that this cell appeared to be dead and lysed before image acquisition (Susin et al., 

2006).

Equally convincing are the assessments of ribosome structures in H. gracilis (patterns 0, 1, 2, 

Figure 4C) and B. bacteriovorus cells. The subtomograms in pattern 0, 1, and 2 had the 

highest alignment scores with the ribosome template (both the full ribosome PDB: 2J00–

2J01 and its 50S subunit with PDB: 2AWB) (Figures S3D and S3F) (p < 4.1 × 10−22) 

compared with any of the other 26 templates, indicating that all three patterns are most likely 

ribosome structures. Subtomograms in pattern 1 had significantly higher alignment scores 

with the ribosome than all remaining extracted subtomograms (p < 2.0 × 10−125, Figure 

S3E). All these observations support the hypothesis that these patterns contain a ribosome 

structure.

Similarly, in B. bacteriovorus, the subtomograms in pattern 1 (resolution 12.0 nm, Figure 4C 

and Table S4F) were visually similar to the ribosome and had significantly higher alignment 

scores to ribosome template (PDB: 2J00–2J01 and 50S subunit with PDB: 2AWB) 

compared with any of the other 26 templates (p < 1.7 × 10−24, Figure 5B). Compared with 

all detected patterns, subtomograms of pattern 1 had the highest alignment scores to the 

ribosome template (PDB: 2J00–2J01) (Figure 5C) and also had the highest-ranking scores 

compared with all other extracted subtomograms (p < 6.3 × 10−6).

Interestingly, we found distinct spatial distributions for different complexes in B. 
bacteriovorus tomogram. For instance, the ribosomal patterns are excluded from central 

regions of the cell (Figure 5D, second panel), where the bacterial nucleoid is located. It is 

likely that ribosomes would be positioned close to, but not directly overlapping with, regions 

of the nucleoid genome. Ribosome-like structures also are less abundant in the tip region 

associated with the bacterial flagella motor, although we cannot exclude the possibility of 

imaging artifacts being partially responsible for the lack of ribosome structures in this 

region. Interestingly, two smaller patterns (patterns 4 and 5, Figure 5D, fourth panel) were 

only enriched in the tip of the bacteria where the bacterial flagella motor is located. Another 

Xu et al. Page 10

Structure. Author manuscript; available in PMC 2020 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



small pattern (pattern 6) in B. bacteriovorus is located exclusively in the area of the nucleoid 

genome (Figure 5D, third panel). Based on location, size, and abundance we could 

hypothesize that this pattern may correspond to the RNA polymerase II complex. However, 

at this stage we can only speculate about the identity of some of the complexes, based on 

their shape and locations in the cell. In future, one could apply independent refinement 

methods to increase the resolution of the resulting averages. Higher resolution may provide 

further evidence to the identity of some complexes.

Currently our method has not detected membrane complexes. Partially this is due to the low 

resolution of bacterial tomograms (i.e., 0.5–1 nm voxel size approximately). Also, it is 

possible that the alignment of subtomograms containing membranes is dominated by the 

membrane portion. In addition, the applied difference-of-Gaussian particle-picking method 

may not be optimal for detecting membrane particles. We expect that tailored particle 

picking and increased resolution in combination with refinements optimized for membrane 

subtomograms may facilitate the detection of membrane complexes in future.

In summary, our aim was not to determine the high-resolution structure for an individual 

complex, but the large-scale detection of coarse structures and their relative abundance in 

large heterogeneous samples that can then be the basis for a refined analysis. Further 

development of methods that integrate other orthogonal datasets would facilitate the 

identification of the patterns.

DISCUSSION

ECT can produce large quantities of cell tomograms. There is an urgent need for a 

systematic screening of cell tomograms to detect frequently occurring patterns. Such 

methods have the potential to discover macromolecular complexes on a large scale. The 

MPP method is designed for discovering structure models in a systematic and template-free 

fashion from a large number of subtomograms containing many different structural classes. 

Because MPP does not rely on any prior structural knowledge, it is complementary to 

template-based subtomogram classification methods and machine learning approaches for 

the detection of complexes in tomograms.

In comparison with template-free subtomogram classification, MPP has some important 

advantages. The computational complexity for template-free classification methods 

increases with the product of the number of subtomogram classes and the size of the 

subtomogram library. Therefore, traditional template-free subtomogram classification 

methods have several drawbacks, which limit their use in detecting unknown structures from 

highly heterogeneous samples with large numbers of different complexes. MPP is 

specifically designed to efficiently process such highly heterogeneous datasets extracted at a 

proteome-wide scale. The resulting pattern library from MPP can then serve as a starting 

point for additional refinement methods to process and increase the resolution of individual 

patterns.

Our proof-of-principle MPP applications showed that successful detection of complexes can 

depend on the copy numbers and also the shape and size of the complexes. For example, 
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larger complexes can generally be more easily detected even at larger voxel sizes. Typically, 

a minimum number of instances of complexes is necessary to detect structures successfully. 

As shown in the Results section, at voxel sizes of 1 nm around 300 copies of a complex are 

necessary for their detection. For example, complex 1GYT could not be detected in a dataset 

containing only 195 instances, whereas 829 copies of this complex in another dataset led to 

the successful detection of its structure (see Individually Simulated Subtomograms). For a 

few complexes (e.g., complex 1F1B), even increased copy numbers were not sufficient to 

detect the complex structures. The reason for this may be that these complexes are relatively 

small and/or lack distinct shape features at the given resolution. Crowding levels and 

resolution can also influence the results of MPP. Increased crowding levels affect the 

performance of the automatic particle picking, while increased resolution improves the 

discovery rate in detecting patterns. MPP results can also vary depending on optimization 

parameters, for example, the number of dimensions used in the dimension reduction step or 

k value for k-means clustering. However, MPP can be rerun multiple times with different 

parameter settings and the final sets of candidate patterns can be combined in a common 

pattern library, which can then be included in a subsequent new MPP run.

Our method represents a substantial step toward visual proteomics analysis inside single 

cells. Automatic unsupervised pattern mining inside cellular electron cryotomograms is still 

very challenging, and our approach is only a first step in this direction. Improved methods 

for particle picking, subtomogram averaging, pattern generation, and quality scores have 

potential to improve the performance of MPP. On the other hand, together with recent 

breakthroughs on direct detectors (Jin et al., 2008) and phase plates (Murata et al., 2010), 

which significantly improve contrast and resolution of cellular ECT data, correlative light 

and electron microscopy (Chang et al., 2014), and focused ion beam milling (Rigort et al., 

2012), which enables ECT to image a substantially larger variety of cell types, we expect 

that our method can become an integral part of cellular ECT applications. In addition, MPP 

is also useful for analyzing tomograms of highly heterogenic particle mixtures, such as cell 

lysates. Moreover, once patterns are detected they can be used by other methods such as 

template searches, subtomogram classifications, subtomogram averaging methods, and 

supervised learning methods for further refined structural recovery and separation of protein 

species. Therefore, our work complements existing template-based and template-free 

methods and can emerge as an important tool for whole-cell visual proteomics and 

modeling. In future, we envision the integration of additional information about sample 

protein compositions and tomogram locations to facilitate the identification of unknown 

detected complexes.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact FA (alber@usc.edu).
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DATA AND SOFTWARE AVAILABILITY

The Source code of the methods, test data and user guide can be found at: http://

web.cmb.usc.edu/people/alber/Software/mpp/

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bdellovibrio bacteriovorus (HD100, wild-type) cells were grown in E. coli S17–1 prey cells 

at 30°C, Hylemonella gracilis (ATCC 19624, wild-type) cells were grown in ATCC #233 

Broth at 26°C and Acetonema longum strain APO-1 (DSM 6540) was grown anaerobically 

as described (Leadbetter and Breznak, 1996).

METHOD DETAILS

Particle Picking and Subtomogram Extraction—The subtomogram extraction is 

done through template-free particle picking. The particle picking is based on Difference of 

Gaussian (DoG) filtering (Voss et al., 2009). First, we filter a tomogram v1 using a DoG 

function of σ = 7 nm and k-factor = 1.1, resulting in a filtered tomogram f1. Then, we search 

for the collection p1 of local maxima peaks of f1. Often, there are false positive peaks, i.e., 

those peaks that do not correspond to macromolecular complex instances, but rather noisy 

fluctuations in the non-structural regions. To reduce such false peaks in p1, we randomly 

sample voxels to form another volume v0 of size smaller than original volume (e.g., 400 × 

400 × 200 nm3 from low-resolution simulated tomograms). Then we apply the same DoG 

filtering to obtain a filtered map f0. Next, we perform local maxima search to obtain a 

collection p0 of background peaks. Finally, we selected final peaks from p1 whose values are 

larger than 5 times of the standard deviation plus mean of the values of p0.

Crowded Mixture of Macromolecular Complexes

Low Resolution.: After performing particle picking as mentioned above, in order to evaluate 

the performance, we identify true class labels of these peaks through the one-to-one 

correspondence between peak locations and the minimal bounding spheres. Due to the size 

preference of DoG particle picking, when setting σ = 7 nm, instances of large complexes are 

more likely to be picked out than instances of small complexes. Centered at each of the 

4,901 peaks picked, we cut out a subtomogram of size 303 voxels. These subtomograms are 

used as an input of MPP.

High Resolution.: After running particle picking step on each of the tomogram separately, 

18,876 subtomograms of size 753 voxels were extracted in total, among which 18,802 were 

assigned true class labels.

