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Abstract

RNA viruses are responsible for some of the worst pandemics known to mankind, including outbreaks of Influenza, Ebola,
and COVID-19. One major challenge in tackling RNA viruses is the fact they are extremely genetically diverse.
Nevertheless, they share common features that include their dependence on host cells for replication, and high mutation
rates. We set out to search for shared evolutionary characteristics that may aid in gaining a broader understanding of
RNA virus evolution, and constructed a phylogeny-based data set spanning thousands of sequences from diverse single-
stranded RNA viruses of animals. Strikingly, we found that the vast majority of these viruses have a skewed nucleotide
composition, manifested as adenine rich (A-rich) coding sequences. In order to test whether A-richness is driven by
selection or by biased mutation processes, we harnessed the effects of incomplete purifying selection at the tips of virus
phylogenies. Our results revealed consistent mutational biases toward U rather than A in genomes of all viruses. In
þssRNA viruses, we found that this bias is compensated by selection against U and selection for A, which leads to A-rich
genomes. In �ssRNA viruses, the genomic mutational bias toward U on the negative strand manifests as A-rich coding
sequences, on the positive strand. We investigated possible reasons for the advantage of A-rich sequences including
weakened RNA secondary structures, codon usage bias, and selection for a particular amino acid composition, and
conclude that host immune pressures may have led to similar biases in coding sequence composition across very
divergent RNA viruses.
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Introduction
Genomes of all replicating entities, including viruses and cel-
lular hosts, have been shaped by millions of years of evolution.
The rapid progress of genomics in the past few decades has
brought about enormous amounts of genomic information,
and today there are thousands of genomes of viruses avail-
able, which allow studying the processes that govern the
evolution of these genomes (Belshaw et al. 2008; Duffy et al.
2008; Pybus and Rambaut 2009). RNA viruses are an ex-
tremely diverse collection of entities, spanning a diverse range
of hosts, morphologies, genome organizations, and genetic
composition. Nevertheless, RNA viruses do share several com-
mon features that drive their evolution: 1) their ultimate de-
pendence on the cell; 2) their high mutation rates; 3) strong
purifying selection derived from constraints operating on a
small and densely coding genome, and 4) sporadic but pow-
erful positive selection driven by an evolutionary arms race
with the host they infect. We hence reasoned that we may
find common genomic signatures shared by RNA viruses,
which in turn may allow us to learn more about the drivers
of virus evolution.

One example of a process that may affect viral genomes is
host editing by cellular enzymes. Two notable examples are
adenosine deaminases acting on RNA (ADAR), which

promotes A>G mutations, and APOBEC3 (A3), which pro-
motes C>U mutations in single-stranded DNA, manifested
as G>A mutations on the coding RNA strand of HIV (Bishop
et al. 2004; Samuel 2012). In principle, A3 promotes hyper-
mutated viral genomes, which are unlikely to be capable of
replicating, and hence undergo purifying selection. However,
there has been extensive debate whether A3 may sometimes
operate in a suboptimal manner, leading to genomes that are
“viable”, that is, replication competent (Jern et al. 2009; Sadler
et al. 2010; Cuevas et al. 2015; Delviks-Frankenberry et al.
2016). If indeed A3 or ADAR enzymes lead to viable replicat-
ing genomes, we would expect to see footprints of their ac-
tivity in contemporary virus genomes.

Another notable example of a shared common signature
across RNA viruses is the depletion of CG and UA dinucleo-
tides across almost all known RNA viruses (Karlin et al. 1994;
Greenbaum et al. 2009; Cheng et al. 2013; Tulloch et al. 2014).
This under-representation is shared by viral hosts as well; TA
dinucleotides (UA in RNA) are under-represented in most
organisms, likely due to RNA-degrading enzymes located in
the cytoplasm, and CG are under-represented in plants and
vertebrates, likely due to deamination processes (Burge et al.
1992; Karlin et al. 1994). It appears that cells have evolved
mechanisms to detect foreign genetic material bearing high
levels of CG dinucleotides: Recently, it has been shown that
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the cellular enzyme zinc finger antiviral protein (ZAP) restricts
HIV genomes bearing RNA with multiple CGs (Takata et al.
2017), and we and others have shown strong selection against
introduction of CG in HIV and RNA viruses in general (Burns
et al. 2009; Atkinson et al. 2014; Stern et al. 2017; Theys et al.
2018; Caudill et al. 2020).

