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Abstract

Background:  Patients with inflammatory bowel disease [IBD] are considered immunosuppressed, 
but do not seem more vulnerable for COVID-19. Nevertheless, intestinal inflammation has 
shown to be an important risk factor for SARS-CoV-2 infection and prognosis. Therefore, we 
investigated the role of intestinal inflammation on the viral intestinal entry mechanisms, 
including ACE2, in IBD.
Methods:  We collected inflamed and uninflamed mucosal biopsies from Crohn’s disease [CD] 
[n = 193] and ulcerative colitis [UC] [n = 158] patients, and from 51 matched non-IBD controls for 
RNA sequencing, differential gene expression, and co-expression analysis. Organoids from UC 
patients were subjected to an inflammatory mix and processed for RNA sequencing. Transmural 
ileal biopsies were processed for single-cell [sc] sequencing. Publicly available colonic sc-RNA 
sequencing data, and microarrays from tissue pre/post anti-tumour necrosis factor [TNF] therapy, 
were analysed.
Results.  In inflamed CD ileum, ACE2 was significantly decreased compared with control ileum 
[p = 4.6E-07], whereas colonic ACE2 was higher in inflamed colon of CD/UC compared with control 
[p = 8.3E-03; p = 1.9E-03]. Sc-RNA sequencing confirmed this ACE2 dysregulation and exclusive 
epithelial ACE2 expression. Network analyses highlighted HNF4A as key regulator of ileal ACE2, 
and pro-inflammatory cytokines and interferon regulating factors regulated colonic ACE2. 
Inflammatory stimuli upregulated ACE2 in UC organoids [p = 1.7E-02], but not in non-IBD controls 
[p = 9.1E-01]. Anti-TNF therapy restored colonic ACE2 regulation in responders.
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Conclusions:  Intestinal inflammation alters SARS-CoV-2 coreceptors in the intestine, with opposing 
dysregulations in ileum and colon. HNF4A, an IBD susceptibility gene, seems an important 
upstream regulator of ACE2 in ileum, whereas interferon signalling might dominate in colon.

Key Words:  COVID-19; ACE2; TMPRSS2; inflammatory bowel diseases; SARS-CoV-2; HNF4A; interferon; organoids; 
transcriptomics; single cell; intestinal inflammation

1.   Introduction

Since the novel betacoronavirus SARS-CoV-2 was first reported in 
the province of Wuhan, China, at the end of 2019, the virus has 
spread worldwide. As of the 19 of August 2020, SARS-CoV-2 has 
caused more than 21.9 million infections, including 776 000 death 
globally.1 Despite being primarily a respiratory virus, coronavirus 
disease 2019 [COVID-19] can also present with non-respiratory 
signs, including digestive symptoms such as diarrhoea, nausea, and 
ageusia.2–4

Although it is thought that SARS-CoV-2 primarily infects the 
lungs with transmission via the respiratory route, the gastrointes-
tinal tract may be an alternative viral target organ.3,5,6 Indeed, the 
SARS-CoV-2 receptor angiotensin converting enzyme 2 [ACE2] is 
highly expressed on differentiated enterocytes, with strong induc-
tion of generic viral response programmes upon viral binding.5–7 
The cellular entry of coronaviruses depends on the binding of 
the spike [S] protein to a specific receptor, followed by an S pro-
tein priming by proteases, with key players ACE2 [receptor for 
the S protein] and TMPRSS2 [protease] in case of COVID-19.7–9 
Furthermore, based on protein crystal structures, data predicted 
that the Middle East respiratory syndrome [MERS]-CoV receptor 
dipeptidyl peptidase 4 [DDP4] might act as a candidate binding 
target or co-receptor of SARS-CoV-2.10,11 In line, proteomic studies 
in COVID-19 patients suggested a prognostic role for DDP4.12 
Upon cellular entry in nasal goblet secretory cells, lung type II 
pneumocytes, and ileal absorptive enterocytes, an interferon-
driven mechanism is initiated, including the upregulation of 
ACE2 which further enhances infection.8

Why ACE2, the S protein receptor, is abundantly expressed on 
intestinal epithelium, is not entirely understood. Recent studies 
have addressed the homeostatic role of ACE2 on intestinal epithe-
lial cells demonstrating defective intestinal amino acid absorption 
in ACE2-deficient mice.13 Mechanistically ACE2, independently of 
its role in the renin angiotensin system [RAS], is essential for regu-
lating epithelial tryptophan absorption, expression of antimicro-
bial peptides, and consequently the ecology of the gut microbiome 
promoting homeostasis and preventing intestinal inflammation.14 
Thus, ACE2 regulation could be linked to the pathogenesis of 
IBD, playing a role as modulator of epithelial immune homeo-
static functions.

