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ABSTRACT
Background  Interleukin-2 (IL-2) serves as a pioneer 
of immunotherapeutic agent in cancer treatment. 
However, there is a considerable proportion of patients 
who cannot benefit from this therapy due to the limited 
clinical responses and dose-limiting toxicities. Mounting 
evidence indicates that commensal microbiota shapes 
the outcome of cancer immunotherapies. In this study, we 
aim to investigate the enhancing effect of Akkermansia 
muciniphila (AKK), a beneficial commensal microbe 
receiving considerable attentions, on the antitumor efficacy 
of IL-2 and explore the underlying molecular mechanism.
Methods  Colorectal carcinoma patient-derived tumor 
tissues were used to evaluate the therapeutic efficacy 
of combination treatment. AKK was orally delivered to 
B16F10 and CT26 tumor-bearing mice along with systemic 
IL-2 treatment. Flow cytometry was carried out to analyze 
the tumor immune microenvironment. The molecular 
mechanism of the enhanced therapeutic efficacy was 
explored by RNA-seq and then verified in tumor-bearing 
mice.
Results  Combined treatment with IL-2 and AKK showed 
a stronger antitumor efficacy in colorectal cancer patient-
derived tumor tissues. Meanwhile, the therapeutic 
outcome of IL-2 was significantly potentiated by oral 
administration of AKK in subcutaneous melanoma 
and colorectal tumor-bearing mice, resulting from 
the strengthened antitumor immune surveillance. 
Mechanistically, the antitumor immune response elicited 
by AKK was partially mediated by Amuc, derived from the 
outer membrane protein of AKK, through activating toll-
like receptor 2 (TLR2) signaling pathway. Besides, oral 
supplementation with AKK protected gut barrier function 
and maintained mucosal homeostasis under systemic IL-2 
treatment.
Conclusion  These findings propose that IL-2 combined 
with AKK is a novel therapeutic strategy with prospecting 
application for cancer treatment in clinical practice.

BACKGROUND
Long-term remissions have been shown 
among some patients with cancer in the recent 
clinical trials of cancer immunotherapy, 
mainly including the redirected chimeric 

antigen receptor T cells, antibodies targeting 
cytotoxic T lymphocyte antigen-4 (CTLA-4) 
or programmed death-1 (PD-1).1 2 Cancer 
immunotherapies are designed to fire up the 
patients’ own immune system to fight against 
cancer and have picked up considerable 
momentum in clinical practices.3 However, 
each strategy still faces many challenges in 
eliminating hematological neoplasms and 
especially solid tumors, resulting from the 
primary or acquired resistance, unpredict-
able hyperprogression and immune-related 
toxicities.4–6

Interleukin 2 (IL-2) is a protein that 
stimulates T-cell proliferation, augments 
cytotoxic activity of natural killer cells and 
triggers proinflammatory cytokine release.7 
Notably, IL-2 is the first cancer immunother-
apeutic drug approved by the US Food and 
Drug Administration (FDA) decades ago 
for the treatment of metastatic melanoma 
and renal cell carcinoma.8 However, due 
to the complexity of IL-2-induced toxicities 
including vascular leak syndrome, pulmo-
nary edema, nausea and diarrhea, patients 
receiving high dose of IL-2 must be closely 
monitored.9 Therefore, physicians are 
usually deliberative to choose IL-2 treat-
ment, which limits its clinical application as 
a monotherapy.10 Alternatively, IL-2 in rela-
tively low dose is safer but hinders its anti-
tumor efficacy.9 10 In detail, IL-2 has limited 
effect in reversing immunosuppressive tumor 
microenvironment and in some cases even 
proliferates regulatory T cells (Tregs), which 
is regarded as the crucial limiting factor in 
tumor eradication and is closely associated 
with poor clinical response.8–10 Therefore, 
combination treatments with other thera-
peutic approaches are needed to restore the 
efficacy of IL-2-based immunotherapy.
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There is growing evidence that the interindividual 
variability in gut microbiota accounts for the significant 
heterogeneity in therapeutic responses to cancer immu-
notherapy.11 12 Both preclinical studies and clinical trials 
have highlighted the important roles of gut microbiota in 
immune checkpoint inhibitor therapies.13 14 Oral admin-
istration with antibiotics resulted in shorter progression-
free survival and overall survival in patients receiving PD-1 
blockade immunotherapy, indicating that gut dysbiosis 
significantly compromised the clinical benefit of immune 
checkpoint blockade immunotherapies.13 Gut micro-
biota serves as biomarkers in predicting potential clin-
ical response, and thus, targeting it may have important 
guidance to those non-responders under immunothera-
pies.15 16

Akkermansia muciniphila (AKK), an intestinal symbiont 
colonizing on the mucosal layer, plays important roles in 
ameliorating host metabolic disorders17 and improving 
immune responses.18–20 Moreover, the correlation between 
AKK and cancer immunotherapy receives increasing 
attentions.13 19 AKK is significantly enriched in immune 
checkpoint blockade responding patients, revealing 
that it is associated with a stronger antitumor immune 
response and favorable clinical outcome.13 Besides, tumor 
size was significantly shrunk in the mice receiving fecal 
microbiota transplantation from immune checkpoint 
blockade responders with a higher abundance of AKK 
in the gut microbiota.13 However, the specific cellular 
and molecular links between AKK-elicited antitumor 
efficiency and host immune response in the context of 
cancer immunotherapy remain unclear.21 We hypothesize 
that combination treatment with IL-2 and AKK may serve 
as a potential approach to restore the therapeutic efficacy 
of IL-2-based immunotherapy and reduce its gastrointes-
tinal side effects, thus making this old drug get fresh look 
in cancer treatment.