We thus set out to test if there are additional shared geno-
mic and evolutionary features in RNA viruses and compiled a
large data set of sequences from pathogenic single-stranded
RNA viruses from Baltimore classes IV and V (þssRNA and
�ssRNA viruses, respectively). We focus on these classes in
order to 1) avoid the confounding effects of double-stranded
viruses such as stableness of double-stranded DNA/RNA, and
2) avoid reverse-transcribing viruses, whose replication cycle is
unique compared with other RNA viruses, and includes a DNA
stage. One of the key challenges in our study was to disentangle
the roles of mutation and selection. Any extant sequence is a
product of evolution from an ancestral sequence, and this
process includes the action of both mutation and natural se-
lection, occurring repetitively. Indeed, in the examples above
we see that either increased introductions of mutations (via
A3 enzymes or ADAR) or selection (mediated by ZAP restric-
tion of CG-rich sequences) may both lead to unique genomic
signatures. To disentangle the effects of mutation versus se-
lection, we harness the notion of incomplete purifying selec-
tion operating on viral genomes, whereby selection is relaxed
at the tips of phylogeny (Fitch et al. 1997; Pybus et al. 2007;
Strelkowa and Lassig 2012; Gire et al. 2014). By contrasting
between rates of substitutions at internal versus external
branches of phylogenies we were able to test for the presence
of mutational biases (i.e., mutations that are biased toward
specific nucleotides) or for selection for specific types of muta-
tions. Overall, our results suggest a consistent selective advan-
tage for the abundance of the A nucleotide across almost all
vertebrate RNA viral genomes.

Results

Compilation of the PhyVirus Data Set
We first generated an extensive data set of�65,900 full cod-
ing sequences from pathogenic single-stranded RNA viruses,
which we name PhyVirus (fig. 1; supplementary table S1,
Supplementary Material online). Hosts include a wide array
of animals, spanning from arachnids, to birds, to fish, to
mammals. As expected, the data set contained a dispropor-
tionate number of human viruses; yet reassuringly, hundreds
to thousands of sequences were available from other phylo-
genetic clades. We implemented an automated process to
generate multiple sequence alignments and their correspond-
ing phylogenetic trees (see Materials and Methods). We fo-
cused only on alignments of coding sequences (rather than
longer genomic alignments) so as to mitigate as much as
possible the effects of recombination. We further iteratively
ensured that phylogenies are limited to sequences with a high
degree of homology, by focusing only on phylogenies where
any given branch length is smaller than 0.5 substitutions/site
(see Materials and Methods). Finally, we also ensured that
phylogenies were not dramatically affected by mutational
saturation (supplementary fig. S1, Supplementary Material
online). We have made the PhyVirus data set available online
at https://www.sternadi.com/phyvirus (last accessed October
6, 2020), where all alignments, phylogenies, as well as meta-
data files are accessible to the wide public.

Nucleotide Composition
We first calculated the fraction of A, C, G, and U in the coding
sequences of all viral families. To our surprise we found an
over-representation of A across literally all viral families, ac-
companied by a strong diminution of C (fig. 2A). The fraction
of A ranged from �28% to �40% in most sequences, reach-
ing a high of 49% in VPg sequences of Rhinovirus. The excep-
tions were the positive single-stranded RNA (þssRNA)
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FIG. 1. PhyVirus data set. Approximately, 65,900 coding sequences of pathogenic animal viruses were assembled into multiple sequence alignments
and phylogenies. Breakdown of numbers of sequences by (A) virus family and (B) virus host.
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FIG. 2. Nucleotide composition of single-stranded RNA viruses. (A) Fraction of each nucleotide across all coding sequences belonging to a
particular virus family. In all families a significant departure from a uniform distribution was observed (v2, P< 10�3). (B) Breakdown of nucleotide
composition based on phylogenetic assignment of host. (C) Odd ratios for dinucleotide composition across viral families. (D) Nucleotide com-
position stratified based on the first, second or third codon positions.
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families togaviruses, where more C was observed, and calici-
viruses, which were relatively homogenous in nucleotide con-
tent. As well, some abundance of U was noted in
coronaviruses and some�ssRNA families and of G in flavivi-
ruses. We next examined the nucleotide composition after
breaking down by host classification, to test whether compo-
sition was dependent on the host. In general, we did not
notice nucleotide composition dependence on the host,
with some minor exceptions, mainly in the Picornaviridae
family (fig. 2B). Finally, when analyzing coding sequences of
double-stranded DNA and RNA viruses, RNA bacteriophages,
or coding sequences of hosts, we did not find any consistent
preference for A (supplementary fig. S2A�C, Supplementary
Material online), and we note that mixed evidence exists
regarding A-richness in retroviruses (van Hemert and
Berkhout 1995).

We next went on to examine the nucleotide composition
across the three codon positions. This analysis revealed an
interesting and consistent pattern: First codon positions were
found to be enriched for A and G, second codon positions
were found to be enriched for A and U, whereas the third
codon positions were enriched for A and U in �ssRNA vi-
ruses, and for U only inþssRNA viruses (fig. 2D). Once again
this was in stark contrast to high GC content at third codon
positions of host coding sequences (Kudla et al. 2006). The
pattern at the codon level also led to a particular pattern of
amino acid frequencies, with some differences between the
host and viral amino acid frequencies observed (supplemen-
tary fig. S23, Supplementary Material online).