Experimental Tomograms.: For particle picking, we filtered the tomograms using the DoG 

function with σ = 7 nm. We then select the top 10,000 peaks and remove those peaks at the 

boundary of the tomogram. Centered at each peak we extract a subtomogram of size 183 

voxels. The interior cell regions are manually segmented using the Amira software (Mercury 

Computer Systems), and the peaks outside the cell regions are excluded.

Remarksa.: In this paper, for simplicity, we use DoG with a single fixed s for particle 

picking. DoG particle picking has size preference of picked particles. In practice, in order to 
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detect patterns of very different sizes, one may systematically perform DoG particle picking 

using multiple σ (Pei et al., 2016), followed by pattern mining. In addition, other types of 

template-free particle picking methods may be used instead of using DoG particle picking.

Pre-filtering—MPP is suitable for processing thousands to tens of thousands of 

subtomograms with affordable computation cost. However, with the advance of automation 

of ECT imaging techniques, nowadays it is not difficult to acquire a substantially larger 

amount (for example, more than a million) of subtomograms within a day. Using MPP alone 

is not computationally feasible for processing such a large amount of subtomograms. 

Therefore, an efficient coarse filtering of the subtomograms is very useful to reduce the 

whole collection of subtomograms to substantially smaller subsets containing structures of 

relatively similar sizes and shapes. Then these subsets can be further independently 

processed using MPP as described under next section “MPP Framework”. In this paper, we 

perform such filtering through normalization of translation and rotation of subtomograms 

followed by clustering.

Intuitively, the normalization of the translation of the particle inside a subtomogram can be 

done by calculating a key point with respect to the particle, which is invariant to the rotation 

and translation of the particle. A typical example of such a key point is the center of mass. 

However, because the suppression of zero frequency signal in the ECT imaging process, the 

mean intensity value of a subtomogram is often close to the background intensity value (Xu 

and Alber, 2013). Therefore, it is hard to directly use all image intensities of a subtomogram 

to accurately estimate a center of mass of the particle. Instead, we use binary segmentation 

to obtain a coarse shape of the particle and calculate the center of mass of this shape. Level 

set based segmentation (Chan and Vese, 2001) is a powerful, flexible method that can 

successfully segment many types of images, including some that would be difficult or 

impossible to segment with classical thresholding or gradient-based methods. Through such 

segmentation, a coarse shape of the particle can be represented by the zero-level region of a 

level set. The normalization of translation can then be calculated on the center of mass of the 

positive part of the level set instead of on the original image intensities. Given such center of 

mass, we can further estimate the general orientation (without taking into account missing 

wedge effect) of the particle by calculating the principal directions by applying PCA to the 

coarse shape (Figure S1D).

Such a pose normalization procedure can be independently and efficiently applied to 

individual subtomograms. With the coarse alignment from pose normalization, it is possible 

to separate particles with very distinct sizes and distinct elongated shapes through simple 

and efficient clustering techniques like k-means clustering and generate an average 

representing general shapes. Then averages of subtomograms can be inspected and the 

corresponding subtomogram sets can be selected further for more focused analysis. Such 

procedure is highly scalable and can be easily parallelized. It can usually process tens of 

thousands of subtomograms on a single computer within one day.

Structural Region Segmentation: We formulate the identification of structural regions as a 

binary region based segmentation problem that minimizes the Chan-Vese model (Chan and 
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Vese, 2001), which is a popular level set based segmentation model. The model can be 

formulated as follows:

argminc1, c2, ϕμ∫ | ∇H(ϕ) | + λ ∫ |f − c1|2H(ϕ) + ∫ |f − c2|2(1 − H(ϕ

))
(Equation 1)

In Equation 1, f:ℝ3 ℝ is the intensity of the subtomogram to be segmented. φ:ℝ3 ℝ is 

a level set function that simultaneously defines a boundary contour and segmentation of an 

image. The boundary contour is taken to be the zero-level set {φ = 0}, and the segmentation 

is given by the two regions {φ < 0} and{φ ≥ 0} . H is the Heaviside step function 

H(x) = 0, x ≤ 0
1, x ≥ 0 . c1 and c2 are the mean intensities inside the two regions.

The first term in Equation 1 measures the total area of the segment boundary. The 

minimization of the first term encourages the resulting segment boundary to be smooth. The 

second term measures the difference between image intensity and the mean intensity of the 

corresponding segments. The minimization of the second term encourages the uniformity of 

the intensities inside the two regions.

Such an optimization problem can be elegantly solved by evolving the level set function φ
through variational calculus (Chan and Vese, 2001). In practice, we use (Zhang, 2013) as an 

implementation of the algorithm, where φ is implemented using a distance transform 

(Kimmel et al., 1996). For simplification, we choose μ = 1, and λ = 1
V ar(f) , where Var(f) is 

variance of f. Let φ* be the optimal level set. Suppose the region Rstructure = {φ⋆ > 0}
corresponds to the high electron density in the subtomogram, then Rstructure is used to define 

the structural region inside the subtomogram. Remark: In order to reduce the influence of 

noise, we usually apply a Gaussian smoothing with σ = 2nm to a subtomogram before 

segmentation.

Pose Normalization: The pose normalization is performed according to the positive part of 

φ* . Let ϕ1*(x) = 1φ*(x) ≥ 0 φ*(x), where 1 is the indicator function. The pose normalization 

consists of following steps: First, we calculate a center of mass cϕ1* of ϕ1* .

cϕ1* =
∫xϕ1*(x)x
∫xϕ1*(x)

Then, we calculate

W = ∫
x

[ϕ1*(x)]2(x − cϕ1*)(x − cϕ1*)T
(Equation 2)
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Then we calculate the eigen decomposition W = QΛQ⊤ of W, where Q is an orthogonal 

matrix consisting of eigenvectors, and the magnitude of eigenvalues in the diagonal matrix Λ
are ordered in descending order. Finally, the pose normalization is performed by first 

translating the subtomogram (masked with Rtarget_ext, STAR Methods: Target complex 

region segmentation) from cϕ1* to the center of the subtomogram, then rotating the 

subtomogram using Q as a rotation matrix.

Remarks.

• The coarse filtering of subtomograms may also be performed through rotation 

invariant features (Xu et al., 2009, 2011; Chen et al., 2014) combined with 

clustering. However, to extract structure information from such filtering is not 

straightforward because rotation invariant features do not provide alignment 

information. By contrast, for pose normalized subtomograms, coarse 

representative shapes can be directly obtained from cluster centers or 

subtomogram averages, which is very useful for manual inspection of these 

clusters.

• This method may not work when the SNR or contrast is very low. In addition, 

how to incorporate missing wedge to achieve a better pose estimation is an open 

problem.

Multi Pattern Pursuit (MPP) Framework—The Multi Pattern Pursuit (MPP) framework 

takes a collection of subtomograms and searches for structural patterns. A structural pattern 

is defined as a set of rigidly transformed subtomograms and their density average. These 

subtomograms are similar to each other and are likely to contain the same structure. MPP 

aims to maximize the quality (in terms of SFSC score, STAR Methods: Quality Score) of 

multiple distinct patterns extracted from these subtomograms. MPP is an iterative 

optimization process that searches for patterns in the pattern space. Such space is the 

Cartesian product of pattern membership and rigid transform of subtomograms. MPP 

combines novel components and our previously developed components. Each iteration of 

MPP consists of following steps (Figure 1B):

1. Based on current rigid transformations T of subtomograms, generate a collection 

of candidate patterns Scandidate (STAR Methods: Candidate Pattern generation).

2. Determine quality of the patterns in Scandidate in terms of their SFSC scores 

(STAR Methods: Quality Score).

3. Add Scandidate into the pattern library L: L ← L U Scandidate.

4. Select a set Ssel of highest quality patterns from L under the constraint of 

minimal subtomogram membership overlap (STAR Methods: Selection of 

disjoint high-quality patterns).

5. Align the subtomogram averages of patterns in Ssel into common reference 

frames (STAR Methods: Align averages into common frames).
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6. Align all subtomograms against each of the subtomogram averages of all patterns 

in Ssel.

7. Identify structurally redundant patterns Sredundant in Ssel (STAR Methods: 

Identification of structurally redundant patterns). Remove patterns in Sredundant 

from L:L L\Sredundant . In other words, patterns in Sredundant will never be 

selected in future iterations.

8. Update subtomogram transformations T according to the best alignment between 

the subtomograms and the subtomogram averages of the remaining selected 

patterns in Sremain = Ssel \ Sredundant.

9. If the patterns in Sremain are all generated from at least nstop iterations earlier, 

stop. Otherwise, continue to next iteration.

Remarks

• For high-throughput processing, we use our fast alignment method (Xu et al., 

2011). Alternative alignment methods (e.g., Bartesaghi et al., 2008; Chen et al., 

2013; Frangakis et al., 2002; Schmid and Booth, 2008; Xu and Alber, 2012, 

2013; Yu et al., 2013) may also be used. Alignment methods could fail when the 

SNR of tomograms is very low.

• By design, our proposed framework can mine multiple patterns simultaneously. 

This design allows us to save computation cost, also to keep the mined patterns 

distinct.

• The particles with relatively larger size may contain more signals that may be 

easier to be discriminated using MPP. In practice, subtomograms of particles 

with very distinct sizes can be extracted separately with proper sizes, then 

processed separately using MPP.

• Empirically, we set nstop = 5, which we found is sufficiently large to minimize 

the chance of missing new and even higher quality patterns.

• The software implementation of MPP is based on a variant of the TomoMiner 

platform (Frazier et al., 2017).