Individual susceptibility to COVID-19 may correlate with the 
expression of these designated [co]receptors. In this respect, studies 
investigating how inflammation affects ACE2, TMPRSS2, and/or 
DDP4 expression in ileum and colon, are limited and show con-
flicting data in inflammatory bowel disease [IBD].15,16 So far, data 
on COVID-19 in patients with IBD are rather limited,17–21 although 
they suggest that increasing age, a diagnosis of ulcerative colitis 
[UC] (as opposed to Crohn’s disease [CD]), and increasing disease 
activity are linked with a more severe course of COVID-19. In con-
trast, anti-inflammatory IBD therapy has not yet been associated 
with COVID-19 risk. Using a combination of bulk and single-cell 

transcriptomics and organoid cultures, we studied the intestinal ex-
pression of several SARS-CoV-2 co-receptors in the healthy gut and 
in IBD and investigated whether inflammation alters co-receptor 
expression.

2.   Methods

2.1.   Patients
This study was carried out at the University Hospitals Leuven 
[Leuven, Belgium]. All included patients had given written consent 
to participation in the Institutional Review Board approved IBD 
Biobank of University Hospitals Leuven, Belgium [B322201213950/
S53684 and B322201110724/S52544]. Endoscopy-derived [un]in-
flamed mucosal biopsies were obtained cross-sectionally from IBD 
patients requiring colonoscopy during routine care [Supplementary 
Table S1, available as Supplementary data at ECCO-JCC online]. 
Samples from individuals undergoing colonoscopy for polyp detec-
tion were included as controls. Transmural ileal biopsies, derived 
during right hemicolectomy from CD patients and patients with 
colorectal cancer [CRC], were collected and stored in RPMI-1640 
medium on ice until single cell isolation.

2.2.   Organoids
Mucosal biopsies from both uninflamed and macroscopically in-
flamed colon segments [UC only] were processed as reported 
earlier.22–24 In short, crypts isolated as described before23 were em-
bedded in Matrigel [phenol red free, growth factor reduced, Corning, 
NY, USA] diluted by 50% basal medium (DMEM:F12 supple-
mented with 1x GlutaMax, 10 mM HEPES and 100 U/ml penicillin, 
100 µg/ml streptomycin [Gibco, Thermo Fisher Scientific, Waltham, 
Massachusetts, USA]). These organoids were then cultured in human 
expansion medium [basal medium supplemented with growth fac-
tors, as previously described24] for at least 4 weeks. Inflammation 
was then re-induced using an inflammatory mix (100 ng/ml tumour 
necrosis factor alpha [TNF-α], 20  ng/ml IL-1β, 1  μg/ml flagellin) 
over 24 h.22

2.3.   Bulk transcriptomics
Inflamed biopsies were taken at the most affected site at the edge 
of an ulcerative surface, whereas uninflamed biopsies were taken 
randomly in macroscopically unaffected areas. All were stored 
in RNALater buffer [Ambion, Austin, TX, USA] and preserved 
at -80°C. As described previously,25 RNA from biopsies was iso-
lated using the AllPrep DNA/RNA Mini kit [Qiagen, Hilden, 
Germany], and RNA libraries were prepared using the TruSeq 
Stranded mRNA protocol [Illumina, San Diego, USA]. RNA from 
organoids was extracted using the RNeasy Mini Kit [Qiagen] and 
libraries were constructed by the Lexogen QuantSeq 3’ mRNA-
Seq Library Kit FWD [Lexogen, Vienna, Austria].22 All RNA li-
braries were sequenced by the Illumina HiSeq4000 [Illumina, San 
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Diego, CA], with ~10‐20 M reads per biopsy RNA sample and ~3 
M reads per organoid RNA sample. Raw sequencing data were 
aligned to the reference genome [GRCh37] using Hisat2 [ver-
sion 2.1.0] 26 and absolute counts were generated using HTSeq.27 
Counts were normalised for library size, and protein coding genes 
selected [Ensemble hg 19 reference build]28 using the DESeq2 
package.29 A  weighted gene co-expression network [WGCNA] 
was generated30 as described earlier.31,32 The module eigengene 
was defined as the first principal component summarising the 
expression patterns of all genes into a single expression pro-
file within a given module. Genes showing the highest correl-
ation with the module eigengene were referred to as hub genes. 
Pathway and upstream regulator analyses were performed using 
Ingenuity Pathway Analysis [IPA, QIAGEN, Aarhus, Denmark], 
with network visualisation via Cytoscape [v3.8.0].33 Publicly 
available microarray datasets of ileal and colonic biopsies [GEO 
GSE14580, GSE12251, GSE16879] were accessed to investigate 
the effect of anti-TNF therapy on genes of interest.34,35