We went on to test if a similarly consistent pattern is found
in noncoding regions. In general, RNA viruses are devoid of
noncoding sequences, and thus these sequences are quite
short. Our analysis revealed a base composition that was
quite different from that in the coding regions, with no con-
sistent enrichment for A or any other nucleotide (supplemen-
tary fig. S2D, Supplementary Material online). It seemed that a
different set of “rules” apply to the noncoding regions, likely
driven by the regulatory roles of noncoding RNA in RNA
viruses. Most often these sequences are under strong purify-
ing selection to maintain particular RNA structures
(Robertson 1979; Desselberger et al. 1980; Le et al. 1992;
Thurner et al. 2004), and this most likely leads to a base
composition that is specific to every virus and its noncoding
region.

Finally, we examined whether we find longer patterns of
biased composition, and focused on the frequencies of dinu-
cleotides. As has been noted previously (Karlin et al. 1994;
Greenbaum et al. 2009; Cheng et al. 2013; Tulloch et al. 2014),
we observed a strong and consistent depletion of CG and to a
lesser extent a depletion of UA dinucleotides across all viruses
except for togaviruses (fig. 2C). Conversely, we saw an enrich-
ment for CA and UG. This may be explained by ADAR editing
(UA > UG or reverse complement of UA > CA), although
other ADAR editing products were less observed (AG and
CU). Alternatively, CA and UG may compensate for the lack
of CG and UA, since they are both one transition mutation
away (the most frequent mutation that occurs naturally in
viruses) from either CG or UA (but see Di Giallonardo et al.

2017). Returning to our observations of A-richness, we ob-
served no enrichment for longer patterns that include A,
suggesting that A in itself is the unique factor in the virus
coding sequences. Moreover, a phylogenetic analysis of sub-
stitution patterns revealed that all three types of to-A substi-
tution (C>A, G>A, and U>A) are high (supplementary
fig. S4, Supplementary Material online).

Mutation Bias or Selection?
Our results showed A-richness for almost all coding

sequences of ssRNA viruses, yet this pattern was different
at third codon positions of þssRNA viruses. We set out to
understand whether the patterns we observed were due to a
biased mutation process, or selection. To resolve this enigma,
we utilized the concept of incomplete purifying selection
(also known as deleterious mutation load), which has been
shown to be prevalent in RNA viruses (Fitch et al. 1997; Pybus
et al. 2007; Strelkowa and Lassig 2012; Gire et al. 2014).
Accordingly, at the external branches of the phylogeny, selec-
tion is less stringent, and deleterious mutations may be more
prevalent than in internal branches of the phylogeny, where
there has been a longer time for purifying selection to exert its
effect. Thus, by contrasting the proportion of to-A substitu-
tions at the internal branches (mutation & selection) and the
external branches (mutation, less selection), we can tease
apart the roles of mutation and selection (Fig. 3A-B). If mu-
tation is the reason for A-richness we expect to see the same
ratio of to-A mutation throughout the phylogeny, but if se-
lection is the underlying reason we expect to see higher to-A
at the internal branches than the external branches. The
analysis we perform is essentially the same as Hudson-
Kreitman-Aguad�e (HKA) methods and its derivatives, that
contrast between the rate of preferred/non-preferred muta-
tions that segregate in a population, and preferred/non-pre-
ferred mutations that have been fixed in a population
(Hudson et al. 1987; Mcdonald and Kreitman 1991; Eyre-
Walker 1997). The external branches of the phylogeny are
hence analogous to a viral population, where we observe
“polymorphisms”, whereas substitutions in internal branches
reflecting fixation events in a virus “species”. We thus search
for a significantly higher rate of preferred (to-A)/non-pre-
ferred (to-A/C/G) substitutions at internal versus external
branches.