In the current study, therapeutic efficacy of combined 
treatment with IL-2 and AKK was evaluated in colorectal 
cancer (CRC) patient-derived tumor tissues and B16F10 
or CT26 tumor-bearing mice. Accordingly, alterations of 
tumor microenvironment among different groups were 
investigated and the underlying mechanism of the anti-
tumor immune response induced by AKK was further 
explored. Furthermore, the protective effects of AKK 
treatment on gut barrier and commensal microbiota 
homeostasis were studied in the context of IL-2-based 
immunotherapy. Collectively, these findings provide the 
first basis that combination treatment of IL-2 and AKK is 
an effective and safe therapeutic strategy with potential 
clinical applications, thus shedding new lights on cancer 
immunotherapy (figure 1).

METHODS
Bacteria and cell lines
AKK (ATTC BAA-835) was cultured in a basal medium 
containing 0.25% w/v mucin at 37°C, pH 6.5 under strict 
anaerobic conditions. Murine melanoma cell line B16F10 

(syngeneic with C57BL/6 mice) was cultured with 
Dulbecco's Modified Eagle Medium (DMEM) containing 
100 µg/mL of streptomycin and 100 IU/mL of penicillin 
and supplemented with 10% fetal bovine serum. Murine 
colon carcinoma cell line CT26 (syngeneic with Balb/c 
mice) was cultured with Roswell Park Memorial Institute 
(RPMI) 1640 Medium containing 100 µg/mL of strepto-
mycin and 100 IU/mL of penicillin and supplemented 
with 10% fetal bovine serum. Both cells were grown in a 
humidified incubator at 37°C with 5% CO2.

Isolation and treatment of CRC patient-derived tumor tissues
Primary CRC specimens were obtained from patients 
who received surgical resection at Tongji Hospital of 
Huazhong University of Science and Technology. Fresh 
tumor tissues were washed twice with DMEM (Gibco) 
containing 5% fetal bovine serum (FBS), 100 U/mL 
penicillin and 100 µg/mL streptomycin, cut into small 
pieces of 2–4 mm and followed by removal of fat and 
necrotic areas. Then, they were digested at 37°C for 30 
min by using the tumor dissociation kit (Miltenyi Biotec, 
California, USA), filtered into single cell suspensions 
through a 70 µm nylon cell strainer (BD Falcon, USA) 
and followed by regular cell culture (DMEM plus 10% 
FBS). Cells were then subjected to different treatments. 
After the single treatment of IL-2 (10 ng/mL) and AKK 
(1×107 CFU/mL) or the combination treatment for 24 
hours, tumor cell apoptosis and tumor immune microen-
vironment were analyzed by flow cytometry.

Tumor-bearing mouse models
Female 6-week-old to 8-week-old Balb/c mice were 
purchased from Hubei Province Center for Disease 
Control and Prevention (Wuhan, China). Female 
6-week-old to 8-week-old C57BL/6 mice were purchased 
from Beijing Vital River Laboratory Animal Technology 
Co (Beijing, China). All mice were housed in a specific 
pathogen-free environment at a constant temperature 
(22°C±3°C), with a 12-hour light/dark cycle and fed adap-
tively for 1 week after arrival. During the experiments, all 
mice received the humane care and had free access to 
water and the maintenance diet.

In melanoma model, mice were inoculated subcutane-
ously with injections of 2×105 B16F10 tumor cells into their 
right flanks. In murine CRC model, mice were challenged 
subcutaneously with 5×105 CT26 tumor cells instead. Mice 
in each model were randomly divided into four groups 
(n=6). For the AKK group, each mouse was treated with an 
oral administration of 1×108 colony-forming units (CFU) 
(suspended in 200 µL of saline) every 3 days on the day of 
tumor inoculation and the treatment lasted for 23 days in 
melanoma model and 25 days in CRC model, respectively. 
For the IL-2 group, mice were intravenously injected with 
IL-2 at a dose of 2.5 µg/kg every 3 days for four times. 
For the combination therapy group, mice were treated 
with IL-2 along with AKK as described above, respectively. 
For the control group, 200 µL of saline was administrated 
to mice by oral gavage or intravenous injection. Tumor 
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volume and body weight were recorded every 3 days. 
The length (L) and width (W) of tumor were measured 
every 3 days with a digital caliper and tumor volume was 
calculated as L×W2×0.5. When the tumor volume reached 
about 2000 mm3, mice were sacrificed according to the 
guidelines for animal care. Tumors were isolated and 
weighed. In addition, fundus vein blood samples were 
collected for further study. Fecal samples were collected, 
snap frozen in sterile microtube immediately and stored 
at −80°C for subsequent analysis.