2.4.   Single-cell transcriptomics
Transmural ileal samples were treated with 1mM DTT and 1 mM 
EDTA in 1x Hank’s balanced salt solution [HBSS], and 1 mM EDTA 
in HBSS at 37°C for 30  min, respectively. Then tissue was trans-
ferred into a sterile gentleMACS C tube [Miltenyi Biotec], and di-
gested with 5.4 U/mL collagenase D [Roche Applied Science], 100 
U/mL DNase I  [Sigma], and 39.6 U/mL dispase II [Gibco] with 
the gentleMACS™ Dissociator [program human_tumor_02.01]. 
Samples were incubated for 30 min at 37°C at 250 rpm. Dissociated 
samples were filtered with 70-µm cell strainers and treated with red 
blood cell lysis buffer [11814389001, Roche]. After centrifugation, 
single-cell suspensions were re-suspended in 0.4% BSA in PBS, and 
were immediately processed with 10 × 3’ v3 GEM kit, and loaded 
on a 10x chromium controller to create Single Cell Gel beads in 
Emulsion [GEM]. A cDNA library was created and assessed using a 
10 × 3’ v3 library kit, and was then sequenced on a NovaSeq 6000 
system [Illumina]. Pre-processing of the samples including alignment 
and counting was performed using Cell Ranger Software from 10x 
[Version: 3.0.2].

Publicly available colonic single-cell RNA sequencing data 
[sc-RNA seq] [Single Cell Portal, SCP 259] were downloaded and 
visualised using the SCP data browser.36 For colonic epithelial single-
cell data, tSNE coordinates and publicly available annotation with 
the data were used for visualisation and analysis.

Annotation of the ileal data was performed using SingleR R 
package, with inbuilt Human Cell Atlas data as reference. Quality 
control, clustering, and dimensionality reduction of sc-RNA seq data 
was performed using Seurat R package [Version 3.1.5].37,38 Data from 
each 10x run were integrated after performing SCTransform on each 
dataset, with percentage of mitochondrial genes set as a parameter to 
be regressed. Single Cell Network Inference [SCENIC] analysis was 
performed using a python implementation of the SCENIC pipeline 
[PySCENIC] [version 0.9.19].39

2.5.   Immunofluorescence staining
Transmural ileal biopsies, obtained during abdominal surgery in 
patients with IBD and CRC, were fixed in 4% formalin and em-
bedded in paraffin, and sections of 5 µm were cut [Translational Cell 
& Tissue Research Laboratory, University Hospitals Leuven, and 
at VIB & KU Leuven Center for Brain & Disease Research]. After 
deparaffinisation, antigen retrieval was done in Tris-EDTA buffer 

[10 mM Tris base, 1 mM EDTA solution, 0.05% Tween 20, pH 9.0] 
at 95°C for 30 min; 1% BSA in PBST [0.1% Tween-20 and 0.5% so-
dium azide] was used to block non-specific binding of detection anti-
bodies and gently permeabilise before ACE2 and Cytokeratin AE1/
AE3 staining. In brief, ACE2 [Polyclonal, Cell Signaling Technology] 
and cytokeratin [IgG1-kappa, clone AE1/AE3, Dako] were applied 
in 1% BSA, followed by donkey anti-rabbit Cy3 [Jackson Immuno 
Research] and donkey anti-mouse Alexa fluor 488 [Invitrogen]. 
Slides were mounted in SlowFade™ Diamond Antifade Mountant 
[Invitrogen], and stored at 4 °C before imaging. Images were ac-
quired using a Zeiss LSM 780 at the Cell and Tissue Imaging Cluster 
[CIC] at KU Leuven.

2.6.   Genetics
All samples were genotyped using the Illumina GSA array. All single 
nucleotide polymorphisms [SNPs] and samples with more than 10% 
missingness rate were removed, as were SNPs with minor allele fre-
quency [MAF] <0].001. Genotypes for rs6017342 [HNF4A] were 
extracted. All steps were performed using PLINK [v1.90b4.9].40

2.7.   Statistical analysis
Statistical analysis was performed using R 3.6.2 [R foundation, 
Vienna, Austria]. Pearson correlation coefficients were computed 
to assess the correlation between individual genes. Multivariate 
regression analysis was performed using the R package ‘lm.beta’. 
Continuous variables on graphs were expressed as median and inter-
quartile range [IQR]. ACE2, DPP4, and TMPRSS2 comparisons 
were done using two-sample t tests or Wilcoxon tests, as appro-
priate; and multiple testing correction was applied (adjusted p [adj. 
p], Benjamini‐Hochberg method).

3.   Results

3.1.   Intestinal ACE2, TMPRSS2, and DPP4 
expression in IBD patients versus non-IBD controls
First, we studied the expression patterns of ACE2, DPP4, and 
TMPRSS2 in ileum and colon biopsies from 351 IBD patients 
[193 CD, 158 UC] and 51 non-IBD controls, based on bulk RNA 
sequencing.