Candidate Pattern Generation—The MPP optimization is performed in two stages, 

which differ in the way candidate patterns are generated. After stage 1 terminates, the MPP 

starts stage 2 with the rigid transforms T and pattern library L that resulted from stage 1. The 

main purpose of stage 1 is to obtain updated T so that subtomograms with the same 

underlying structures are roughly aligned and obtain a first estimate of (the number of) 

distinct patterns. Stage 1 begins with an initially empty pattern library L and randomly 

assigned rigid transforms T for all subtomograms, which are updated at the end of every 

iteration. In stage 1, the pattern generation is performed by a dimension reduction approach 

(STAR Methods: Pattern Generation - Imputation based dimension reduction) followed by 

k-means clustering with a fixed cluster number kk_means_fix, which is usually chosen to over-

partition the collection of subtomograms. When the true set of structurally distinct patterns 

is unknown, an intuitive strategy is to over-partition the number of clusters then identify and 
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remove the clusters leading to redundant patterns (STAR Methods: Identification of 

structurally redundant patterns).

After stage 1 terminates, the MPP starts stage 2 with the T and L that resulted from stage 1. 

In stage 2 the subtomogram membership and density averages of the patterns are improved. 

In stage 2, two independent methods are used to generate candidate patterns (resulting 

patterns of both methods are added to the pattern library): first, the sequential expansion 

method (STAR Methods: Candidate pattern generation - Sequential Expansion) and second, 

dimension reduction followed by k-means clustering in which the cluster number 

kk_means_adaptive is assigned adaptively according to |Sremain| of the last iteration: 

kk−means_adaptive ≈ kk−means_adaptive_factor|Sremain|, where kk_means_adaptive_factor = 1.2 is 

a fixed ratio.

Remarks: Each time, the k-means clustering is repeated 10 times and the best clustering 

result is chosen in order to reduce the chance of being trapped in local minima. We use the 

k-means++ initialization (Arthur and Vassilvitskii, 2007) to improve convergence. Such a 

procedure has been implemented in the off the shelf sklearn package (Pedregosa et al., 

2011).

Imputation Based Dimension Reduction: Dimension reduction for high dimension data 

has been extensively studied in different areas. It is very useful for extracting key low 

dimension features that contain the majority of discriminative signals across images and 

reducing the influence of non-informative variance. Dimension reduction is also very useful 

for significantly speeding up clustering. This is because subtomograms are high dimension 

data, and computation of distances between two subvolumes in a smaller number of 

dimensions is much more computationally effective than directly calculating distances in 

their original high dimensional space.

One major obstacle for directly applying existing dimension reduction methods is the 

missing wedge effect as a result of the limited tilt angle range of captured projection images. 

As a result, the objects in a subtomogram have anisotropic resolutions across different 

directions, which introduces bias to the dimension reduction (Bartesaghi et al., 2008; Förster 

et al., 2008). The missing wedge effect can be described in Fourier space, where the Fourier 

coefficients in certain regions are missing. The locations of Fourier coefficients ℱf with 

valid values and missing values can be represented using a missing wedge mask function M.

M(ξ) = 1, if tℎe Fourier coefficient at ξ is valid
0, if tℎe Fourier coefficient at ξ is missing (Equation 3)

where f:ℝ3 ℝ is the function that represents image intensity of a subtomogram; ℱ is the 

Fourier transform operator; and ξ ∈ ℝ3 is a location in the Fourier space. Two typical types 

of strategies have been proposed to handle the missing wedge effect for dimension 

reduction. The first type omits the Fourier coefficients that are not used for dimension 

reduction (e.g., Heumann et al., 2011). The second type estimates missing values (e.g., Yu et 

al., 2010). These methods are effective for enhancing the subtle true discriminative signal 

across aligned subtomograms. However, these methods are generally designed for cases in 
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which the underlying structures of all subtomograms are similar to a single reference density 

map, which does not apply to a Visual Proteomics setting with the existence of a high degree 

of structural heterogeneity among subtomograms.

To solve this problem, we propose an imputation strategy. For each subtomogram, we use its 

current best aligned density map (chosen from the set of pattern density maps in Sremain 

obtained from the last iteration of MPP as a reference to replace the missing Fourier 

coefficient values with those from the density map, Figure S1A illustrates the basic idea).

Formally, we want to use Fourier coefficients of a reference density map a as an estimate of 

the missing Fourier coefficients of a subtomogram f, given that aligning f against a gives the 

best alignment score compared to aligning f against other maps in the same collection. For 

simplicity, suppose f has been rigid transformed according to its alignment against a, and M 
be the corresponding missing wedge mask of f rotated according to the rigid transform. Then 

we can form a transformed and imputed subtomogram f  such that:

(ℱf)(ξ) = (ℱf)(ξ) if M(ξ) = 1
(ℱa)(ξ) if M(ξ) = 0 (Equation 4)

In principle after imputation, any generic dimension reduction method can be directly 

applied without any modification to take into account missing wedge effects. Further, in 

principle, after dimension reduction, in principle the consequent clustering step does not 

need to take missing wedge effects into account. After imputation, to speed up processing in 

the dimension reduction, we combine feature selection and feature extraction. We first 

calculate the average covariance between neighbor voxels in a similar way as our previous 

work (Xu et al., 2012). We then select a number (usually 10,000) of voxels with highest and 

positive average covariance (feature selection step) and apply EM-PCA (Roweis, 1998) 

(feature extraction step) to perform dimension reduction. When the extracted dimension 

number is relatively small, EM-PCA can be very fast, scalable and memory-efficient 

compared to other Principal Component Analysis (PCA) methods. It can normally handle 

tens of thousands of subtomograms using a single CPU core in a couple of hours. 

Empirically, we found a dimension number of 50 to be able to capture sufficient data 

variance for clustering the subtomograms.

Remarks.: When using an imputation-based dimension reduction for MPP, all 

subtomograms are first imputed. The calculation of the principal directions of PCA is done 

using subtomograms of the non-redundant selected patterns only Sremain obtained from the 

last iteration. Finally, we project all imputed subtomograms onto the principal directions.

Proof of equivalence between wedge-masked difference and imputed difference: The 

difference between a and f  can be treated as a generalization of the wedge-masked 

difference proposed in (Heumann et al., 2011), where the wedge-masked difference is 

equivalent to a special case of our approach where only a single average is used to impute all 

the aligned subtomograms and calculate differences among these subtomograms. Without 

band limit, the wedge-masked difference between a reference density map a and an aligned 

subtomogram f (with corresponding rotated wedge mask M) is calculated as:
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ℱ−1[M(ℱa)] − ℱ−1[M(ℱf)]

= ℱ−1[M(ℱa − ℱf)]

According to Equation 4,

[M(ℱa − ℱf)](ξ)

= (ℱa)(ξ) − (ℱf)(ξ) if M(ξ) = 1
0 if M(ξ) = 0

= (ℱa)(ξ) − (ℱf)(ξ) if M(ξ) = 1
(ℱa)(ξ) − (ℱf)(ξ) if M(ξ) = 0

= (ℱa)(ξ) − (ℱf)(ξ)

Therefore

ℱ−1[M(ℱa)] − ℱ−1[M(ℱf)]

= ℱ−1[ℱa − ℱf]

= a − f

Sequential Expansion: Besides using k-means clustering, we also use sequential expansion 

as a heuristic for generating candidate patterns. Sequential expansion adds subtomograms 

from an existing pattern to a new pattern only if their inclusion increases the overall pattern 

quality. Therefore, sequential expansion allows omission of subtomograms that are likely 

wrongly assigned to a pattern based on k-means clustering. All subtomograms are ranked 

according to their alignment score to the pattern average. Then an alignment score cutoff is 

searched such that the quality of the pattern formed by the set of subtomograms with scores 

higher than the cutoff which maximizes the quality of the newly formed pattern average. 

Formally, let Sremain to be the non-redundant patterns selected from the last iteration of MPP. 

For each subtomogram average a ∈ Sremain, from all subtomograms, we select those that 

have the highest alignment scores against a compared to all other pattern averages in Sremain. 

Suppose that in total there are na such subtomograms, let C = f1, …, fna  be the collection 

of subtomograms. They are aligned against a and ordered in terms of alignment scores in 

descending order. Then, for each subcollection f1, …, fi ⊂ C, 1 < i ≤ na of these 

subtomograms, we can calculate a SFSC score ρi + 1 (STAR Methods: Quality Score) of 

these subtomograms. Using the additive property, ρi + 1 can be calculated efficiently from ρi
without re-scanning over f1, …, fi . Let i* = argmaxiρi, a new candidate pattern can be 

formed using f1, …, fi . In such way, each pattern in Sremain can be used to generate a new 

candidate pattern.

Genetic Algorithm: In MPP, the candidate patterns are generated by using k-means 

clustering and sequential expansion. After MPP iterations, converged distinct patterns of 

highest SFSC scores are produced. After MPP iterations have converged to a distinct set of 
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patterns, we also applied an optional refinement method to individual patterns to achieve 

even higher quality. We call such type of pattern mining as Single Pattern Pursuit (SPP). SPP 

assumes that the input collection of subtomograms is dominated by a single structure. Given 

a collection of subtomograms and their rigid transforms, we want to select a subset of 

subtomograms that maximizes the SFSC score defined in Equation 6 in (STAR Methods: 

Quality Score). Such an optimization-based subtomogram selection method does not require 

a manually specified cutoff to exclude non-homogeneous subtomograms. The optimization 

of this score is a nontrivial combinatorial optimization problem. We use a Genetic Algorithm 

(GA) to perform such an optimization. Although such an approach is computationally 

intensive, it further improves the quality of a pattern with a small set (normally less than 

1000) of subtomograms, usually on a single computer within a couple of hours.