The hallmark of incomplete purifying selection is higher
dN/dS at external nodes (tips) as compared with internal
nodes (Zhang et al. 2005). We thus first tested for the pres-
ence of incomplete purifying selection across all our data sets,
by contrasting the rate of nonsynonymous to synonymous
(dN/dS) substitutions between the internal branches and the
external branches (see Materials and Methods). Notably, ex-
ternal branch lengths may dramatically differ, and depend
heavily on density of sampling. We thus tested various branch
length cutoffs to define inclusion or exclusion of a branch as
internal or external. We found a higher dN/dS ratio at the tips
in 64% of the alignments in our data set. However only 42% of
the data sets displayed significant support using a likelihood
ratio test (P< 0.05, after false discovery correction; Benjamini
and Hochberg 1995) for the two-rate model that allows for
different dN/dS ratios at different branches (here, internal vs.
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FIG. 3. Use of incomplete purifying selection reveals mutational biases and selection. (A) Illustration of incomplete purifying selection: At the
external branches of the tree selection is relaxed, and observed substitutions (marked by x) are mostly a consequence of mutation and genetic drift.
At internal branches substitutions are a composite process of mutation and both selection and genetic drift. (B) Illustration of contingency tables
used to test for an association between internal/external branches and the type of substitutions observed, with three possible interpretations
regarding observed abundance of A. (C) Inferred mutational biases at coding sequences, based on substitutions observed at external branches of the
phylogeny. Rates to each nucleotide are normalized so as to sum up to one (see Materials and Methods). See supplementary fig. S7, Supplementary
Material online for comparison between internal and external biases. (D) Families that displayed a significant association between branch location
and type of substitution based on a Mantel�Hansel test (see Materials and Methods). (E) Violin plots of inferred odds ratios of to-X/to-Y (where X
stands for a given nucleotide and Y stands for any other nucleotide apart from X) for each nucleotide at internal versus external branches across all
viral families. Panels (C�E) show only virus phylogenies where incomplete purifying selection was observed to be significantly supported.
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external branches). In general, data sets that did not display
significant support often contained fewer or less divergent
sequences, or had longer branch lengths (less dense sam-
pling). We conclude that incomplete purifying selection is
probably pervasive, but significant support requires more
data and denser sampling. Importantly, the alignments that
did pass significance testing were a faithful taxonomical rep-
resentation of our full data set (supplementary fig. S5,
Supplementary Material online) and were not significantly
different in terms of estimated age (supplementary fig. S1,
Supplementary Material online). We continued our analysis
only with the alignments where we observed significant sup-
port for incomplete purifying selection.

We next set out to contrast between the rate of to-A
substitution at the internal branches and the external
branches. Modeling of directional selection for A resulted in
incorrect inference (supplementary fig. S6, Supplementary
Material online), and to overcome this we performed muta-
tional mapping along the phylogeny (see Materials and
Methods). We first inferred the extent to which mutation
rates are biased in our data sets by focusing only on substi-
tutions at the external branches, where selection is relaxed.
We found that þssRNA viruses display a strong mutational
bias toward U, in strong contrast to the overall A-rich genome
they present, but in line with their content at third codon
positions (fig. 3C).�ssRNA viruses maintain a mutational bias
toward A in their coding sequences (with the exception of
hantaviruses), which is effectively a bias toward U on their
genomic strand. Interestingly, our data contains two families
with an ambisense coding strategy, Arenaviridae and
Phenuiviridae, in which proteins are encoded from both the
positive and negative strands. By default, these families are

characterized as �ssRNA viruses, since only one strand (the
negative one) is packed. We tested whether the differences in
mutational biases between �ssRNA and þssRNA viruses
hold when separating the coding sequences of the ambisense
viruses based on the strand they reside on. We observed that
regardless of the strand, all coding sequences of ambisense
viruses are A-rich (supplementary fig. S8A, Supplementary
Material online). However, the mutational bias was different
based on the strand of the coding sequence: Coding sequen-
ces on positive strands displayed a mutational bias toward U,
whereas coding sequences on negative strands displayed a
mutational bias toward A (supplementary fig. S8B,
Supplementary Material online).

We were intrigued by the finding of the mutational bias
toward U and sought to test if this phenomenon presents
itself in the recent COVID-19 epidemic caused by the SARS-
CoV-2 virus, a þssRNA from the Coronaviridae family.
Uniquely, SARS-CoV-2 evolution should reflect short-term
evolution since the virus has been spreading for merely a
few months, and hence observed diversity reflects for the
most part mutational biases rather than selection. Extensive
sequencing of the virus around the globe allowed us to ana-
lyze mutational patterns that show a strong abundance of
substitutions toward U (fig. 4) (see also Simmonds 2020),
further supported by within host diversity analyses (supple-
mentary fig. S9, Supplementary Material online). We note
that sequencing errors (and in particular deamination/oxida-
tion) may lead to an increase in C>U and G>U, however,
this should rarely affect the consensus sequence of a virus,
which is typically based on dozens to hundreds of sequencing
reads (see also supplementary fig. S9, Supplementary Material
online; Materials and Methods). All in all, the SARS-CoV-2
sequences support our observation of to-U mutational bias in
viral genomes. We discuss the finding of mutations toward U
in RNA viruses more in depth below.

We next created contingency tables of inferred to-X/to-Y
(where X stands for a given nucleotide and Y stands for any
other nucleotide apart from X) substitutions at internal
branches/external branches, allowing us to test for an associ-
ation between branch location and direction of substitution
(fig. 3B). Our results showed a highly consistent pattern across
almost all þssRNA viruses, supporting selection for A and
selection against U (fig. 3D and E). In �ssRNA viruses the
pattern was mixed, and we did not see any consistent signs of
selection for or against any nucleotide. To conclude, our anal-
ysis shows 1) a consistent mutational bias toward U in
genomes of all viruses, which leads to a mutational bias to-
ward A in coding strands of�ssRNA viruses, and 2) selection
for A in most þssRNA viruses, which presumably compen-
sates for the bias toward U caused by the mutational process.