Statistical analysis
All values are presented as mean±SD. Statistical analyses 
were carried out using the GraphPad Prism software 
V.6.0. Comparison between two groups was performed 
using unpaired two-tailed Student’s t-test. One-way anal-
ysis of variance was used for comparison of more than two 
groups. Values with p<0.05 are considered significant.

Additional material and methods
Other detailed materials and methods can be found in 
online supplemental information.

RESULTS
Therapeutic efficacy of IL-2 combining with AKK in CRC 
patient-derived ex vivo tumor tissues
Patients with CRC receiving tumor-removal surgery were 
recruited in this study. The clinical characteristics of the 
CRC patients are shown in online supplemental table 
S1. The fresh tumor tissues along with tumor-draining 
lymph nodes from each patient were collected during 
the surgery. The isolated tumor tissues were immediately 
digested and filtered into single cell suspensions and then 
received different treatments (figure  2A). Combined 
treatment of IL-2 and AKK resulted in a significant 
higher rate of apoptosis tumor cells than either IL-2 or 
AKK treatment alone (figure 2B,F). Meanwhile, to inves-
tigate whether the tumor suppressive effect was immune 
response mediated, tumor-infiltrating lymphocytes were 
harvested and analyzed by flow cytometry after different 
treatments. Results showed that AKK treatment alone or 
in combination with IL-2 increased the ratio of CD8+/
CD4+ in CD3+ T cells from tumor-infiltrating lymphocytes, 
while IL-2 treatment alone did not show obvious differ-
ence compared with the phosphate-buffered saline (PBS)

Figure 1  Schematic illustration of the combined treatment of IL-2 and AKK in tumor suppression. AKK restores the 
therapeutic efficacy of IL-2 to trigger a stronger antitumor immune response, which is initiated from the activation of TLR2 
signaling pathway via its outer membrane protein Amuc. Moreover, AKK improves the integrity of intestinal barrier and gut 
microbiota homeostasis in IL-2-treated mice, probably due to the crosstalk between AKK and gut commensal microbiota. AKK, 
Akkermansia muciniphila; CTL, cytotoxic T lymphocyte; DC, dendritic cell; IL-2, interleukin 2; TLR, toll-like receptor.
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Figure 2  Effects of combination treatment of IL-2 and AKK in ex vivo tumor tissues isolated from patients with CRC. Tumor 
tissues were dissociated into small pieces, digested and filtrated to generate single-cell suspensions. The cell suspensions 
were treated with AKK and IL-2 in combination or individually. (A) Schematic illustration of combination treatment of IL-2 and 
AKK in CRC patient-derived ex vivo tumor tissues. (B) Tumor cells were collected and stained with FITC-conjugated Annexin-V 
and PI for apoptosis detection by flow cytometry. (C–E) Representative flow cytometry analysis of CD8+/CD4+ ratio in CD3+ T 
cells (C), activated DCs (D) and cytotoxic effector T cells (E) in tumor-infiltrating lymphocytes isolated from patients with CRC. 
(F–I) Percentage of apoptosis tumor cells among different groups (F), ratio of CD8+/CD4+ in CD3+ T cells (G), CD80+ CD86+ 
in CD11c+ cells (H) and IFN-γ+ CD8+ in CD3+ T cells (I). All data are shown as mean±SD (n=3) (**p<0.01). AKK, Akkermansia 
muciniphila; APC, allophycocyanin; CRC, colorectal cancer; CTL, cytotoxic T lymphocyte; DC, dendritic cell; FITC, fluorescein 
isothiocyanate; IFN, interferon; IL-2, interleukin-2; PBS, phosphate-buffered saline; PE-PI, phycoerythrin-propidium iodide.
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treated control (figure 2C,G). Moreover, compared with 
the single treatment groups, the combination treatment 
of IL-2 and AKK stimulated the maturation of dendritic 
cells (DCs) and the activation of cytotoxic T lymphocytes 
(CTLs) more effectively, as evidenced by a higher propor-
tion of CD80+ CD86+ in CD11c+ cells (figure 2D,H) and 
IFN-γ+ CD8+ in CD3+ T cells (figure  2E,I) recruited in 
tumor-draining lymph nodes. Collectively, these findings 
suggest that the combination treatment of IL-2 and AKK 
elicits potent antitumor immune response and promotes 
tumor cell apoptosis.