A Genetic Algorithm (GA) is a generic optimization technique that mimics the process of 

natural selection. Initially, the GA starts with a population of randomly generated candidate 

solutions. GA is an iterative process and the population of candidate solutions in each 

iteration is called a generation. In each generation, the fitness of every individual candidate 

solution is evaluated. The individual candidate solutions are randomly selected from the 

current generation with a probability that is proportional to the fitness of the solutions. The 

selected solutions are recombined and randomly mutated to form a new generation of 

candidate solutions.

In order to speed up the convergence, we follow the popular elitism heuristic (Deb et al., 

2002) by keeping, besides a population of n candidate solutions, also a population of n top 

candidate solutions generated so far in previous iterations, and combine these two 

populations to generate a new generation of candidate solutions so that the top candidate 

solutions are carried over from one generation to the next unaltered.

In our implementation, given a set of m subtomograms with fixed rigid transforms, we 

encode a candidate solution as a binary vector o ∈ {0, 1}m, which corresponds to a candidate 

pattern. Each element of o is 1 if the corresponding subtomogram is to be included into the 

corresponding candidate pattern, and 0 otherwise. Given any candidate solution, we can 

calculate a SFSC score of the average density of the corresponding selected subtomograms 

according to Equation 6. Such a score then represents the fitness of the corresponding 

candidate solution.

Our GA procedure is initiated by a population O0 of n randomly generated candidate 

solutions, and an empty pool B0 = ∅ of top solutions. A particular iteration i > 0 consists of 

the following steps.

1. Given a generation Oi − 1 of the last iteration i − 1, calculate the SFSC score for 

each candidate solution in Oi − 1.

2. Use the combined population Ci − 1 = Bi − 1 ∪ Oi − 1 to form a generation Oi :

a. Randomly select a pair P of candidate solutions in Ci − 1.
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b. Perform crossover operation (Figure S1B) followed by mutation 

operation to generate a pair P’ of new candidate solutions.

c. Add both candidate solutions P’ into the new population Oi.

d. Repeat the above steps until |Oi | ≥ n.

3. Combine Oi and Bi − 1 to form a new population of top candidate solutions Bi.

The iterative process continues until the best candidate solution in B is unchanged for a fixed 

number of iterations. This selects the best candidate solution as the final solution.

Given currently aligned subtomograms, and a binary vector that indicates which 

subtomograms are selected, we can calculate a SFSC score defined in Equations 5 and 6 as 

in Step 1 of the above process. Then the score can be directly used as fitness that determines 

how likely a candidate solution in Ci − 1 can be selected for reproduction in Step 2a. Suppose 

S = {ρ(o1), …, ρ(o2n)} are SFSC scores of the candidate solutions {o1, …, o2n} in the 

combined population Ci − 1. Then the probability of selecting an individual candidate 

solution oj is calculated as:

P(oj) =
ρ(oj) − smin

∑k ρ(ok) − smin , ∀1 ≤ j ≤ 2n

where smin: = min1ρ(ol) .

Remarks: In principle, the GA based subtomogram selection method can also be used as an 

alternative pattern generation method in the MPP framework. However, because the GA 

approach is significantly more time consuming compared to k-means clustering and 

sequential expansion approaches, instead of integrating it into the MPP framework, we use it 

only for refining selected individual patterns predicted using MPP.

Quality Score—In pattern mining, a measure of quality of the subtomogram average is 

needed for the optimization process. Following the common practice in cryo-electron 

microscopy (CEM) and cryo-electron tomography (ECT) fields, we measure the quality of a 

subprogram average by the level of structural details of the pattern that the average can 

confidently represent, i.e., the resolution of the average, which is widely used for validating 

subtomogram averages. Such resolution is often calculated through measuring relative 

uncertainty or reproducibility. There are two main types of such measures (Liao and Frank, 

2010): The first type of measure is the Spatial Signal to Noise Ratio (SSNR ) (Penczek, 

2002; Unser et al., 1987), which compares homogeneous structural signal against structural 

and nonstructural variations. The second type of measure, the Fourier Shell Correlation 

(FSC) (Saxton and Baumeister, 1982), is a measure of reproducibility. FSC is calculated by 

randomly splitting the set of subtomograms into two halves and by measuring the 

consistency (at different scales) between the corresponding two averages from the two 

halves. FSC has different variants (Liao and Frank, 2010).
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We use a SSNR based FSC score as a measure of quality. There are several advantages of 

using such a combination (compared to calculating FSC from splitting the data into two 

halves). First, SSNR is directly computed from all subtomograms, and therefore it reduces 

the underestimation of the resolution due to the sample size limit, and there is no uncertainty 

introduced by the statistical fluctuation from the random choice of splitting (Liao and Frank, 

2010). Second, the measure can be efficiently computed in parallel, enabling high-

throughput processing due to its additive property (See below under heading Additive 

property). Third, SSNR can be easily extended to consider missing wedge effects, which is 

one of the major distortions in the ECT imaging process. On the other hand, our experience 

shows that the use of SSNR alone as a quality measure may not be sufficient. It has an 

undesired property: its tends to emphasize low frequency components because the SSNR 

measure ranges from zero to infinity, and its value decreases dramatically as the frequency 

increases. Therefore, it would be beneficial to use a normalized measure like FSC that 

accounts for more high frequency information. To our knowledge, the subtomogram average 

quality measure has not been used as objective in any existing template-free subtomogram 

classification methods.

Formally, we denote a set of n aligned subtomograms as f1, …, fn , their Fourier transform 

as F1, …, Fn  and the corresponding wedge masks as M1, …, Mn  (as defined in Equation 

3). We adapt the standard SSNR measure to take into account the missing wedge effect and 

derive a SSNR measure ηr at frequency r:

ηr = ∫ ξ | − r | ≤ ΔrM(ξ) |μ(ξ)|2

∫ ξ | − r | ≤ Δrσ2(ξ)
(Equation 5)

where Δr = 1, ξ ∈ ℝ3 is a location in the Fourier space, M is the summation of the missing 

wedge masks:

M(ξ) = ∑
i

Mi(ξ)

μ(ξ) =
∑iMi(ξ)Fi(ξ)

M(ξ)

and

σ2(ξ) =
∑iMi(ξ)|Mi(ξ)Fi(ξ) − μ(ξ)|2

M(ξ) − 1

Given the above calculated SSNR, the FSC ρr at frequency r can be estimated according to 

(Frank and Al-Ali, 1975; Liao and Frank, 2010):
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ρr = ηr
2 + ηr

(Equation 6)

We use the sum of FSC over all frequencies (denoted as SFSC) to score the quality of a 

subtomogram average:

ρ = ∑
r

ρr

The higher the ρ, the higher is the quality of the corresponding subtomogram average of a 

pattern.

Additive Property of Quality Score: The calculation of FSC can be easily parallelized due 

to the following property: ηr can be calculated from M, ∑iMiFi and ∑iFiF i where Fi is the 

complex conjugate of Fi. All these three quantities are additive for disjoint sets of 

subtomograms.

Selection of Distinct High-Quality Patterns—In contrast to a typical template-free 

subtomogram classification method, MPP is a constrained optimization method that 

improves a selection of distinct high-quality patterns (in terms of SFSC scores, defined in 

Equation 6) from a pattern library, which contains not only the patterns from the current 

iteration but also patterns generated in any previous iteration. In such case, the overall 

quality of selected patterns tends to increase with the advance of iterations until reaching 

convergence at which MPP can hardly improve the pattern quality.

In order to reduce the chance of selecting redundant patterns from the pattern library, we 

assume that one subtomogram generally can belong to no more than one selected pattern. In 

other words, we want the selected patterns to be disjoint in terms of their subtomogram set 

membership.

We propose a greedy pattern selection process (as summarized in Algorithm below). Such 

process keeps adding patterns into a collection S from the pattern library L based on several 

search criteria: 1) high quality patterns, 2) minimal overlap in subtomogram membership, 

and 3) maximal overall subtomogram coverage. This procedure ensures the selection of a 

disjoint set of patterns with minimal subtomogram overlap between them (i.e., 

subtomograms are not shared between patterns). First, all patterns in the library are ranked 

according to their pattern quality measure. Starting with the highest quality pattern, a pattern 

is added to the collection S if it has the highest ranked quality among all patterns and with 

subtomogram member overlap smaller than a certain small threshold toverlap = 0.01 with all 

the subtomograms of all already selected patterns part of the pattern collection S. To 

increase coverage, the process selects as many eligible patterns as possible, until no more 

eligible pattern can be found in the pattern library L.
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Algorithm

Require: A library L of patterns p1, p2, …, p|L| with corresponding subtomogram sets 

Cp1, Cp2, …, Cp |L|, and with corresponding SFSC scores in order: ρp1 ≥ ρp2 ≥ … ≥ ρpp |L|, a 

max overlap ratio toverlap

1. S ∅
2. for i 1 to |L| do

3. A ∪p ∈ S Cp
4. if |Cpi ∩ A| ≤ toverlap|Cpi| then

5. S S ∪ {pi}
6. return S

Remarks.: The design of the heuristics rule of constraining the overlap of subtomogram 

memberships between selected patterns is mainly for computational feasibility 

considerations. Other approaches such constraint based optimization and maximum 

likelihood may help to further improve pattern mining quality and stability. However, how to 

combine such probabilistic framework with MPP in a computationally feasible way remains 

a challenging topic.