Underlying Reasons for Selection for A
We put forth three possible explanations why A may be se-
lected for in viruses. First, A is a weak RNA binder: It base-pairs
only with U, whereas all other three nucleotides may base-
pair with the other two via Watson�Crick base-pairing or
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noncanonical G-U pairing. This means that A promotes less
RNA secondary structures, as has been previously suggested
for HIV, which is also an A-rich virus (Keating et al. 2009; van
der Kuyl and Berkhout 2012; van Hemert et al. 2013). Since
double-stranded RNA elicits an antiviral response in cells (de
Faria et al. 2013), viruses should be under selection to avoid
secondary structures. If avoidance of secondary structures is
the main reason for selection toward A we would expect to
see higher A content at the third codon positions, since this

position is generally under weaker protein-associated selec-
tion. Although most �ssRNA viruses (except Phenuiviridae
and Rhabdoviridae) are A-rich at the third codon positions
we note that none of the þssRNA viruses are A-rich at their
third codon positions (fig. 2D). It thus seems unlikely that
avoidance of RNA secondary structures is the only driving
force of selection toward A.

Second, it is possible that codon usage bias and transla-
tional optimization have led to the particular sequence

FIG. 5. Codon usage bias analysis of PhyVirus sequences. CA analyses showing the first and second axes explaining the variability in RSCU values
across viral coding sequences, with sequences color coded by (A) host that the virus infects, (B) encoded protein classification (see Materials and
Methods), and (C) viral families. Each polygon is drawn to include 90% of the points and silhouette scores are given below for each of the clustering
variables (see Materials and Methods). (D�F) Pearson’s correlations between: (D) the first CA axis and GC3s defined as the frequency of GC content
at synonymous third codon positions, (E) the first CA axis of human viral sequences and tAI values, and (F) tAI and ENC values.
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composition observed herein. Accordingly, if codons with
more A are associated with more abundant tRNAs, viral genes
should be translated more efficiently. Varying codon usage
has been reported for many different viruses, yet the under-
lying reasons for this variation remain obscure (Jenkins and
Holmes 2003; Gu et al. 2004; Kryazhimskiy et al. 2008; Wong
et al. 2010; Belalov and Lukashev 2013; Cardinale et al. 2013;
Tian et al. 2018; Chen et al. 2020). The breadth of the PhyVirus
data set allows probing codon bias in depth; we calculated the
relative synonymous codon usage (RSCU), the effective num-
ber of codons (ENC) (supplementary fig. S10A,
Supplementary Material online), and the tRNA adaptation
index (tAI) (supplementary fig. S10B, Supplementary
Material online; see Materials and Methods), focusing on hu-
man viruses for the latter. Our correspondence analysis (CA)
analysis showed that RSCU differences between viral sequen-
ces are not attributed to viral host classification, type of pro-
tein, or viral family, as reflected in the silhouette values
(fig. 5A�C). Silhouette scores below zero reflect bad cluster-
ing, where clusters are embedded within each other, whereas
values around zero reflect an almost complete overlap of
clusters, suggesting that the clustering variables do not ex-
plain differences in RSCU values. When probing which factors
are responsible for the first and second components of the
CA (23% and 10% of the variability in the data, respectively),
we observed a strong correlation of the first axis with the
synonymous nucleotide content of the third codon position
GC3s, but very weak to no correlations of both axes with tAI
(fig. 5D), and of tAI with ENC (fig. 5F). If codon usage had been
driven by selection for enhanced translation of proteins, we
would have expected one or more of the following: higher
correlation with tAI, low ENC (supplementary fig. S10A,
Supplementary Material online), unique RSCU profile of
genes known to be highly expressed in viruses, such as capsid
products (fig. 5B) or unique RSCU profile based on host/type
of virus (fig. 5A and C). We do not observe any of these
phenomena, whereas the correlation with GC3s suggests

that other forces drive the codon composition. We conclude
that translational optimization is not likely the driver of the
sequence composition observed herein, and that the partic-
ular codon composition of a viral sequence is likely a by-
product of other factors.

We continue to a third possible explanation for selection
toward A: Selection for amino acids encoded by A-rich
codons. Although there are many possible reasons leading
to selection for specific amino acids, we speculated that the
major histocompatibility complex (MHC) class I system may
play a role in selection for specific peptides, as it is has been
shown to drive the evolution of many vertebrate viruses
(Kuntzen et al. 2007; Foll et al. 2014; Carlson et al. 2015;
Kløverpris et al. 2015). To test the effect of MHC on compo-
sition of viral genomes, we predicted which peptides derived
from virus genomes would be weakly or strongly detected by
the MHC system. Remarkably, peptides preferentially dis-
played by MHC systems were found to be encoded by A/
G-poor and C/U-rich sequences (fig. 6). In other words, there
should be a selective advantage for A/G-rich and C/U poor
sequences that would allow escape from the MHC system.
Although clearly, this subject merits further in-depth investi-
gation, selection due to the MHC class I system would explain
our results, in particular the selection against U and for A.