In non-IBD controls, ACE2 and DPP4 expression levels were 
strongly increased in ileum compared with colon 9fold change 
([FC] = 32.0, p = 6.3E-13, adj. p = 1.9E-12; FC = 16.5, p = 6.3E-13, 
adj. p = 1.9E-12) [Figure  1A, B]. In contrast, ileal TMPRSS2 was 
lower compared with colon [FC = -2.9, p = 6.3E-13, adj. p = 1.9E-
12] [Figure 1C].

When turning to tissue from IBD patients, ACE2 and DPP4 
levels in uninflamed IBD ileum were similar to those observed in 
matched control ileum [p = 1.6E-01, adj. p = 2.4E-01; p = 8.0E-
01, adj. p = 8.0E-01] [Figure  1A, B]. TMPRSS2 however, was 
upregulated compared with control ileum [FC = 1.2, p = 3.4E-02, 
adj. p = 1.0E-01] [Figure 1C]. In uninflamed IBD colon, expression 
levels of ACE2, DDP4, and TMPRSS2 did not differ from control 
colon [p = 2.0E-01, adj. p = 6.0E-01; p = 3.3E-01, adj. p = 3.3E-01; 
p = 2.2E-01, adj. p = 3.3E-01] [Figure 1A‐C].

In inflamed CD ileum, ACE2 and DPP4 expression was signifi-
cantly decreased compared with control ileum [FC = -2.8, p = 4.4E-07, 
adj. p = 1.3E-06; FC = -2.5, p = 1.4E-06, adj. p = 2.1E-06] [Figure 1A, 
B]. TMPRSS2 behaved conversely, with a significant upregulation 
in inflamed ileum versus control ileum [FC = 1.4, p = 1.8E-03, adj. 
p = 1.8E-03] [Figure  1C]. At colonic level, ACE2 expression was 
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Figure 1.  Mucosal ACE2, DPP4, and TMPRSS2 in IBD patients and controls. [A] Boxplots of mucosal ACE2 as measured by RNA sequencing [normalised counts]. 
[B] Boxplots of mucosal DPP4 as measured by RNA sequencing [normalised counts]. [C] Boxplots of mucosal TMPRSS2 as measured by RNA sequencing 
[normalised counts]. Significant comparisons [nominal p-values] are highlighted in bold. CD, Crohn’s disease; control, non-IBD controls; IBD, inflammatory 
bowel disease; UC, ulcerative colitis.
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higher in inflamed CD and UC colon than in control colon [FC = 1.4, 
p = 2.5E-02, adj. p = 7.5E-02; FC = 1.4, p = 2.0E-02, adj. p = 6.0E-02, 
respectively] [Figure 1A]. Except for a decrease in DPP4 expression in 
inflamed CD colon versus control colon [FC = 1.3, p = 4.6E-02, adj. 
p = 6.9E-02], no dysregulations were observed for colonic DPP4 and 
TMPRSS2 [p ≤3.4E-01, adj. p ≤3.4E-01] [Figure 1B, C].

Despite ACE2 being X-linked, multivariate analysis did not re-
veal any contribution of sex to mucosal ACE2 expression [p = 5.1E-
01], nor of age [p = 1.4E-01], diagnosis [p = 5.6E-01], or disease 
duration [p = 5.2E-01]. Intestinal ACE2 expression was significantly 
affected by biopsy location [p = 2.5E-34] and inflammatory state 
[p = 4.2E-12] [Supplementary Table S2, available as Supplementary 
data at ECCO-JCC online].

3.2.   Gene co-expression analysis of the ACE2-, 
DPP4-, and TMPRSS2-related networks
To get a better understanding of the biological network of ACE2, 
DPP4, and TMPRSS2, we performed WGCNA on all mucosal 
biopsies.

At ileal level, we identified 18 co-expression modules [clusters] 
ranging in size from 106 to 1465 genes [Supplementary Figure 
S1A, available as Supplementary data at ECCO-JCC online]. One 
module contained both ACE2 and DPP4 [module ‘blue’; 1134 
genes] [Supplementary Table S3, available as Supplementary data 
at ECCO-JCC online]. The strongest correlation with the eigengene 
[ie, the principal component] of this ACE2/DPP4-module was found 
for hub genes MMP5 [r = 0.94, p = 8.6E-74], ZNF664 [r = 0.94, 
p = 3.7E-71] and DPP4 [r = 0.93, p = 1.2E-68] [Supplementary 
Figure S1A]. Moreover, ACE2 also seemed to have a central role 
in this co-expression network with a correlation value of r = 0.86 
[p = 4.6E-45] [Supplementary Figure S1A]. Pathway analysis of the 
ACE2/DPP4-module found enrichment for epithelium-related meta-
bolic pathways such as xenobiotic metabolism signalling, nicotine 
degradation ii, and melatonin degradation [p < 1.0E-08]. Predicted 
upstream analysis (using curated datasets in ingenuity pathway 
analysis [IPA]) highlighted the transcription regulator HNF4A, an 
IBD susceptibility gene, as the most likely upstream regulator of the 
ACE2/DPP4-module [p = 1.2E-11].

