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Droplets and Aerosols generated by singing and the risk of COVID-19 for choirs. 
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Abstract 

Choral singing has become a major risk during COVID-19 pandemic due to high infection rates. Our 

visualisation and velocimetry results reveal that majority of droplets expelled during singing follow 

the ambient airflow pattern. These results points toward the possibility of COVID-19 spread by small 

airborne droplets during singing. 



   
 

   
 

Background 

Singing in group settings has become an apparent risk for outbreaks of COVID-19 [1]. While social 

distancing is effective in normal social interactions, singing can produce a substantially larger number 

of respiratory droplets and aerosols than speaking, as it is louder and sustained for longer durations 

[2]. This may require further measures to be put into place to mitigate risks. In contained smaller 

spaces, the transmission risk may be higher, as respiratory aerosols may saturate the whole indoor 

environment [3]. Despite this, at present there is not a collective approach or response to the potential 

risks of group singing. Certain countries, including Germany and the Netherlands, have banned all 

group singing activities [4]. 

Choir-related outbreaks of COVID-19 in Berlin, Amsterdam, and Washington State had high attack 

rates of 75.6%, 78.5% and 86.9% respectively [1,4,5]. Since restrictions have eased globally, a rise in 

outbreaks related to singing has been reported [6]. A large proportion of these documented outbreaks 

associated with singing (approx. 69%), were reported from the United States resulting in over 544 

cases [1].  

COVID-19 is assumed to be transmitted through respiratory and contact routes; and transmission by 

respiratory droplets is believed to occur only in close contact (within 1-2 m) with someone who is 

infectious [7]. However, there is uncertainty about the dynamics of respiratory emissions during 

singing. Additionally, studies have shown that droplet and airborne transmission may not be mutually 

exclusive modes of transmission and exist as a continuum [8]. Hence, unravelling the spread of 

respiratory particles during singing, especially in closed environments, could inform infection control 

policy and practice.  

Methods 

To quantify and understand the spread of infection during singing we performed a detailed flow 

visualization of aerosols and droplets expelled during singing using an image-based flow diagnostic 

system. The visualisation technique employs a LED based light source (GS Vitec MultiLED PT) with 

a spherical lens to control the divergence of the light beam, along with a high-speed camera (nac 

MEMRECAM HX-7s) to capture the light scattered by the droplets expelled during singing. To 

capture the video, the head of the subject was adjusted in front of black backdrop/background and the 

light was positioned in a forward scatter arrangement to maximize the scattering from expelled 

droplets (Figure 1). 

Once the position is adjusted, the subject was asked to sing a major scale using the solfège system and 

the high-speed video was captured with an exposure of 600 µs per frame at a resolution of 2 

Megapixels. In addition to singing, the subject also counted from 1 to 10 and coughed voluntarily. 

The horizontal field of view captured in the high-speed video, from the mouth of the subject, was 26 

cm approximately. Frames obtained from the video were first calibrated and a 2-axis stabilisation was 

applied to subject’s head (Further details on this procedure can be found in [9]). Thereafter, all the 

frames were processed with a hybrid Particle Tracking Velocimetry technique [10]. This technique 

first performs a Particle Image Velocimetry (PIV) procedure to estimate flow velocity and these 

estimates are subsequently refined using a particle tracking algorithm applied to each droplet. 

Specifically, for the PIV step we used a variable interrogation window with an initial size of 96 × 96 

pixels and a final size of 48 × 48 pixels with an overlap of 75%. For particle tracking we used a 

correlation window of 64 pixels and particle size range of 2 to 100 pixels in order to cover the entire 

size range of visible droplets. The flow visualisation together with detailed particle tracking results are 

included in supplementary video. 