Therapeutic response of combination treatment of IL-2 and 
AKK in tumor-bearing mice
Based on the ex vivo experiments on CRC patient-derived 
tumor tissues, we wondered whether systemic IL-2 

treatment combining with oral administration of AKK 
can also trigger tumor regression in vivo. The antitumor 
efficacy of combination therapy was evaluated in CT26 
(figure 3A) and B16F10 (figure 3C) tumor-bearing mice 
models. Single treatment with IL-2 showed moderate ther-
apeutic performance compared with the saline-treated 
controls, while pretreatment with AKK could significantly 
slow down the tumor progression. Notably, combined 
treatment of IL-2 and AKK further prolonged the survival 
of the tumor-bearing mice compared with IL-2 treatment 
alone or saline-treated control (figure  3B,D). Consis-
tently, the combined treatment resulted in smaller tumor 
size and lower weights of the excised tumors (figure 3E,F 
and online supplemental figure S1). H&E, ki67 and 
TUNEL staining of the tumor tissue slices showed that the 

Figure 3  Antitumor efficacy of combination treatment of IL-2 and AKK in CT26 and B16F10 tumor-bearing mice. (A,C) Tumor 
growth in CT26 (A) and B16F10 (C) tumor-bearing mice (n=6). (B,D) Kaplan-Meier survival rate of CT26 (B) and B16F10 (D) 
tumor-bearing mice after different treatments (n=8). (E,F) Tumor weight in CT26 tumor-bearing mice (E) and B16F10 tumor-
bearing mice (F) at the end of the experiment (n=6). All data are shown as mean±SD (*p<0.05, **p<0.01). AKK, Akkermansia 
muciniphila; IL-2, interleukin-2.

https://dx.doi.org/10.1136/jitc-2020-000973
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combined therapy induced more necrosis, less cell prolif-
eration and more cell apoptosis compared with the single 
treatments with IL-2 or AKK (online supplemental figures 
S2–S5). Together, these results suggest that combination 
with the treatment of AKK enhances the antitumor effi-
cacy of IL-2 in tumor-bearing mice.

Alterations of tumor immune microenvironment by 
combination treatment of IL-2 and AKK
Tumor-infiltrating lymphocytes were harvested from 
different groups of sacrificed tumor-bearing mice and 
were analyzed by flow cytometry. The combination treat-
ment could effectively recruit a higher proportion of CTLs 
in tumor-draining lymph nodes compared with the IL-2 
treatment alone (figure  4A,C and online supplemental 
figure S6A). Moreover, administration with AKK alone or 
in combination with IL-2 significantly decreased the ratio 
of Tregs in the tumor-draining lymph nodes, while single 
treatment with IL-2 did not show an obvious inhibitory 
effect on Tregs (figure  4B,D and online supplemental 
figure S6B). Importantly, production of proinflammatory 
cytokines was also induced with the combined treatment, 
as demonstrated by the significantly elevated levels of 
IFN-γ and IL-2 in tumor tissues as well as tumor necrosis 
factor-α (TNF-α) levels in the serum (figure 4E,F,G and 
online supplemental figure S6C,D). Besides, the immu-
noinhibitory cytokines of transforming growth factor-β 
(TGF-β) in the serum were reduced after combined AKK 
and IL-2 therapy (figure 4H).

The immunosuppressive tumor microenvironment can 
also be established by tumor-repopulating cells.22 Targeting 
these tumorigenic cells will relieve tumor immunosuppres-
sion and improve antitumor immune responses.23 In this 
study, the proportion of side population cells in the tumor 
tissues was analyzed by flow cytometry. Combined treat-
ment of IL-2 and AKK significantly reduced the proportion 
of side population cells compared with single treatment 
groups, suggesting an attenuated tumor-repopulating cell-
like potency (figure  4I and online supplemental figure 
S8A,C). Besides, single cell suspensions prepared from 
tumor tissues of CT26 or B16F10 tumor-bearing mice 
were seeded in soft 3D fibrin gels (stiffness: 90 Pa) and 
grown for 5 days, respectively. During spheroid formation, 
tumor cells derived from the combined treatment group 
resulted in significantly lower colony number and colony 
size compared with those from the saline-treated controls 
or the single treatment groups (figure  4J,K and online 
supplemental figures S7, S8B,D,E). It was also found 
that combined treatment with IL-2 and AKK significantly 
reduced the proportion of CD133+ cell in tumor tissues 
compared with the single treatment groups (online supple-
mental figures S9,S10). These results indicate that the 
tumor stem cell-like potency is weakened by the combined 
treatment with IL-2 and AKK in tumor-bearing mice.

Involvement of AKK-derived outer membrane protein in 
mediating antitumor immune response
We next explored the possible mechanism underlying the 
immune-mediated antitumor effects of AKK. It was found 

that pasteurized AKK could still promote tumor regres-
sion in subcutaneous CRC and melanoma mouse model 
(figure 5A and online supplemental figure S11). Besides, 
the culture supernatants of AKK showed negligible tumor 
inhibition efficacy, suggesting that the antitumor effects 
of AKK may not be mediated by AKK-derived metabolites 
(figure 5B and online supplemental figure S11). Conse-
quently, we expressed and purified one of the most abun-
dant outer membrane protein of AKK, here named Amuc 
(online supplemental figure S12) which is involved in 
the crosstalk with the host immune microenvironment.24 
Intriguingly, oral administration of Amuc also significantly 
improved the therapeutic efficacy of IL-2 against tumor 
growth (figure 5C and online supplemental figure S13). 
In parallel, we found that the tumor suppression efficacy 
of Amuc could be blocked by the Amuc-specific antibody 
(online supplemental figure S14). To further investigate 
the contribution of Amuc in the antitumor effects of AKK, 
AKK was pretreated with the Amuc-specific antibody to 
block Amuc prior to oral administration to the tumor-
bearing mice. Results showed that the antibody treatment 
largely impaired the tumor suppression efficacy of AKK, 
suggesting that Amuc played an important role in AKK-
induced tumor suppression (figure 5D).