TMPRSS2 belonged to a separate module ‘yellow’ [1126 genes] 
with hub gene COA3 [r = 0.92, p = 4.7E-61] [Supplementary Figure 
S1A, Supplementary Table S4, available as Supplementary data at 
ECCO-JCC online]. Genes within this module were mainly related 
to mitochondrial functions [eg. oxidative phosphorylation, mito-
chondrial dysfunction and sirtuin signalling, p < 1.6E-29], and their 
top upstream regulator was again HNF4A [p = 1.5E-27].

At colonic level, 24 co-expression modules were present ranging 
in size from 128 to 2267 genes [Supplementary Figure S1B]. In con-
trast to the ileum, colonic ACE2 and DPP4 were not co-expressed 
[Supplementary Table S3], with ACE2 being part of module ‘green’ 
[797 genes]. Here, ACE2 co-clustered with TMPRSS2. The ACE2-
module with top hub gene TMEM63B [r = 0.89, p = 5.8E-81] did 
not show significant enrichment for specific pathways. Upstream 
analysis of this module ranked TNF and again HNF4A as the top 
regulators [p = 7.7E-06; p = 9.4E-03].

Last, we studied the relationship between mucosal ACE2 and 
HNF4A expression levels. Ileal ACE2 expression strongly correl-
ated with ileal HNF4A expression [r = 0.69, p <2.2E-16], whereas 
colonic levels showed limited correlation [r = 0.2, p = 1.3E-03] 
[Supplementary Figure S2, available as Supplementary data at 
ECCO-JCC online].

3.3.   Single nucleotide polymorphisms in HNF4A 
linked to ACE2 expression in ileum but not in colon
As the expression of ACE2-modules was found to be driven by 
the IBD susceptibility locus, HNF4A, we next studied the genetic 
variability in rs6017342 [ie, the causal IBD variant in this locus41], 
and its relationship with ACE2 and HNF4A expression, both in in-
flamed ileum and in colon. Ileal ACE2 levels were lower in patients 
carrying the HNF4A-AA genotype, compared with patients carrying 
the C-allele, ie, HNF4A-AC or HNF4A-CC genotypes [p = 2.8E-
02] [Figure  2]. Colonic ACE2 expression was independent of the 
HNF4A genotype [p = 6.7E-01].

3.4.   Decrease of ACE2/TMPRSS2 double-positive 
cells in inflamed ileum, but not in colon
ACE2 expression in the gastrointestinal tract is primarily found 
in absorptive enterocytes,8,42 which could indirectly be confirmed 
through the significant correlation [p < 2.2E-16] between mucosal 
ACE2 and several epithelial marker genes [APOA1, SI, FABP6, 
ENPEP] [Supplementary Figure S3, available as Supplementary 
data at ECCO-JCC online]. To further examine the expression of 
genes associated with risk of SARS-CoV-2 infection in IBD patients, 
we employed sc-RNA seq to profile transmural biopsies of [un]in-
flamed regions of resected tissue from six CD patients undergoing 
ileocaecal resection. Unaffected ileal tissue from five patients with 
CRC undergoing right hemicolectomy was used as control. A total 
of 78  722 cells were used for downstream analyses containing a 
similar number of cells from each type of tissue [inflamed CD, un-
inflamed CD, and healthy tissue] [Supplementary Figure S4B, avail-
able as Supplementary data at ECCO-JCC online]; 61 cell clusters 
belonging to epithelial, immune, and stromal cells were obtained 
using unsupervised clustering [Figure  3A; Supplementary Figure 
S4A]. Cell clusters were annotated by correlating the cluster gene 
expression profiles with Human Cell Atlas using SingleR, as previ-
ously described.43 ACE2 expression was found exclusively in epi-
thelial cell clusters [Figure 3B, C], which could also be confirmed 
using immunofluorescence staining [Figure  4]. To define the epi-
thelial cell subtypes expressing ACE2 at deeper resolution, clus-
ters annotated as epithelial cells by SingleR were extracted and 
re-clustered [Figure  3D]. The re-clustered epithelial cell subtypes 
were annotated using a marker panel designed based on previous re-
ports [Supplementary Figure S4C].44 Three enterocyte clusters were 
identified, out of which two clusters co-expressed ACE2, TMPRSS2, 
and DPP4. Most prominent ACE2 expression was observed in the 
ACE2/TMPRSS2 Enterocytes 1 cluster [Figure 3G‐I; Supplementary 
Figure S4D, available as Supplementary data at ECCO-JCC online].