 

  



   
 

   
 

Results and Discussion 

The results of detailed particle tracking (in supplementary video) reveals that the maximum velocity 

of droplets expelled, specifically for certain syllables such as ‘do’, ‘fa’ and ‘ti’, is approx. 6 m/s, 

which is similar to the velocities reported for speaking [11]. Upon further examining the motion of 

droplets at a distance of 15 cm from the mouth, we observed that almost 90% of the droplets are 

moving at velocities less than 1 m/s (Figure 2a). The droplets moving with velocities greater than 1 

m/s are moving in the direction between 120° – 240° (θ = 0° towards subject (Figure 1)) and move 

away from the mouth. Moreover, approx. 75% of droplets observed are moving at velocities less than 

0.5 m/s and the motion is equally distributed in all the directions, which implies that they do not settle 

rapidly and may follow the ambient airflow pattern. These results points toward high aerosol 

generation, as the behaviour of these droplets is like airborne particles [12]. Nevertheless, to 

accurately quantify the size, future work using particle counters, is essential to better understand the 

dynamics of these droplets. 

 

Figure 2b shows the distribution of droplet velocities obtained at 15 cm from the mouth for syllable 

‘fa’ and the direction in which these droplets are moving. Approximately 50% of the droplets are 

moving at velocities less than 0.5 m/s and more than 75% are moving away from mouth (θ = 120° to 

240°), which is also evident in the supplementary video. Figure 2c shows the velocity distribution of 

droplets that are visible while the subject was singing syllable ‘sol’ & ‘la’ and the direction in which 

these droplets are moving. It can be observed that all droplets are moving at velocities less than 0.5 

m/s and are equally distributed in all directions. The direction in which these droplets are moving is 

important because it implies that for a normal choir configuration with multiple rows and heights, 

these droplets can pose a risk to those in the adjacent rows as well as to those in the distant rows. 

Figure 2d and 2e shows the distribution for counting and coughing, respectively. In the case of 

coughing approximately 50% of the detected droplets were moving at velocities greater than 6 m/s 

whereas in case of speaking only 15% were moving at velocities greater than 6 m/s. 

We note, the loudness measured during singing was within the range of 66 – 72 decibels. Further, it is 

also worth noting that some degree of variability is expected in the number of droplets expelled 

between different individuals, and due to other parameters, such as loudness, notes, consonants, and 

duration of each note sung. Nevertheless, the droplets observed do not appear to be settling down 

rapidly and without adequate ventilation, these droplets can potentially saturate the indoor 

environment which can likely explain the very high attack rates of COVID-19 seen in choirs in the US 

and Europe (almost 87% in Skagit County, Washington) [1].  

We note the present study only provides visual evidence of the droplets and aerosols expelled during 

singing and compare the associated velocities and directions with speaking and coughing. However, 

these droplets have the capacity to potentially transmit viruses such as SARS-CoV-2. We only used a 

basic major scale for our experiments and during singing various other factors comes into play, such 

as pitch, rhythm, diction, etc. and it would be valuable to investigate all these aspects for future 

studies to have a better understanding of droplet and aerosol generation while singing. Nonetheless, 

the data presented combined with high infection rate among the choir members (60 – 90%) [1] points 

towards the possibility of airborne spread of COVID-19 during singing events, hence, should be 

considered when designing safety guidelines for public singing events.  

These findings could inform safety guidelines for restarting choirs during and after the COVID-19 

pandemic and other similar respiratory infection outbreaks. For example, rehearsals could be done 

with fewer people, greater physical distancing between singers, or face coverings and masks to reduce 

droplet and aerosol expulsion [13]. In addition to that either well ventilated large spaces or outdoor 

performances should be utilised to minimize the risk of infection.  
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Figure Legends: 

 

Figure 1: Schematic of the setup to capture the droplets expelled during singing. 

 

Figure 2: a. – Probability density function (PDF) of droplet velocities and direction of droplets 

measured at 15 cm from the mouth of the subject while singing a full major scale. b. – PDF of droplet 

velocities and direction of droplets measured at 15 cm from the mouth of the subject while singing 

syllable ‘fa’. c. – PDF of droplet velocities and direction of droplets measured at 15 cm from the 

mouth of the subject while singing syllables ‘sol’ and ‘la’. d. – PDF of droplet velocities and direction 

of droplets measured at 15 cm from the mouth of the subject while counting from 1 to 10. e. –PDF of 

droplet velocities and direction of droplets measured at 15 cm from the mouth of the subject while 

coughing. 
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