In vitro studies suggest that Amuc has no direct effect 
on the viability, apoptosis and cell cycle of CT26 or B16F10 
tumor cells (online supplemental figures S15, S16). 
Instead, the antitumor efficacy of Amuc probably derived 
from stimulation of the systemic antitumor immune 
response. To testify this assumption, tumor-infiltrating 
lymphocytes from tumor-bearing mice receiving treat-
ment with Amuc alone or in combination with IL-2 
were analyzed by flow cytometry. Results showed that 
Amuc increased the proportion of CTLs but decreased 
the proportion of Tregs in tumor immune microenvi-
ronment. The combination with IL-2 further enhanced 
the effects of Amuc in regulating CTLs or Tregs levels 
(figure 5E–H and online supplemental figure S17). The 
effect of Amuc in tumor-bearing mice is consistent with 
the results of AKK in the same tumor-bearing mouse 
models (figure 4A–D and online supplemental figure S6).

Stimulation of antitumor immune responses by Amuc via TLR2 
signaling pathway
To gain better insight into the underlying mechanisms 
of Amuc-mediated tumor-specific immune response, 
transcriptomics sequencing was performed on the 
ex vivo Amuc-treated tumor-infiltrating lymphocytes. 
Then 3D-principal coordinate analysis (3D-PCoA) was 
conducted by using the transcriptome data (online 
supplemental figures S18, S19). The results showed that 
the gene expression profile of the Amuc-treated group 
was clearly separated from that of the PBS-treated, indi-
cating that the transcriptome reprogramming occurred 
in tumor-infiltrating lymphocytes in response to Amuc 
treatment (figure  6A and online supplemental figure 
S20). Subsequently, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis was 
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Figure 4  Alterations of tumor immune microenvironment in CT26 tumor-bearing mice receiving combination therapy of IL-2 
and AKK. (A) Representative flow cytometry analysis of CTLs in tumor-draining lymph nodes. (B) Representative flow cytometry 
analysis of Tregs in tumor-draining lymph nodes. (C, D) Proportions of IFN-γ+ CD8+ in CD3+ T cells (C) and Foxp3+ CD25+ in 
CD4+ T cells (D). (E–H) ELISA measurement of IFN-γ (E) and IL-2 (F) in the homogenates of tumor tissues. ELISA measurement 
of TNF-α (G) and TGF-β (H) in the serum. (I) Percentage of side population cells in tumor tissues of B16F10 tumor-bearing mice 
at the end of tumor growth inhibition experiments. (J, K) Relative colony size (J) and number (K) of tumor spheroids on the 
fifth day after the tumor cells were seeded into the soft 3D fibrin gels. The tumor cells were collected and digested from tumor 
tissues of CT26 tumor-bearing mice receiving different treatments. All data are shown as mean±SD (n=6) (*p<0.05, **p<0.01). 
AKK, Akkermansia muciniphila; APC, allophycocyanin; IFN, interferon; IL-2, interleukin-2; TGF-β, transforming growth factor-β; 
TNF-α, tumor necrosis factor-α.
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performed on the identified differentially expressed 
genes. The 10 most significantly enriched pathways 
were shown in figure  6B. Notably, the pathways of T 

helper cell differentiation, T cell receptor signaling, 
toll-like receptor (TLR) signaling and nuclear factor-κB 
(NF-κB) signaling pathway were clearly enriched in the 

Figure 5  Antitumor effects of Amuc and its combination with IL-2 in CT26 tumor-bearing mice. (A) Tumor growth in mice 
treated with the pasteurized AKK. (B) Tumor growth in mice treated with the culture supernatant of AKK. (C) Tumor growth in 
mice treated with IL-2 and Amuc. (D) Tumor growth in mice treated with IL-2 and AKK bound with Amuc-specific antibody. 
(E) Proportions of IFN-γ+ CD8+ in CD3+ T cells in tumor-draining lymph nodes. (F) Proportions of Foxp3+ CD25+ in CD4+ T 
cells in tumor-draining lymph nodes. (G) Representative flow cytometry analysis of the CTLs in tumor-draining lymph nodes. 
(H) Representative flow cytometry analysis of Tregs in tumor-draining lymph nodes. All data are shown as mean±SD (n=6) 
(*p<0.05, **p<0.01). AKK, Akkermansia muciniphila; APC, allophycocyanin; CTL, cytotoxic T lymphocyte; IFN, interferon; IL-2, 
interleukin-2.
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alteration of expressed genes induced by Amuc treat-
ment (figure  6B). Furthermore, gene ontology (GO) 
enrichment analysis (figure  6C) showed that these 
differential genes were associated with the regulation 
of immune response, immune response-regulating 

signaling pathway, the regulation of T cell activation, 
TLR signaling pathway, and so on. These results indi-
cate that the interaction between immune cells and 
Amuc may contribute to the Amuc-mediated antitumor 
efficacy.