Discussion
We have found that the vast majority of single strand RNA
viruses examined herein have skewed nucleotide composition
in their coding sequences, with most viruses bearing A-rich
and C-poor sequences. This pattern appears to be quite con-
sistent across hosts ranging from fish, to insects, to mammals,
with the caveat that the largest number of sequences in our
data was from mammalian viruses (including human viruses).
The A-rich pattern disappeared when analyzing viruses of
bacteria, viral noncoding regions, or coding sequences of
hosts (supplementary fig. S2B�D, Supplementary Material
online).
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FIG. 6. Nucleotide content composition of inferred MHC peptides in the PhyVirus data set. MHC epitope prediction was run on all translated
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One of the original goals of this analysis was to test
whether we observe the presence of signatures of RNA edit-
ing by A3 enzymes or ADAR enzymes, or restriction by cel-
lular enzymes such as ZAP in long-term evolution of viruses.
Interestingly, we did not find any such evidence for A3, at
least not in a widespread manner, found partial evidence for
possible ADAR editing, and although we found a decreased
CG presence in all viral families excluding Togaviridae we
cannot prove that ZAP is the underlying reason for this phe-
nomenon. In any case, it is not likely that restriction by ZAP
would explain the A-richness observed in all single-stranded
viruses.

Two nonmutually exclusive hypotheses may be put forth
to explain the consistent pattern of A-richness that we ob-
serve: There is selection for more A in viral sequences, and/or
there is a mutational bias that leads to more A in coding
sequences of viruses. In order to tease apart the roles of se-
lection and mutation, we used the notion of incomplete pu-
rifying selection, which allows us to separate between recent
and nonrecent evolution. Our results revealed that both mu-
tational biases and selection operate in viral genomes. In both
þssRNA and�ssRNA, we observed a mutational bias toward
U on the genomic strand of these viruses, which is counter-
acted by selection against U and toward A in the þssRNA
viruses.

We begin by discussing the mutational biases we observed.
In the absence of selection, which is what we measure at
external branches of trees, any biased introduction of one
nucleotide should lead to its pair being introduced at an equal
proportion. For example, if we denote PA as the probability of
erroneously incorporating an A, when this A is reverse-
complemented this will lead to PA ¼ PU (supplementary
fig. S12, Supplementary Material online). Although for some
�ssRNA viruses we see a similar mutational bias toward both
A and U, this equality in mutational biases does not hold for
any of the þssRNA viruses (fig. 3C). Even more intriguingly,
we see a mutational bias that differs between negative and
positive strands of the ambisense viruses (supplementary fig.
S8B, Supplementary Material online). Yet if we consider the
genomic strand only, this bias collapses to a mutational bias
that introduces more U on the genomic strand. This suggests
that the mutational process is biased toward one of the
strands and acts as a nonsymmetrical process (supplemen-
tary fig. S12, Supplementary Material online).

One possible explanation for this directional mutation bias
may be genomic damage in the form of spontaneous deam-
ination. Interestingly, this is consistent with a model suggest-
ing that DNA damage is a major source of replication errors in
humans (Gao et al. 2019). For single-stranded RNA viruses, it
is possible that the genomic damage will affect packaged
genomes more than strands replicated within the cells, lead-
ing to this nonsymmetrical bias. Another explanation for this
mutational bias is host mediated enzymatic deamination of
virus genomes that are packed as virions.

We note that the genomic mutational bias toward U we
find in viruses falls in line with previously published work that
shows that mutation is universally biased toward AT in sev-
eral species, including human and bacteria (Hershberg and

Petrov 2010; Lynch 2010). This suggests that there may be a
commonality in the unknown mechanism that creates this
bias. Furthermore, in double-stranded genomes it is nearly
impossible to determine the specific mutation that causes
the bias observed (to-A, to-T or both) due to the comple-
mentary nature of the genome. If the mechanism generating
biases is the same in viruses and in cells, based on our analysis
we speculate that the bias is toward U mutations rather than
toward A.

Finally, we turn to examine the underlying reasons for
selection toward A. We have proposed three explanations:
First, A is a weak RNA binder thus selection to A will promote
less RNA secondary structures and will aid viruses in avoiding
the host defense mechanisms. Second, translational selection
promotes specific codons and causes bias in the nucleotide
content and third, there may be selection for amino acids
encoded by codons with A. At this stage, our analyses suggest
that avoidance of secondary structure or translational selec-
tion are most probably not the sole underlying cause for
selection toward A, and we show tentative evidence suggest-
ing that the MHC class I system may drive selection for
codons with elevated A.