Next, we asked whether ACE2 expression varied across 
ileal tissue in an inflammatory state, as observed in our bulk 
transcriptomic data [Figure 1A]. ACE2 expression and frequency of 
ACE2-positive cells were clearly reduced in ileum of patients with 
active CD, compared with uninflamed or healthy tissue [Figure 3E, 
F; Supplementary Figure S4E]. A  similar reduction of DPP4 ex-
pression was observed in the inflamed samples in the ACE2/
TMPRSS2 Enterocytes 1 and ACE2/TMPRSS2 Enterocytes 2 clus-
ters [Figure 4E]. In linenwith this, reduction of ACE2 expression in 
inflamed ileum compared with healthy tissue was also confirmed 
with confocal imaging [Figure 4].

To define ACE2 expression in healthy and inflamed colon, we 
visualised publicly available colonic sc-RNA seq data containing 
366  650 cells from colonic mucosa obtained in 18 [in]active UC 
patients and 12 healthy individuals [Single Cell Portal, SCP  259] 
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[Supplementary Figure S5A‐C, available as Supplementary data at 
ECCO-JCC online].36 As for the ileum, ACE2 was solely expressed 
in colonic epithelium, mainly in a subset of enterocytes [Figure 5A, 
B; Supplementary Figure S5D]. As in the ileum, the ACE2-positive 
colonic enterocyte cluster co-expressed TMPRSS2 and DPP4 
[Figure 5B, E‐G]. However, in contrast to ileum, colonic ACE2 ex-
pression was mainly restricted to enterocytes isolated from patients 
with active UC, while undetectable in colonic enterocytes isolated 
from the mucosa of healthy subjects [Figure 5C, D; Supplementary 
Figure S5E].

To compare expression and regulation of ACE2 between colon 
and ileum, we performed an integrated analysis of epithelial cells 
from colon and ileum [Supplementary Figure S6A, B, available as 
Supplementary data at ECCO-JCC online]. In colonic ACE2-positive 
epithelial cells, ACE2 expression was lower compared with levels in 
ileal ACE2-positive epithelial cells [Figure 5H]. Furthermore, using 
SCENIC we performed genomic regulatory networks analysis of 
the epithelial cells to identify specific transcription programmes in 
ACE2-expressing enterocytes, both in ileum and colon. As dem-
onstrated using bulk RNA analysis, we found a relatively higher 
HNF4A regulon activation in ileal ACE2-positive cells, compared 
with colonic ACE2 enterocytes [Figure  5I]. Differently, colonic 
ACE2-expressing enterocytes were found to have increased regulon 
activity of interferon-responsive factors, such as IRF6 and IRF7, 
when compared with ileum [Figure 5I].

3.5.   Ileum and colon: different key regulators in 
ACE2-positive cells
We then asked whether particular expression patterns within ACE2-
positive cells depend on the tissue and/or inflammatory state, and 
studied which upstream regulators were linked to these changes. 
When comparing expression profiles of ACE2-positive cells from in-
flamed CD ileum with control ileum, we found 56 differentially ex-
pressed genes [adj. p <0.05, FC >2.0]. Predicted upstream regulators 
of these genes were HNF4A [inhibited, p = 2.3E-04] and IFNγ [ac-
tivated, p = 5.2E-05]. At the colonic level, we identified 54 differen-
tially expressed genes in ACE2-positive cells from inflamed colon, as 
compared with control tissue. TNF, lipopolysaccharides, IFNγ, and 
IL-1β were predicted as top-ranked upstream regulators [activated, 
p ≤1.9E-15].

3.6.   Inflammatory stimuli result in upregulation of 
ACE2 and TMPRSS2 in organoids from IBD patients 
but not from healthy individuals
Because of the clear upregulation of ACE2 in inflamed colonic 
mucosa [Figure  1A] and the prediction of TNF as key regulator 
in ACE2-positive cells, we investigated the effect of an inflamma-
tory stimulus on ACE2 expression in an ex vivo organoid model. 
In organoids derived from controls, inflammatory stimuli did not 
affect ACE2 expression [p = 9.1E-01, adj. p = 9.1E-01] [Figure 6A]. 
Strikingly, in organoids derived from inflamed or uninflamed colonic 
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biopsies from UC patients, addition of an inflammatory stimulus did 
significantly upregulate ACE2 [FC = 2.4, p = 1.7E-02, adj. p = 2.6E-
02; FC = 2.0, p = 2.9E-02, adj. p = 4.4E-02] [Figure 6A]. No signifi-
cant effect on DPP4 expression could be observed [p = 7.4E-02, adj. 
p = 1.0E + 00; p = 7.9E-01, adj. p = 1.0E-00], whereas TMPRSS2 
was significantly upregulated after inflammatory stimulation 
[FC = 2.6, p = 5.1E-14, adj. p = 1.5E-13; FC = 2.8, p = 1.5E-30, adj. 
p = 4.4E-30] [Figure 6B, C].