Figure 6  Mechanism study of Amuc in inducing antitumor-specific immune responses. (A–C) The involvement of immune 
responses in the tumor-infiltrating lymphocytes treated with Amuc. (A) 3D-principal coordinate analysis (3D-PCoA) analysis 
of the gene expression profiles. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the 
identified differentially expressed genes. (C) Gene ontology (GO) enrichment analysis of the identified differentially expressed 
genes involved in the immune functions. (D–G) The involvement of TLR2 pathway in the antitumor effects of Amuc in tumor-
bearing mice, BLP acts as a TLR1/TLR2 agonist while CU-CPT22 acts as a TLR1/TLR2 antagonist. (D) Tumor growth under 
different treatment in CT26 tumor-bearing mice (n=6). (E) The proportions of IFN-γ+ CD8+ in CD3+ T cells in tumor-draining lymph 
nodes. (F) The proportions of Foxp3+ CD25+ in CD4+ T cells in tumor-draining lymph nodes. (G) The proportions of CD11c+ 
MHC-II+ cells in tumor-draining lymph nodes. All data are shown as mean±SD (*p<0.05, **p<0.01). BLP, bacterial lipoprotein; 
ECM, extracellular matrix; FDR, false discovery rate; IFN, interferon; MHC, major histocompatibility complex; NF-κB, nuclear 
factor-κB; PBS, phosphate-buffered saline; TLR2, toll-like receptor 2.
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Previous reports revealed that AKK specifically activated 
TLR2-expressing cells partly via Amuc.24 25 The results of 
dual-luciferase reporter gene assay in TLR2-expressing 
HEK 293 T cells confirmed that Amuc activated the TLR2 
pathway in a manner similar with AKK (online supple-
mental figure S21). To further explore the proposed 
mechanism of Amuc in regulating antitumor immune 
response in vivo, a synthetic bacterial lipoprotein (BLP, 
a TLR1/TLR2 agonist) and CU-CPT22 (a TLR1/TLR2 
antagonist) were administrated to the tumor-bearing mice 
as a positive control and a negative control, respectively.26 
Amuc treatment generated antitumor effects similar with 
BLP treatment in tumor-bearing mice, and its combina-
tion with CU-CPT22 treatment resulted in impaired anti-
tumor effects, suggesting that Amuc induces the tumor 
regression partly through TLR2 pathway (figure 6D and 
online supplemental figure S22). Notably, the alterations 
of the tumor microenvironment by Amuc were also regu-
lated through the TLR2 pathway (figure 6E–G and online 
supplemental figure S23). TLR2 is also expressed on the 
surface of DCs.27 28 DCs are potent professional antigen-
presenting cells that can prime naive CD8+ cells to induce 
the antigen-specific cytotoxic T cells.28 The ex vivo immu-
nostimulatory experiment showed that bone marrow-
derived dendritic cells were activated by Amuc treatment 
probably through TLR2 pathway (online supplemental 
figure S24).

Enhancement of AKK on intestinal barrier integrity and gut 
microbiota homeostasis in the context of systemic IL-2 treatment
Combined treatment with IL-2 and AKK neither induced 
obvious body weight loss nor impaired liver function and 
white blood cell in B16F10 and CT26 tumor-bearing mice 
(online supplemental figure S25). In addition, neither 
morphological nor pathological damage is observed in 
H&E staining of the major tissues among each group 
(online supplemental figures S26, S27), suggesting that 
this combination therapy did not cause obvious toxicity 
in normal tissues. Histopathological analysis of intestine 
samples showed that IL-2 treatment exerted a signifi-
cant adverse influence on gastrointestinal tract. As illus-
trated by H&E and periodic acid Schiff (PAS) staining, 
IL-2 treatment resulted in fewer intact intestinal villi and 
goblet cells, which indicated the damage of the intestinal 
mucosal barrier (figure  7A). In mice treated with IL-2, 
AKK supplementation was able to maintain intestinal 
morphology, thereby providing an intact mucosal barrier 
against infection and colitis.

Changes in the structure of the gut microbiota were 
visualized by 3D- PCoA analysis, revealing that the overall 
bacteria community of the combined treatment group 
gradually deviated from the saline treatment or IL-2 treat-
ment alone (figure 7B). Oral administration of AKK also 
increased the richness of gut microbiota (figure  7C,D) 
in the IL-2-treated tumor-bearing mice. Moreover, the 
relative abundance of microbial community at genus 
level was changed by AKK treatment in the context of 
IL-2-based immunotherapy (online supplemental figure 

S28A). AKK supplementation dramatically increased the 
relative abundance of Akkermansia, Allstipes and Lactoba-
cillus in IL-2-treated tumor-bearing mice. Besides, the 
correlations between Akkermansia and the level of tumor 
infiltration CTLs or Tregs (online supplemental figure 
S28B,C) were also testified, indicating that the relative 
abundance of AKK was in a positive correlation with the 
antitumor immune responses but in a negative correla-
tion with immunosuppressive Treg responses.