Align Averages into Common Frames—After selecting a disjoint set Ssel of high-

quality patterns according to Methods: Selection of disjoint high-quality patterns, the 

corresponding pattern averages in Ssel are aligned into common frames. This procedure 

helps the dimension reduction to focus more on the structural difference among the averages 

rather than the variance introduced due to orientation and location differences of patterns 

with similar structures. Such technique has been used in the align-and-classify frameworks 

(e.g., Bartesaghi et al., 2008). However, the alignment of all averages into a single common 

frame is not appropriate for a visual proteomics setting, which contains structures of many 

different complexes of largely different shape and size. The alignment of two averages of 

largely different structures may be meaningless and can result in large displacements of one 

structure to outside the boundary of its subtomogram volume. To overcome this limit, we 

propose an alignment procedure that only aligns pairs of the structurally most similar 

averages. The procedure is summarized in Algorithm below:

Algorithm

Require: A set S0 of patterns, with subtomogram sets C1, C2, …, C|S0|, with corresponding 

subtomogram averages a1, a2, …, a|S0|, and with corresponding SFSC scores in order: 

ρ1 ≥ ρ2 ≥ … ≥ ρ |S0|. Denote the alignment score and translation between ai and 

aj as ri, j and ti, j respectively.

1. Select and order the alignment scores to the subtomogram average pairs 

(i1, j1), (i2, j2), …, (inpair, jnpair , where i1, i2, …, inpair and j1, j2, …, jnpair are pattern 

indexes ∈ [1, |S0|], such that 

ri1, j1 ≥ ri2, j2 ≥ … ≥ rinpair, jnpair, tip, jp 2 ≤ ttranslation, ∀p, and ip < jp, ∀p .

Xu et al. Page 25

Structure. Author manuscript; available in PMC 2020 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Sfixed Ø

3. Stransformed Ø

4. for p 1 to |S0| do

5. if ip ∉ Stransformed and jp ∉ Sfixed ∪ Stransformed then

6. Apply a rigid transform of tip . jp on ajp

7. Sfixed Sfixed ∪ {ip}

7. Stransformed Stransformed ∪ {jp}

Identification of Structurally Redundant Patterns—When the true set of structurally 

distinct patterns is unknown, an intuitive strategy is to over-partition the collection of 

subtomograms then identify and remove the patterns of redundant structures, so that such 

redundant patterns will never be selected or processed in future iterations.

In principle, one may intuitively select a single similarity cutoff between the averages to 

identify structurally redundant patterns. However, in a visual proteomics setting, for different 

pairs of macromolecular complexes, one has to consider different degrees of image and 

structural differences as a result of varying coverage (i.e., number of subtomograms that 

contain a complex) and varying sizes for different complexes. Two high resolution 

subtomogram averages (based on a large number of subtomograms) may show relatively 

subtle but true differences. On the other hand, two low resolution subtomogram averages 

with the same underlying structure may show relatively large but false differences due to 

fluctuations of noise or misalignments of the subtomograms. Therefore, it would be difficult 

to properly choose a single similarity cutoff to define structural redundancy for all patterns. 

To overcome this limit, we determine structural redundancy by measuring the statistical 

discrimination ability of alignment scores through statistical hypothesis testing. This 

procedure allows more flexibility in detecting systematic differences between two groups of 

alignment scores generated by aligning a set of subtomograms against two pattern density 

averages.

We use a statistical test of consistency between set membership and alignment scores to 

automatically identify structurally redundant patterns. The design of our method is based on 

the following intuitions: Given a collection of selected candidate patterns, if a pattern has a 

distinct subtomogram average compared to other patterns and the average reflects the true 

underlying structure of the subtomograms of the pattern, we expect that the subtomograms 

of this pattern should specifically well align (in terms of alignment scores) to the average of 

the pattern, as compared to their alignment against averages of any other pattern. Otherwise, 

either the subtomogram average of this pattern does not reveal the underlying true structure, 

or it cannot be discriminated from the subtomogram average of some other patterns because 

both averages contain structures that are too similar to be discriminated by the alignment 

scores. We use such a statistical consistency between subtomogram set membership and 

alignment as a criterion to detect redundant patterns. This is useful for removing candidate 
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patterns whose averages do not reflect the true underlying structure and candidate patterns of 

redundant structures (that are already considered by another pattern). With the removal of 

such patterns, the computational cost of MPP can be significantly reduced.

Formally, we define a pattern p ∈ S as structurally redundant with respect to another pattern 

p′ ∈ S, if it has the following properties: 1) p has a lower SFSC score than p’, and 2) through 

an appropriate hypothesis testing, the alignment scores between the subtomograms of p and 

the subtomogram average of p is not significantly higher than the alignment scores between 

the subtomograms of p and subtomogram average of p’. In such a case, the subtomogram 

average of p’ is likely to provide a better representation of the underlying structure in the 

subtomograms of p. Consequently, p should be identified as redundant to p’ and be 

discarded from further processing.

More specifically, we propose a statistical test procedure to detect redundant patterns, which 

satisfies the above properties. Suppose at the current iteration, a collection of 

S = {p1, …, p|S|} of disjoint patterns have been selected according to (STAR Methods: 

Selection of disjoint high quality patterns) and their corresponding subtomogram sets are 

denoted as C1, C2, …, C|S|. Their subtomogram averages are denoted as a1, a2, …, a|S|. Their 

corresponding SFSC scores are denoted as ρ1, ρ2, …ρ |S|, and the patterns are ordered such 

that ρ1 ≤ ρ2 ≤ … ≤ ρ |S|. Furthermore, let rf, ai be the alignment score between a 

subtomogram f and the average ai. For any two patterns pi and pj with i < j, we compare the 

alignment scores ri, j = (rf, ai, ∀f ∈ Ci) and ri, j = (rf, aj, ∀f ∈ Ci) using Wilcoxon signed-rank 

test (Siegal, 1956), which is a paired difference test. If ri,i is not significantly higher than ri,j 

(at a significance level of 0.01), then the subtomograms in Ci do not align specifically well 

against ai compared with against aj. In addition, since ρi ≤ ρj, we identify pi as structurally 

redundant with respect to pj.

Remarks: Like any other statistical tests, our statistical test may fail when the number of 

subtomograms is small or when there is systematic bias in the alignment scores. It also 

depends on the discrimination ability of alignment scores.

Target Complex Region Segmentation—Molecular crowding within cellular 

subvolumes has profound effects on macromolecular interactions (Lučič et al., 2013; Rigort 

et al., 2012) and makes visual proteomics scale analysis significantly more challenging. A 

subtomogram extracted from a tomogram of the crowded cell cytoplasm may not only 

contain the target complex of interest, but also some neighboring structures or structural 

fragments of other complexes. The existence of neighboring structures and noise in the non-

structural background regions inside subtomograms biases their alignments (Xu and Alber, 

2013) and other processing steps of MPP. To reduce the influence of noise at the background 

regions and the influence of neighboring structures on the subtomogram analysis, we 

propose an automatic method that uses a density map as a reference to segment the region 

occupied by the target complex, mask out regions occupied by neighboring structures, and 

partially mask out regions occupied by background noise. In the MPP framework, the 

reference density map is a subtomogram average of a pattern selected based on the 
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information on pairwise alignments of subtomograms against averages of the collection 

Sremain of patterns (STAR Methods: MPP Framework). When using a reference as a seed, 

the method automatically identifies a region that includes the target complex with a margin 

that follows the shape of the target complex, and excludes the regions occupied by potential 

neighboring structures. This tool is an optional component of the MPP framework.

The basic idea of the procedure is illustrated in Figure S1C. Without loss of generality, we 

assume high image intensity of subtomograms corresponding to high electron density. 

Within a given MPP iteration, suppose the subtomogram f is best aligned with pattern’s 

average a among all other averages of a collection of patterns Sremain. f is smoothed using a 

Gaussian smoothing with σ = 2nm.

We first apply level set based segmentation on a to identify structural region Ra
structure. This 

is done according to (STAR Methods: Prefiltering - Structural region segmentation). Once a 

is segmented, we map the mask of the structured region Ra
structure onto f (Figure S1C-ii). We 

then calculate the mean intensity values of f inside Ra
structure and outside Ra

structure, and 

denote these two values as c1 and c2, respectively. We can then minimize the following 

model to obtain an optimal level set cϕ1* and structural region Ra
structure in the similar way as 

done in (STAR Methods: Prefiltering - Structural region segmentation), except with fixed c1 

and c2:

ϕf* = argminϕ μ∫ |∇H(ϕ) | + λ ∫ |f − c1|2H(ϕ) + ∫ |f − c2|2(1 − H(ϕ))

We then separate the connected components of Rf
structure into two groups: those that overlap 

with Ra
structure and those that do not. The first group of connected components are defined as 

the structural regions of the target complex Rf
structure. The second group of connected 

components are defined as the structural regions of neighboring structures Rf
structure. Then 

we perform Watershed segmentation (Volkmann, 2002) on ϕf* using Rf
structure and Rf

neigℎbor

as initial seeds to partition the subtomogram into two regions, Rf
target_ext and Rf

neigℎbor_ext. 

The final target complex region mask is defined as Rf
target_ext ∩ {ϕ⋆ > tmax(ϕ⋆)}, where t is 

a negative valued threshold parameter to control the amount of included margin. Such mask 

follows the shape of the target complex and excludes neighboring structures (Figure S1C-

iii).