In line with the above, we noted throughout our analysis
that flaviviruses were outliers; their sequences were A and G
rich, and they are the onlyþssRNA viral family where we did
not infer selection for A and selection against U (fig. 3D and
E). When probing the sequences in this family, we noted that
the majority of sequences were of vector-borne viruses (e.g.,
dengue virus, Zika virus, and West Nile virus). In general,
vector-borne viruses were rare in other virus families, suggest-
ing that our observations regarding selection for A do not
hold for vector-borne viruses. Carefully tying this together
with our hypotheses in the previous section, we note that
insects lack both an MHC system and an interferon response
(Flajnik and Kasahara 2001; Secombes and Zou 2017) which
augments the immune response to dsRNA, and this might be
the underlying reason for the lack of selection against U and
toward A observed in flaviviruses. Alternatively, other char-
acteristics of the life cycle and replication of flaviviruses may
be responsible for the absence of selection we observed in
these viruses.

To conclude, we have found similar patterns of coding
sequencing composition across a wide variety of RNA viruses.
We found that both mutation toward U and selection for A
drive these patterns. In general, we show here that probing
viral sequences and phylogenies allows a better understand-
ing of mechanisms that shape the evolution of viruses, and in
particular, allows insights into possible footprints of host ac-
tivity, potentially illuminating the interaction between hosts
and viruses.

Materials and Methods

PhyVirus Data Set Curation
Sequences for the PhyVirus data set were primarily obtained
from NIAID Virus Pathogen Database and Analysis Resource
(ViPR) (Pickett et al. 2012) and were augmented by sequences
of Influenza from the NIAID Influenza Research Database
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(IRD) (Zhang et al. 2017). The sequences were retrieved as
single gene/protein (as opposed to genome segments) during
January 2019. Host information was retrieved from ViPR and
IRD. Notably, around 9,700 sequences lacked host assign-
ment. We manually sampled a few dozen sequences and
checked their host assignment in the associated publication.
Most were human viruses but other hosts were present as
well. We note that this does not affect any of the analyses in
this study, which were almost always agnostic with respect to
host.

Our data contain multiple nonduplicated sequences from
the same viral species in order to build a comprehensive
evolutionary and phylogenetic history as much as possible.
These features of the data set are summarized in supplemen-
tary table S1, Supplementary Material online. We would like
to acknowledge the ViralZone resource (https://viralzone.
expasy.org/, last accessed October 6, 2020) (Hulo et al.
2011) for providing comprehensive and accessible informa-
tion about viral families and genomes.

An in-house computational pipeline was used for cluster-
ing the PhyVirus data set into multiple sequence alignments
and associated phylogenetic trees. We first used MegaBLAST
(Morgulis et al. 2008) to create clusters of homologous
sequences, by using each sequence as a query against all
sequences of the PhyVirus data set as a database, using an
e-value of 10�13. We then aligned sequences using PRANK
(Löytynoja 2014) with default settings, and reconstructed
phylogenies using the maximum-likelihood method-based
PhyML (Guindon and Gascuel 2003), with default settings.
We next sought to ensure that phylogenies do not contain
sequences that are too remote from each other. To this end
we implemented an iterative scheme where we “cut” phylog-
enies into two or more at branches whose length was larger
than 0.5. The 0.5 cutoff was chosen based on manual curation
and inspection, and allowed us to avoid grouping together
very remotely related sequences. The phylogenies were then
rooted using midpoint rooting for analyses that required a
rooted tree. Finally, clusters with less than ten sequences were
omitted from the analysis. This pipeline resulted in 465 align-
ments from 13 viral families that contain overall 65,951
sequences (fig. 1). For analyses that required codon-based
alignments, we performed codon alignment using PRANK.

Noncoding Sequence Retrieval and Processing
We manually obtained noncoding sequences for a select
number of virus families: Picornavirus alignments were
obtained from http://www.virology.wisc.edu/acp/Aligns/
seq_align.html (last accessed October 6, 2020) (Palmenberg
and Sgro 2002; Palmenberg et al. 2009), full genome dengue
and ebolavirus sequences identifiers were downloaded from
ViPR (Pickett et al. 2012), allowing us to thus obtain complete
record and features from NCBI.

dsDNA, dsRNA, and RNA Phages Sequences Retrieval
and Processing
dsDNA and dsRNA sequences were obtained from VIPR.
Bacteriophage sequences were downloaded from NCBI
(https://www.ncbi.nlm.nih.gov/, last accessed October 6,

2020) using the Cystoviridae and Leviviridae taxonomy codes.
Coding sequences were extracted using genomic coordinates
from NCBI.

Host Nucleotide Content and Amino Acid Statistics
Codon usage data were downloaded from the Codon Usage
Database https://www.kazusa.or.jp/codon/ (last accessed
October 6, 2020) (Nakamura et al. 2000) and filtered for the
host classes in our data, focusing on hosts that have more
than 50 coding sequences in the Codon Usage Database,
overall we have analyzed 41 mammalian species, ranging
from mouse, cow, monkey, and human. Using the codon
usage table, we counted the number of nucleotides and
amino acids in coding sequences and their frequencies.