DISCUSSION
There has been increasing research focusing on the inter-
action between the intrinsic immunological capacity and 
tumor cells in the tumor microenvironment.29 Immuno-
therapies, including immune checkpoint blockades and 
IL-2, boost antitumor-specific immune responses to fight 
against cancer.9 30 Meanwhile, gut commensal bacteria 
has been proven to play important roles in modulating 
host immune functions and influencing the response 
to cancer immunotherapies among patients.31 32 In our 
previous works and others, improved anticancer efficien-
cies have been demonstrated by combined administration 
of immune therapeutics including checkpoint block-
ades or TGF-β inhibitors with commensal probiotics.33 34 
Because there are huge varieties of commensal bacteria 
in the intestine and different kinds of immune thera-
peutics, their relationship in cancer treatment is still far 
from clarified.35 Furthermore, the molecular mechanism 
underlying such combination has rarely been studied.21 
Therefore, in the present study, the antitumor effect of 
IL-2 combined with AKK was investigated in ex vivo tumor 
tissues from patients with CRC and tumor-bearing mouse 
models.

Cytokines are small glycoproteins binding to cell 
surface receptors to regulate the development and func-
tion of immune cells and serve as potential therapeutic 
agents in cancer treatment.36 IL-2 is a well-known immu-
nostimulatory cytokine, which is identified as ‘T-cell 
growth factor’ and has revolutionized the fields of basic 
immunology research and cancer immunotherapy.10 37 
However, due to the diversity of the targeted cells, there 
is always a trade-off between therapeutic efficiency and 
adverse effects in the context of IL-2-based treatment.8 38 
In addition, patients undergoing IL-2 therapy showed 
limited efficacy due to the insufficient induction of CTLs 
and the expansion of immunosuppressive Tregs in some 
cases.10 37 We found that IL-2 increased the proportion of 
CTLs, but showed limited effect on immunosuppressive 
Treg cells in either ex vivo tumor tissues from patients 
with CRC or tumor-bearing mice. These results were in 
line with other previous findings.39 40 Thus, combination 
with other therapeutic approaches is necessary to further 
improve the efficacy of IL-2.

In the present study, oral administration of AKK 
alone induced tumor shrinkage and prolonged the 
median survival compared with IL-2 injection alone in 
tumor-bearing mice, which resulted from eliciting the 
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antitumor immune response rather than directly killing 
the tumor cells (online supplemental figure S29). In 
particular, it was found that preadministration with 
AKK alone recruited a higher proportion of CTLs and 
produced a higher level of IFN-γ in tumor mass as well 
as TNF-α level in the serum in tumor-bearing mice, 
which were consistent with other studies.41 Meanwhile, 
AKK treatment could also effectively decrease the ratio 
of Treg cells in tumor microenvironment and reduce 
the level of immunosuppressive cytokine TGF-β in the 
serum. More importantly, IL-2 treatment in combination 

with AKK elicited stronger efficacy in regulating 
Tregs or TGF-β level compared with single treatments 
(figure 4D,H). These synergistic effects partly contribute 
to the enhanced antitumor immune responses of the 
combined therapy. These findings indicate the poten-
tial of AKK supplementation as an adjuvant strategy to 
boost the therapeutic response to IL-2. Our results are 
consistent with the accumulating evidence that AKK is 
associated with favorable antitumor immmunosurveil-
lance and thereby contributes to the therapeutic efficacy 

Figure 7  Oral administration of AKK improved gut barrier function and commensal microbiota homeostasis under 
IL-2 treatment in tumor-bearing mice. (A) Representative images of H&E and AB-PAS staining of the colon tissues and 
immunofluorescence staining of the mucus in the small intestine. (B) 3D-Principal coordinate analysis (3D- PCoA) of fecal 
samples (Bray-Curtis distances), followed by Adonis test (*p<0.05). (C) Observed richness (Sobs) index. (D) Shannon diversity 
index. All data are shown as mean±SD (n=6) (*p<0.05, **p<0.01). AB-PAS, alcian blue-periodic acid Schiff; AKK, Akkermansia 
muciniphila; DAPI, 4’,6-diamidino-2-phenylindole; IL-2, interleukin 2; OTU, operational taxonomic unit.

https://dx.doi.org/10.1136/jitc-2020-000973
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of tumor immunotherapies in both preclinical tumor 
models and patients with cancer.12 13 21