3.7.   Anti-TNF therapy restores colonic, but not ileal, 
epithelial ACE2 regulation in anti-TNF responders
Given that the ex vivo model clearly confirmed the effect of a pro-
inflammatory mix, including TNF, on epithelial ACE2 expression, 
we subsequently studied the effect of neutralising TNF [through 
administration of infliximab] on intestinal ACE2 expression in IBD 
patients with active endoscopic disease. Paired transcriptomic data, 
generated before first infliximab administration and 4–6 weeks 
after treatment initiation, confirmed a significant downregulation 
of colonic ACE2 in endoscopic remitters, but not in non-remitters 
[p = 1.8E-04, p = 6.5E-01, respectively] [Supplementary Figure S7], 
available as Supplementary data at ECCO-JCC online. In contrast, 
infliximab therapy did not significantly affect ileal ACE2 expres-
sion in remitters and non-remitters [p = 7.8E-02, p = 2.25E-01, 
respectively].

4.   Discussion

Many patients with IBD have long-term exposure to corticosteroids, 
thiopurines, methotrexate, small molecules, and/or biologic agents, 
classifying them as high-risk patients because of their immunosup-
pression. In addition, intestinal inflammation has shown to be an 
important risk factor for SARS-CoV-2 infection and prognosis in 
IBD.17–21 However, emerging evidence now suggests that IBD patients 
do not seem more vulnerable for COVID-19. To reconcile these ob-
servations, we investigated the role of intestinal inflammation on the 
potential viral intestinal entry mechanisms, through bulk and single-
cell transcriptomics, immunofluorescence, and ex vivo organoid cul-
tures in patients with IBD.

In contrast to previous bulk data,15 we observed significant alter-
ations in intestinal ACE2 expression depending on the location and 
inflammatory state, at both tissue and single-cell mRNA levels, as at 
protein level. ACE2 expression was limited exclusively to epithelial 
cells, in both ileum and colon. Hence, ACE2 dysregulation in bulk 
transcriptomics, as a result of massive influx of immunocytes at the 
site of inflammation, could be excluded.

It is suggested that SARS-CoV-2 infects epithelial cells, causing 
cytokine and chemokine release, resulting in acute intestinal inflam-
mation characterised by infiltration of neutrophils, macrophages, 
and T cells,45 with associated shedding of faecal calprotectin and 
increased systemic IL-6 response46 and IFN signallng.8 Similar to 
recent data,16,47,48 we found a significant downregulation of ACE2 
in inflamed ileum and a significant ACE2 upregulation in inflamed 
colon. This opposing effect of inflammation on intestinal ACE2 ex-
pression in small and large intestine was striking, which could be 
attributed—based on sc-RNA data—to different key transcription 
factors active between ileal and colonic ACE2-positive cells.

Being an IBD susceptibility locus,49 epithelial HNF4A plays a 
protective role in IBD by consolidating the epithelial barrier,50 es-
pecially in small intestine.51 HNF4A has also been found as a tran-
scriptional sensor of inflammation,52 plays a key role as transcription 
factor in the regulation of angiotensinogen metabolism,53 and has 

recently been predicted to regulate intestinal ACE2 expression.42 The 
decrease in ACE2 in inflamed ileum does therefore not come as a 
surprise. In individuals carrying the minor AA genotype at the IBD 
HNF4A susceptibility locus, ileal ACE2 expression was even further 
downregulated, without any effect on colonic ACE2. Of note, our 
sc-RNAseq data showing ACE2 downregulation in enterocytes from 
inflamed CD ileum further suggest an intrinsic regulation of ACE2. 
In addition, as we observed significant correlations between entero-
cyte markers and ileal ACE2 as well as an overall decrease in number 
of cells expressing ACE2 in inflamed CD ileum, a loss of enterocytes 
might also explain lower ACE2 levels.