Remarks

• The existence of neighboring structures besides the target complex in a 

subtomogram f affects its alignment against a reference a (Xu and Alber, 2013). 

However, a is only used as an initial seed. Therefore, even if the alignment is not 

accurate or the density map a does not have the same structure as the underlying 

structure of f, as long as after alignment Ra
structure overlaps with the true target 
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complex region of f and does not overlap with the neighboring structure region 

of f, we may still expect a successful segmentation.

• As illustrated in Figure S1C, even if target complex regions of f are apparently 

disconnected, as long as the target complex regions of f have overlap with 

Ra
structure, the disconnected subunits will still be included in the final 

segmentation.

• The reason for applying the watershed segmentation on ϕf* instead of f is because 

ϕf* is derived from the distance transform (Kimmel et al., 1996), which 

represents the signed distances of voxel locations to the structural regions. ϕf* is 

usually much smoother than the noisy f. In addition, ϕf* is a signed distance 

function that monotonically decreases when the distance to the segment 

increases. By contrast, due to the suppression of low frequency components in 

the CTF during the imaging process, f has both above and below background 

intensity around the surface regions of structures. Therefore, the segmented 

boundary from the watershed segmentation on ϕf* would be much more regular 

than those from watershed segmentation directly on f.

• Due to its complexity, the segmentation of the target complex region is a very 

challenging problem when applied on a proteome scale. Many factors may lead 

to the failure of our reference guided segmentation approach. For example, the 

high degree of distortions in a subtomogram or high degree of misalignments of 

subtomograms against the reference may lead to under or over segmentation. If a 

subtomogram is highly crowded, some neighboring structures may appear to be 

connected with the target complex in the subtomogram, which makes the 

segmentation unable to exclude the neighboring structure region.

• In order to avoid false segmentation of a subtomogram average when it is very 

noisy, we assume that Ra
structure has less overlap with the boundary of the 

subvolume than the non-structural region (Ra
structure)C does, and use this 

assumption to discard bad segmentations.

Noise Reduction of Averages: Sometimes, repeated iterations of alignment and averaging 

give a structure containing high resolution features resulting from the alignment of noise 

against itself in a reinforcing manner (Briggs, 2013). Such phenomenon is called over-

alignment. In such case, it is beneficial to have an optional step to reduce high frequency 

noise.

Gaussian smoothing is a commonly used noise reduction technique. Within the class of 

linear transformations, a Gaussian kernel minimizes the chance of creating new structures in 

the transformation from a finer to a coarser scale (Sporring et al., 2013). We apply Gaussian 

smoothing to an average to reduce influence of noise, which is equivalent to applying a 

Gaussian envelope function in Fourier space. Such an envelope function has the form of:
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fa, c(x) = aexp − x2

2C2

Since our procedure includes estimation of SSNR and FSC, the parameters a and c can be 

adaptively determined from the estimated FSC through least-squares fitting using the 

Levenberg-Marquardt algorithm.

Simulation of Realistic Tomograms—For a reliable assessment of the method, 

simulated tomograms and subtomograms are generated by simulating the actual 

tomographic image reconstruction process, allowing the inclusion of noise, tomographic 

distortions due to missing wedge, and electron optical factors such as Contrast Transfer 

Function (CTF) and Modulation Transfer Function (MTF). We follow a previously applied 

methodology for realistic simulation of the tomographic image formation processes (Beck et 

al., 2009; Förster et al., 2008; Nickell et al., 2005; Xu et al., 2011).

The electron optical density of a macromolecule is proportional to its electrostatic potential 

and the density map can be calculated from the atomic structure by applying a low pass filter 

at a given resolution. An initial density map is then used as a sample for simulating electron 

micrograph images at different tilt angles. In ECT the sample is tilted in small increments 

around a single-axis. At each tilt angle, a simulated micrograph is generated from the 

sample. In the real imaging process, the tilt angle range is limited. Therefore, our data 

contain a wedge-shaped region in Fourier space for which no structure factors have been 

measured (i.e., the missing wedge effect). The missing wedge effect leads to distortions of 

the density maps. These distortions depend on the structure of the object and its orientation 

with respect to the direction of the tilt-axis. To generate realistic micrographs, noise is added 

to the images according to a given SNR level, defined as the ratio between the variances of 

the signal and noise (Förster et al., 2008). Moreover, the CTF and MTF models distortions 

from interactions between electrons and the specimen and distortions due to the image 

detector (Nickell et al., 2005) in a linear approximation. therefore, the resulting image is 

convoluted with a CTF. Any negative contrast values beyond the first zero of the CTF are 

eliminated. Typical acquisition parameters that were also used during actual experimental 

measurements were used: voxel size = 1 nm, the spherical aberration = 2.2 mm, the defocus 

value = −15 μm, the voltage = 300 kV, the MTF corresponded to a realistic electron detector, 

defined as sinc(πω/2) where ω is the fraction of the Nyquist frequency. Finally, we use a 

backprojection algorithm (Nickell et al., 2005) to generate a tomogram or a subtomogram 

from the individual 2D micrographs that were generated at the various tilt angles (Beck et 

al., 2009; Xu et al., 2011).

Individual Simulated Subtomograms: We randomly selected a collection of PDB 

structures of 22 macromolecular complexes (Table S1A) of distinct shapes and sizes. The 

structures were converted into density maps using the pdb2vol program in the situs package 

(Wriggers et al., 1999) at 1 nm spacing and band pass filtered at 4 nm. The density maps 

served as input for realistically simulating the cryo electron imaging process with a noise-
factor-SNR of 0.005 and tilt angle range ±60°. For each complex, 1000 subtomograms were 
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generated, each containing a randomly rotated and translated complex. We then selected a 

random copy number (uniformly sampled from 1 to 1000) of simulated subtomograms for 

each complex. In total, we collected 11,230 subtomograms as an input data set for MPP 

(Table S1A).

Crowded Mixture of Macromolecular Complexes

Low Resolution.: A density map is generated for each complex (the collection of 22 

complexes used in individual simulated subtomograms) at 1 nm voxel spacing and band pass 

filter the map at 4 nm. We apply level set based segmentation (STAR Methods: Target 

complex region segmentation) on the density map of each complex. For each segment, we 

calculate a minimum bounding sphere, which is the smallest sphere that encloses the 

segment. We randomly place non-overlapping bounding spheres of 9,864 instances of the 22 

complexes (with various abundance per type) into a volume V of size 600 × 600 × 200 nm3. 

Overlap between bounding spheres is prevented by applying molecular dynamics 

simulations in combination with an excluded volume constraints for all bounding spheres 

(Pei et al., 2016; Russel et al., 2012). Finally, we embed the density maps of each randomly 

oriented complex into the 00b0V according to locations of their corresponding bounding 

spheres. The combined large density map of all complexes had a crowding level (in terms of 

volume occupancy) of 15.2%, which is within the volume occupancy range (from 5% to 

44%) that have been observed in cell cytoplasm (Guigas et al., 2007). The density map of 

the crowded protein complexes is used to simulate a tomogram with noise-factor-SNR of 50 

and tilt angle range ±60° (Figure 3A-Right Panel).

High Resolution.: Nowadays experimental tomograms with much smaller voxel spacing can 

be captured by current generation of transmission electron microscopes. Similar to low 

resolution tomograms, 10 different tomograms are simulated, each with approximately 2,500 

instances of 22 complexes (with variable abundance) and volume of 400 × 400 × 200 nm3 

(Figure 3C right panel). The crowding level of these tomograms is 15% on average. The 

tomograms are simulated at noise-factor-SNR of 50, tilt angle range ±60°, defocus value = 

−7 μm, voxel size = 0.4 nm and the spherical aberration = 2.2 mm.

Note

• In description of simulation parameters above we used terms noise-factor-SNR 
and effective-SNR. Noise-factor-SNR quantifies the level of noise that needs to 

be added to the projection images to reach a certain effective-SNR for the 

simulated tomograms. When simulating the tomographic imaging process, noise 

is added to the voxels of the projection images following a procedure as 

described in (Beck et al., 2009; Förster et al., 2008; Nickell et al., 2005; Xu et al., 

2011), by adding noise values sampled from a Gaussian distribution 

μ = 0 and σnoise2 =
σsignal

2

noise − factor − SNR , where μ and σnoise2  are mean and variance 

of the Gaussian noise distribution and σsignal
2  is the variance of the signal in the 

projection image (i.e., the density values of voxels in the projection image from 

the actual macromolecular complex) (Förster et al., 2008). As mentioned above, 
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the value of the noise-factor-SNR does not represent the final effective signal-to-

noise ratio of the tomogram. It is used to calculate how much noise needs to be 

added to the projection image to simulate tomograms for a given effective-SNR 
value. To reach effective-SNR levels that are similar to those observed in 

experimental tomograms, noise-factor-SNR can vary for different tomograms 

based on the crowding level of the tomogram. The larger the empty space in the 

projection image, the higher the noise-factor-SNR need to be so that the signal 

can still be identified in noisy image. The effective-SNR is estimated from 

aligned subtomograms following a procedure by (Frank and Al-Ali, 1975). 

Therefore, the effective-SNR value can be estimated from either experimental or 

simulated tomograms. It is calculated using a method as described by Frank and 

Al-Ali, 1975: effective−SNR =
∑p = 1

N Cp
1 − Cp

N  where N is the number of pairs of 

aligned subtomograms (we chose N = 10,000 for analysis in this paper) and Cp is 

the pearson-correlation between subtomograms in pair p. For the simulation of 

individual subtomograms, a noise-factor-SNR of 0.005 and for the simulation of 

crowded tomograms a noise-factor-SNR of 50 leads to an effective-SNR for the 

aligned subtomograms that is similar to the effective-SNR calculated from our 

experimental tomograms (STAR Methods: Estimation of effective-SNR).