In addition to the alterations of vascular permeability, 
digestive symptoms such as diarrhea and vomiting some-
times emerged in patients receiving IL-2 treatment.38 39 
In our present study, colonic tissues from the IL-2-treated 
mice showed significant epithelial injury and mucus layer 
depletion compared with the tumor-bearing control. 
Moreover, IL-2 treatment disturbed the intestinal homeo-
stasis. Intestinal mucus is secreted by intestinal goblet 
cells and plays an important role in maintaining intes-
tinal mucosal barrier and resisting invasion of harmful 
substances.16 AKK has been proven to stimulate host 
mucin production and acts as the gatekeeper of the 
mucosa to strengthen the intestinal barrier function.18 20 
Our results also revealed that oral administration of AKK 
could protect the IL-2-treated tumor-bearing mice from 
mucus layer loss. Besides, we used the strain-specific 
primer through PCR-based detection system to detect the 
presence of AKK in tumor-bearing mice after oral admin-
istration (online supplemental figures S30, S31). Results 
showed that the abundance of AKK was significantly 
enriched in both the fecal and the intestinal samples 
instead of tumor tissues, which was consistent with the 
results of 16S rRNA gene sequencing. Oral administra-
tion of AKK in the context of IL-2 systemic injection 
reflected an altered and enriched microbial community 
diversity, which were identified as the responsible modu-
lator positively associated with the enhanced antitumor-
specific immune response.

Despite the gradually recognized roles of AKK in anti-
tumor immunosurveillance and its contribution to the 
therapeutic efficacy of tumor immunotherapies,1 13 the 
exact mechanism behind tumor regression and immune 
surveillance elicited by AKK is still far from elucidated. 
Due to the oxygen tolerance of AKK under ex vivo exper-
iment conditions (online supplemental figure S32) and 
the maintained antitumor immune responses elicited 
by pasteurized AKK (figure  5A), it is hypothesized that 
the immune responses may partly mediate by its extra-
cellular proteins with unique antigenic epitopes. In 
previous studies, the outer membrane protein of AKK 
contributed to the effects of AKK in controlling body 
weight, preventing obesity and the associated metabolic 
disorders.20 24 25 Intriguingly, our study revealed that the 
antitumor immune response induced by AKK was closely 
related to its outer membrane protein, Amuc. Stimu-
lating antitumor immune response rather than directly 
killing tumor cells was involved in the tumor inhibitory 
effect of Amuc. Besides, IL-2 treatment in combina-
tion with Amuc also triggered better tumor suppression 
compared with single treatment in both tumor-bearing 
mice models, which is consistent with the combined treat-
ment of IL-2 and AKK. Due to the paralleled antitumor 
effect between AKK and Amuc, further exploration of the 
potential targets of Amuc helps to elucidate the molec-
ular mechanism of AKK in tumor regression. Through 
RNA-sequencing analysis, we found that Amuc was closely 

related to T cell-mediated antitumor immune response, 
particularly by activation of TLR signal and NF-κB 
signaling pathways. Mounting evidences confirmed that 
certain TLR agonists were able to delay tumor growth 
through remodeling CTLs and Tregs function in cancer 
immunotherapy.42 43 Here, in tumor-bearing mice, it was 
first found that tumor suppression efficacy of Amuc was 
partly mediated through TLR2 signaling pathway, which 
is consistent with other reports that activation of TLR2 
was capable of remodeling tumor immune microenviron-
ment and, in turn, inducing significant tumor shrink.44–48 
In addition, our results are also in line with the previous 
studies that Amuc could specially stimulate ex vivo TLR2-
expressing cells to prevent the development of obesity 
and type 2 diabetes.24

As an active part of AKK to produce antitumor effects, 
Amuc can also be used as a potential adjuvant for cancer 
immunotherapy. In addition to oral administration, 
in situ injection of Amuc resulted in significant tumor 
regression (online supplemental figure S33) without 
significant body weight loss (online supplemental figure 
S34) in both tumor-bearing mice. Furthermore, abscopal 
effects were induced by local injection of Amuc (online 
supplemental figure S35), indicating that the systemic 
tumor-specific immune responses were involved under 
Amuc treatment. Therefore, Amuc, delivered by either 
oral or parenteral route, can be used as a potential adju-
vant for cancer immunotherapy and worth further devel-
opment in clinical translational research.

The challenges ahead should be noted that the anti-
tumor immune response of AKK may follow other ways 
beyond Amuc involved and TLR2 mediated. Besides, 
there is still a need for further research and exploration 
on the roles of other commensal bacteria in the context 
of IL-2-based immunotherapy. Therefore, devoting more 
efforts to exploring the interindividual heterogeneity of 
microbiota community in preclinical models and clin-
ical practice would provide new insights into cancer 
immunotherapy.

CONCLUSION
In summary, our results provide evidences that the 
specific commensal strain AKK was able to reinforce 
the therapeutic efficacy of IL-2-based immunotherapy. 
Combined treatment with IL-2 and AKK could generate 
a better tumor control, which was accompanied by 
recruiting more tumor-specific CTLs and decreasing 
immunosuppressive Tregs within the tumor microenvi-
ronment. The antitumor immune response induced by 
AKK was likely attributed to its outer membrane protein 
Amuc through activating TLR2 signaling and thus 
acquired effective tumor regression. Hence, our find-
ings provide a more comprehensive insights to restore 
the efficacy of IL-2-based immunotherapy through 
precisely manipulating the gut microbiota among 
patients with cancer.
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