Remarkably, a very recent genome-wide association study 
[GWAS] identified 3p21.31 as a genetic locus associated with 
COVID-19–induced respiratory failure.54 This locus covers a cluster 
of six genes [SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6, and 
XCR1], with the identified risk allele [ie, worse COVID-19 outcome] 
being associated with increased SCL6A20 expression. Strikingly, 
SCL6A20 is known to be regulated by HNF4A.55

Although the colonic ACE2 co-expression cluster in bulk 
tissue was also enriched for HNF4A as upstream transcriptional 
regulator, single-cell data revealed that colonic ACE2 expression 
seems primarily driven by interferon regulator factors. Upstream 
regulating analysis further supported that pro-inflammatory cyto-
kines, including TNF, IFNγ, and IL-1β, contribute to colonic ACE2 
upregulation. Hypothetically, elevated colonic ACE2 levels in pa-
tients with active inflammation might promote viral entry and, 
in theory, could promote COVID-19 disease severity. However, 
functional data are currently lacking to prove this hypothesis. 
Furthermore one could question this hypothesis, as downregulated 
ACE2 in inflamed ileum remains much higher than in normal and 
IBD colon. However, ACE2 expression is the most abundant in the 
small intestine, followed by the large intestine, whereas its expres-
sion is limited in the respiratory system.56–58 Moreover, a recent study 
in human small intestinal organoids observed similar SARS-CoV-2 
infection rates between enterocyte precursors and enterocytes, 
whereas ACE2 expression was ~1000-fold higher in differentiating 
organoids as compared with proliferating organoids. This suggests 
that lower levels of ACE2—as observed in the colon—may be suffi-
cient for viral entry.5

Although there is yet no direct evidence that altered expression 
of intestinal ACE2 directly affects SARS-CoV-2 intestinal entry and 
tropisms to different intestinal sites,59 using ex vivo organoid models we 
confirmed that pro-inflammatory cytokines can upregulate colonic epi-
thelial ACE2 expression in IBD patients, but not in healthy individuals. 
Different genetic susceptibility and/or microbial composition may be 
responsible for the difference in response to inflammatory stimuli ob-
served in controls and in IBD. Indeed, it has already been demonstrated 
that organoids from UC patients maintain some inherent differences as 
compared with non-IBD tissue,22,60 presumably reflecting inherent gen-
etic factors which could result in a more sensitive epithelium.

Being the key example of a complex immune-mediated entity 
where environmental and microbial factors modulate the immune 
response in a genetically susceptible host,61 the differences in ACE2 
expression upon inflammatory stimuli between colon and ileum in 
patients with IBD may also be attributed to differences in the in-
testinal microbiome. Lipopolysaccharides, comprising the wall of 
Gram-negative bacteria, was indeed identified as one of the key 
drivers of the ACE2 gene cluster in colon, but not in ileum. However, 
blind use of antibiotics or probiotics for COVID-19 is not recom-
mended until a better understanding of the effect of SARS-CoV-2 on 
gut microbiota is obtained.62

http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjaa185#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjaa185#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjaa185#supplementary-data
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National and international registries suggest active IBD as a risk 
factor for [complicated] COVID-19.17–21 Adequate disease manage-
ment, by appropriate dampening of intestinal inflammation, there-
fore seems key in protecting IBD patients from COVID-19. The 
ACE2 upregulation in inflamed colon could potentially affect viral 
cell entry in active UC patients and/or CD patients with colonic in-
volvement, although functional data are currently lacking. So far, 
international registries have not yet reported any COVID-19 out-
come data in IBD patients by disease location.

Of note, several key cytokines implicated in IBD pathogen-
esis,61,63 and also key drivers of ACE2 colonic expression in this 
study, are currently under investigation as potential therapeutic 
targets for COVID-19, including TNF, IFNγ, IL-1β, and IL-6.64 
Although further evidence is warranted if these anticytokine ther-
apies can dampen the observed cytokine storm in COVID-19, we 
demonstrated that anti-TNF therapy does restore intestinal ACE2 
dysregulation in a subset of IBD patients.

In this study, we acknowledge the lack of data on SARS-CoV-2 
infected patients, a sequencing depth not enabling a search for 
HNF4A alternative splicing and isoforms with pro- and anti-inflam-
matory effects,65 and the lack of additional functional validation ex-
periments [eg., intestinal HNF4A regulation of ACE2, the role of 
intestinal ACE2 in SARS-CoV-2 entry]. Despite these limitations, the 
replication of our findings on several levels [tissue and single-cell 
gene expression, protein expression, and ex vivo models] highlights 
the robustness of our observations. Current guidelines do not pro-
mote stopping immunosuppressive and biologic drugs in IBD pa-
tients without symptoms suggestive of COVID-19. On the contrary, 
immunosuppressive and biologic drugs may protect against the de-
velopment of severe forms of COVID-19 infection.66

In conclusion, using bulk and single-cell transcriptomic datasets 
as well as ex vivo organoid cultures, we demonstrated that intestinal 
inflammation could alter the expression of SARS-CoV-2 entry mech-
anisms in the intestinal epithelium, with opposing dysregulations 
seen in ileum and colon. HNF4A, an IBD susceptibility gene and 
transcriptional regulator of one of the key Covid-19 GWAS loci, 
seems an important upstream regulator of ACE2 expression in ileal 
tissue. In contrast, colonic ACE2 expression seems to depend on 
interferon-regulating factors and pro-inflammatory cytokines.
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