• During simulation of tomograms we add CTF to the projection images to add the 

distortions due to phase flipping and missing frequencies. There are two ways to 

add CTF, with or without gradient in the defocus. For simulated subtomograms 

of individual complexes, the tomogram size is approximately 50 nm × 50 nm × 

50 nm which is too small to consider gradient defocus. Also, for crowded 

environments the size of the simulated tomograms is smaller compared to typical 

experimental tomograms. For smaller tomograms the defocus gradient may have 

a smaller impact in comparison to larger tomograms, as the range of defocus 

between farthest points on the simulated tomograms and at the highest tilt angle 

of 60 degree will be approximately −6.75 μm to −7.25 μm (if we consider −7μm 

at 0 degree). So, for the purpose of simplifying the simulation process we used 

an average added CTF at defocus of −7 μm. We agree that the addition of CTF 

with gradient defocus will have some impact on how the complexes appear in the 

reconstructed tomogram. As gradient defocus has been used to improve the 

resolution of subtomogram-averaged structures in experimental tomograms, we 

anticipate that the effect of using gradient defocus will not significantly affect the 

detection of coarse-grain patterns via MPP.

Experimental Tomogram Acquisition

A. longum: Cells were frozen and imaged as described previously (Tocheva et al., 2014). 

Data were collected from −65° to 65°, with an angular step of 1°, a total dose of 200e−/Å2, a 

defocus value of −10μm, and a pixel size of 1.2 nm on a 300 keV FEG G2 Polara 

transmission electron microscope (TEM) equipped with a lens-coupled 4k-by-4k Ultracam 

(Gatan, CA) and an energy filter. Data were collected automatically with the UCSF 
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tomography package (Zheng et al., 2007) and reconstructed using the IMOD software 

package (Kremer et al., 1996) (Figure 4A-Left Panel).

H. gracilis: Cells were grown 48 hr in ATCC #233 Broth (ATCC, Manassas, VA) to OD600 

= 0.1. 10 nm colloidal gold (Sigma-Aldrich, St. Louis, MO) pretreated with bovine serum 

albumin was added to the cells to serve as fiducial markers during tomogram reconstruction. 

3 μl of the resulting sample was pipetted onto a freshly glow-discharged Quantifoil copper 

R2/2 200 EM grid (Quantifoil Micro Tools GmbH, Jena, Germany) and plunge-frozen in a 

liquid ethane propane mixture using an FEI Vitrobot mark-III (FEI Company, Hillsboro, 

OR). The frozen grid was then imaged in an FEI Tecnai G2 Polara 300 keV field emission 

transmission electron microscope (FEI Company, Hillsboro, OR) equipped with a Gatan 

energy filter (Gatan, Pleasanton, CA) and a Gatan K2 Summit direct detector (Gatan, 

Pleasanton, CA) at the California Institute of Technology. Energy-filtered tilt series of 

images of the cell were collected automatically from −60° to 60° at 1° intervals using the 

UCSF Tomography data collection software (Zheng et al., 2007) with total dosage of 

75 e−/Å2, a defocus of −15 μm and a pixel size of 4.9Å. The images were aligned and 

subsequently reconstructed into a tomogram by weighted back-projection method using the 

IMOD software package (Kremer et al., 1996) (Figure 4A-Middle Panel).

B. bacteriovorus: HD100 cells were grown as described previously (Lambert and Sockett, 

2008) on E. coli S17–1 prey cells in Ca-HEPES buffer at 29°C until most prey cells were 

cleared from the culture. 10 nm colloidal gold (Sigma-Aldrich, St. Louis, MO) pretreated 

with bovine serum albumin was added to the cells to serve as fiducial markers during 

tomogram reconstruction. 3 μl of the resulting sample was pipetted onto a freshly glow-

discharged Quantifoil copper R2/2 200 EM grid (Quantifoil Micro Tools GmbH, Jena, 

Germany) and plunge-frozen in a liquid ethane propane mixture using an FEI Vitrobot mark-

III (FEI Company, Hillsboro, OR). The frozen grid was then imaged in an FEI Titan Krios 

300 keV field emission transmission electron microscope (FEI Company, Hillsboro, OR) 

equipped with a Gatan energy filter (Gatan, Pleasanton, CA) and a Gatan K2 Summit direct 

detector (Gatan, Pleasanton, CA) at the Howard Hughes Medical Institute Janelia Research 

Campus. Energy- filtered tilt series of images of the cell were collected automatically from 

−65° to 65° at 1 intervals using the UCSF Tomography data collection software (Zheng et 

al., 2007) with total dosage of 100 e−/A2, a defocus of −8μm and a pixel size of 4.2Å. The 

images were aligned and subsequently reconstructed into a tomogram by weighted back-

projection method using the IMOD software package (Kremer et al., 1996).

Pattern Mining

Individual Simulated Subtomograms: The MPP procedure was run on 11,230 simulated 

subtomograms with initial kk_means_fix = 40. The contingency plot and generated patterns 

are shown in Figure 1 in the main text.

Crowded Mixture of Macromolecular Complexes: After extracting the 4,901 

subtomograms, we apply the MPP procedure to the extracted subtomograms using similar 

settings as above. During the MPP iterations, we applied our reference guided segmentation 

Xu et al. Page 33

Structure. Author manuscript; available in PMC 2020 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(STAR Methods: Target complex region segmentation) to reduce the influence of 

crowdedness. Table S2 and Figure 2 summarizes the resulting patterns.

Experimental Tomograms: We first perform level set based pose normalization (STAR 

Methods: Pre-filtering). Then we perform k-means clustering on pose normalized 

subtomograms to separate the subtomograms into 100 clusters (Tables S4A, S4C, and S4E 

respectively for each experimental tomogram). Then based on the shape of the cluster 

centers, we manually select and combine a number of clusters into groups whose averages 

are similar (of similar sizes). We then applied MPP to subtomograms in each group, with 

random initial orientations, and an initial kk_means_fix = 10. Pattern 4 among A. longum 
patterns had a structure similar to the GroEL complex (Figure 4C). For this pattern, we 

applied our GA based refinement of subtomogram membership (STAR Methods: Candidate 

pattern generation - Genetic algorithm). The resulting predicted patterns are summarized in 

Tables S4B, S4D, and S4F respectively for A. longum, H. gracilis and B. bacteriovorus.

Validation Procedure—To measure the performance of MPP, we calculate several 

quantities for comparing the prediction with ground truth. The first quantity is the 

membership consistency in terms of the amount of subtomogram membership overlap 

between a predicted pattern and the true set of a complex. Such membership consistency is 

represented as a contingency table. We order the columns and rows in the contingency table 

by identifying best matching using the Hungarian algorithm (Kuhn, 1955). In an ideal case, 

when properly ordered, such a table would have non-zero entries in the diagonal cells, and 

zeros elsewhere.

Second, we calculate the False Positives (FP) and False Negatives (FN) to measure the 

number of instances (i.e., subtomograms) that MPP cannot correctly identify. Suppose, by 

checking the diagonal entry of a rearranged contingency table, the best matching between 

complexes and patterns is determined. Suppose a complex c matches a pattern p. The FP of 

p is the number of instances of pattern p that do not belong to c, although they are predicted 

as instances of c (because they are in p and p matches c). Given FP, further calculate the 

False Discovery Rate (FDR) as FP divided by the total number of instances of p. The FDR 

indicates the level of impurity of p. The FN of c is the number of true instances of c that are 

not included into p. Given FN, we also calculate the Miss Rate or False Negative Rate 

(FNR) as FN divided by the total number of instances in c. Note that if p correctly predicted 

the structure of c, in principle the missed instances (which are counted as false negatives) 

can be later detected through a template search.

Third, we calculate the structural consistency between the average density map of a pattern 

and the true density map of the target complex. The consistency is measured in terms of FSC 

with 0.5 cutoff, which reflects the minimum scale that the predicted and true structures are 

consistently determined by the cutoff.
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Estimation of Effective-SNR

Pattern 4 from Simulated Tomograms

Low Resolution.: We sampled 10,000 pairs of aligned subtomograms of pattern 4, which are 

dominated by the GroEL complex (PDB: 1KP8). For each pair of subtomograms, we 

calculate the Pearson correlation of their image intensity, then estimate a corresponding SNR 

according to (Frank and Al-Ali, 1975): effective‐SNR = effective − SNR =
∑p = 1

N cp
1 − cp

N , 

where N is the number of pairs of aligned subtomograms and cp is the pearson-correlation 

between subtomograms in pair p. Such a procedure gives an SNR estimate of 0.29 ± 0.13 

over all subtomograms pairs, which is of similar range to the one estimated from the A. 
longum cellular tomogram.

High Resolution.: To calculate the effective-SNR in this case, we simulated the tomograms 

again with same simulation parameters, but instead of orienting complexes randomly, all the 

complexes were kept in same orientation. This would remove any alignment bias in the SNR 

estimation. Then we picked the subtomograms for each complex using the ground truth and 

calculated the effective-SNR using the same method as mentioned in above subsection. 

Sampling 10,000 pairs of subtomograms (already aligned as in same orientation) and found 

that the effective-SNR is within the range of 0.002 to 0.031 for different complexes.

Pattern 4 from A. longum: We also estimated the effective-SNR level of subtomograms of 

pattern 4 using the same procedure as described above. Such procedure gives an SNR 

estimate of 0.24 ± 0.10 over all subtomograms pairs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• New framework for structural pattern mining in electron cryotomograms

• Automated and template-free discovery of complexes

• Complexes such as GroEL and ribosome detected in experimental tomograms
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Figure 1. Overview of the Method
(A) Overall processing pipeline, including particle picking, preprocessing, and 

postprocessing steps. The preprocessing step consists of pose normalization-based coarse 

prefiltering to define sets of subtomograms containing similarly sized particles (STAR 

Methods: Prefiltering).

(B) MPP framework.

In the flow charts, actions are in boxes, data are on arrows, and diamonds represent 

decisions. Figure S1 shows details of some of the methods used in overall pipeline.
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Figure 2. Individually Simulated Subtomograms
MPP results for individually simulated subtomograms of relatively low resolution with a 

voxel size of 1 nm.

(A) Column plot representation of the contingency table (Table S1C) of the subtomogram 

membership overlap between true and inferred patterns. The height of each column at each 

axis corresponds to the total number of subtomograms of the ground truth complex and the 

total number of subtomograms in the predicted patterns, respectively. The height of each 

column inside the table corresponds to the number of subtomograms for each ground truth 

complex in each predicted pattern. The colors of the columns indicate structural consistency 

between ground truth and corresponding pattern averages, quantified as FSC with cutoff 0.5 

(STAR Methods: Validation Procedure).

(B) The isosurfaces of predicted patterns compared with ground truth structures.

The ground truth structures are indicated by their PDB code, and the number of instances 

and the isosurface representations of the predicted patterns with the number of instances and 

the false discovery rate (FDR) in parentheses. See also Table S1.
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Figure 3. Complexes under High Crowding Conditions
MPP results for simulated tomogram containing a crowded mixture of complexes.

(A) Left panel: column plot representation of the contingency table for the simulated cellular 

tomogram of a crowded mixture of complexes (Table S2C) at relatively low resolution with 

tomogram voxel size = 1 nm. Center panel: isosurface representations of the predicted 

patterns with the number of instances and FDR in parentheses. Right panel: a slice through a 

simulated tomogram.

(B) Left panel: isosurface of the ground truth mixture of crowded complexes. Second panel 

from the left: simulated tomogram. Third panel from the left: isosurface representation of 

the predicted patterns and their localizations. Fourth panel from the left: true positives 

among predicted patterns. Dendrogram of hierarchical clustering of templates of 

macromolecular complexes used for simulation is shown in Figure S2.

(C) Left panel: column plot representation of the contingency table for all ten simulated 

cellular tomograms of a crowded mixture of complexes (Table S3C) at relatively higher 

resolution with tomogram voxel size = 0.4 nm. Center panel: isosurface representations of 

the predicted patterns with the number of instances and FDR in parentheses. Right panel: a 

slice through one of the simulated tomograms.

(D) Left panel: isosurface of the ground truth mixture of crowded complexes from one of the 

ten simulated tomograms (~10% of the entire dataset). Second panel from the left: simulated 
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tomogram. Third panel from the left: isosurface representation of the predicted patterns and 

their localizations. Fourth panel from the left: true positives among predicted patterns.

See also Tables S2 and S3.
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Figure 4. Discovered Patterns in Three Experimental Cellular Tomograms: A. longum, Intact H. 
gracilis, and Intact B. bacteriovorus Cells
(A) Three slices of the electron cryotomogram. A. longum (left), intact H. gracilis (center), 

and intact B. bacteriovorus (right).

(B) Embedded instances of detected patterns.

(C) Upper panel: embedded instances, zooming in on a particular region. Lower panel: 

isosurfaces of one example pattern from each experiment. GroEL-like pattern is also fitted 

with a known atomic model of GroEL. Isosurface of the average density of the example 

pattern, aligned with the known structures of the GroEL (PDB: 1KP8) and ribosome 

complexes (PDB: 2J00–2J01).

See Table S4 and Videos S1, S2, and S3.
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Figure 5. Analysis of Tomograms
(A) The isosurface of the subtomogram average density map of pattern 4 from A. longum, 

fitted with the known structure of the GroEL (PDB: 1KP8).

(B) Assessment of pattern 1 detected in tomogram of B. bacteriovorus cell. Box plot of the 

distribution of alignment scores of the subtomograms of pattern 1 against all different 

template complexes (denoted by PDB code). The complexes are ordered according to 

median score in descending order. One-sided Wilcoxon rank-sum test with p-value < 1.7 × 

10−24.

(C) (Red) box plot of the alignment score distribution of subtomograms in pattern 1 (B. 
bacteriovorus) against the ribosome template complex (PDB: 2J00–2J01). (Blue) box plot of 

the alignment score distribution of all other extracted subtomograms against the ribosome 

template. One-sided Wilcoxon rank-sum test with p-value < 6.3 × 10−6.

(D) A thin section of embedded instances of different patterns, outlined by embedded 

instances of membrane patterns from tomogram of B. bacteriovorus cell. Left panel: a slice 

of tomogram. Shown are all membrane patterns in yellow. Second panel from left: patterns 

0, 1, 9 containing ribosome structures. Third panel from left): pattern 6. Fourth panel from 

left: patterns 4 and 5. For analysis of patterns from tomograms of A. longum and H. gracilis, 

see Figure S3.
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KEY RESOURCE TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Acetonema longum strain APO-1 Tocheva et al., 2014 DSM 6540

Bdellovibrio bacteriovorus Lambert and Sockett, 2008 HD100

Hylemonella gracilis Canale-Parola et al., 1966 ATCC 19624

Deposited Data

Yeast 20S proteasome in complex with spirolactacystin Groll et al., 2008 PDB: 3DY4

Recombinant mouse L chain ferritin Granier et al., 2003 PDB: 1LB3

RECA Hexamer Model Yu and Egelman, 1997 PDB: 2REC

GroEL-KMgATP Wang and Boisvert, 2003 PDB: 1KP8

Yeast 20S Proteasome in complex with proteasome 
activator PA26 from Trypanosome Brucei

Whitby et al, 2000 PDB: 1FNT

Propionyl-CoA carboxylase, beta subunit (TM0716) 
from Thermotoga Maritima

Joint Center for Structural Genomics 
(unpublished)

PDB: 1VRG

Glutamine Synthetase Yamashita et al, 1989 PDB: 2GLS

Human carboxypeptidase A4 in complex with human 
latexin

Pallares et al, 2005 PDB: 2BO9

Bacterial ribosome from Escherichia coli Schuwirth et al, 2005 PDB: 2AWB (4V4Q)

M.tuberculosis Acr1(Hsp 16.3) fitted with wheat sHSP 
dimer

Kennaway et al, 2005 PDB: 2BYU

Octameric Enolase from Streptococcus pneumoniae Ehinger et al, 2004 PDB: 1W6T

Carbamoyl Phosphate Synthetase complexes with ATP 
analog AMPPNP

Thoden et al, 1999 PDB: 1BXR

Free aspartyl-tRNA synthetase from Escherichia coli Rees et al, 2000 PDB: 1EQR

ClpP Bewley et al, 2006 PDB: 1YG6

Ornithine Carbamoyltransferase from Pyrococcus 
Furiosus

Villeret et al, 1998 PDB: 1A1S

E. coli Aminopeptidase A (PepA) Sträter et al, 1999 PDB: 1GYT

Transaldolase (EC 2.2.1.2) (TM0295) from Thermotoga 
maritima

Joint Center for Structural Genomics 
(unpublished)

PDB: 1VPX

Acetobacter aceti citrate synthase complexed with 
oxaloacetate and carboxymethyldethia coenzyme A 
(CMX)

Francois et al, 2006 PDB: 2H12

Rotary Motor in ATP Synthase from Yeast 
Mitochondria

Stock et al, 1999 PDB: 1QO1

Recombinant Thermus aquaticus RNA polymerase Kuznedelov et al, 2006 PDB: 2GHO

3-octaprenyl-4-hydroxybenzoate decarboxylase (UbiD) 
from Escherichia coli

Northeast Structural Genomics 
Consortium (unpublished)

PDB: 2IDB

E. Coli Aapartate Transcarbamoylase P268A mutant in 
the R-state in the presence of N-phosphonacetyl-L-
aspartate

Jin et al, 2000 PDB: 1F1B

Software and Algorithms

Multi Pattern Pursuit (MPP) This work http://web.cmb.usc.edu/people/alber/
Software/mpp/

Integrative Modeling Platform (IMP) Russel et al., 2012 https://integrativemodeling.org
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REAGENT or RESOURCE SOURCE IDENTIFIER

Octave Octave version 4.2.0 https://www.gnu.org/software/octave/

IMOD Kremer et al., 1996 https://bio3d.colorado.edu/imod/

Chimera Pettersen et al., 2004 https://www.cgl.ucsf.edu/chimera/

Python Python version 2.7 https://python.org

UCSF Tomography Zheng et al., 2007 http://www.msg.ucsf.edu/Tomography/
tomography_main.html

2D/3D Image segmentation toolbox Zhang, 2013 http://www.mathworks.com/
matlabcentral/fileexchange/
24998-2d-3d-image-segmentation-
toolbox

TOM software toolbox Nickell et al., 2005 https://www.biochem.mpg.de/tom

Situs Package Wriggers et al., 1999 https://situs.biomachina.org/
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