PhyVirus Statistics
Nucleotide frequencies were calculated by viral family, by host
and by codon position. We first averaged over each align-
ment, and then averaged by viral family and codon position.
This was done to avoid biasing the calculation when a very
large number of sequences were available for a particular
gene. Dinucleotide odds ratios
Pxy (x; y 2 fA; C; G; UgÞ were calculated as described
previously (Cheng et al. 2013): Pxy ¼ fxy=fxfy, where fx and
fy denote the nucleotide frequencies and fxy denotes the fre-
quency of the dinucleotide xy in the sequence.

Substitution Frequency Inference
The BASEML program from the PAML package (Yang 2007)
was used to run the unrestricted nonreversible (UNR) and
general time reversible (GTR) models in order to infer the
frequencies of substitution between all pairs of nucleotides.
Since the UNR model requires a rooted tree, we implemented
midpoint rooting on all of the phylogenies. About half of the
data sets displayed slight significant support for the UNR over
the GTR model, yet results of UNR and GTR were very con-
sistent with respect to the frequencies of substitution (data
now shown).

Directional Selection
We applied a mutation-selection model of direction selection
that we have previously developed (Stern et al. 2017) to test
for selection for a specific nucleotide. Briefly, the model allows
an increase in the substitution rate at a proportion (P) of sites
by rescaling rows and columns of the substitution matrix
going to and from the selected nucleotide. The model further
accounts for incomplete purifying selection at the external
branches of the tree by rescaling the among-site variation
distribution (see Stern et al. 2017 for more details). Notably,
the original directional model was run on a phylogeny where
the root sequence was known. The model was here modified,
and assumed a stationary distribution at the root. As com-
monly practiced, this distribution was inferred based on the
distribution of nucleotides at the leaves. Moreover, the orig-
inal model was agnostic regarding which nucleotide is under
selection, and hence assumed that all four nucleotides may be
under selection with a probability of P/4. We here changed
the model to allow for selection for only selected nucleotide
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(A, C, G, or U) with a probability of P. The null model (P ¼ 0)
allowed the use of a likelihood ratio test to assess for signif-
icant selection toward a specific nucleotide. Results of this
analysis revealed supposedly pervasive selection toward all
four nucleotides, and we concluded this is erroneous infer-
ence that is due to problematic assumptions of the model
that assume a same set of substitution rate parameters across
all sites (supplementary fig. S6, Supplementary Material
online).

Incomplete Purifying Selection
In order to assess for incomplete purifying selection we used
the branch-site model of the CODEML program from the
PAML package (Yang et al. 2000). As described previously
(Pybus et al. 2007), we compared between a one-ratio model
which assumes one x value for all branches of the phylogeny
and a two-ratio model that assumes one value of xe for the
external branches and another value of xi for internal
branches. The underlying assumption is that relaxed selection
at external branches will lead to an increase in x at external
branches, that is, xi < xe.

Since tip lengths vary across the data sets and some exter-
nal branches are very long (suggesting purifying selection may
exert its effect on them), we used different branch length
cutoffs to determine which external branches are treated as
external branches and which external branches are catego-
rized as internal branches when attempting to detect incom-
plete purifying selection. The cutoffs that we used were 0.05,
0.04, 0.03, 0.02, 0.01, 0.005, 0.001, and no cutoff (i.e., the classic
definition of external branch: A branch that had no progeny
branches). To determine which data sets display significant
support for incomplete purifying selection we first performed
a likelihood ratio test between the one-ratio null model and
the two-ratio alternative model. All P-values were corrected
for multiple testing using false discovery rate (FDR)
(Benjamini and Hochberg 1995). Only data sets showing sig-
nificant support under one of the cutoffs described above,
and where xi < xe, were considered as showing evidence of
incomplete purifying selection.

Mutational Bias
Ancestral sequence reconstruction was performed using the
FastML program under a Jukes and Cantor model for nucleo-
tides and applying joint reconstruction of characters across
the phylogenies (Ashkenazy et al. 2012). This enabled us to
map the different substitutions across each phylogenetic tree.
We then classified substitutions as external or internal, based
on the maximal cutoff value that allowed for detection of
incomplete purifying selection. The mutational bias of each
nucleotide was calculated based on external substitutions
only, by calculating the fraction of substitutions toward x
(x 2 fA; C; G; Ug) divided by the fraction of ancestral
nucleotides that are not x. For convenience, the biases were
then normalized so they sum up to one.

Calculation of Selection for or Against a Specific
Nucleotide
To determine if there is selection for or against a specific
nucleotide we constructed a 2 � 2 contingency table for
each viral family, with the type of mutation (e.g., to-A and
to-C/G/U) at the columns, and type of branch (external/in-
ternal) at the rows. Cells then included the number of sub-
stitutions for each intersection of categories. We then used
the Mantel–Haenszel (MH) test to test for an association
between branch type and substitution type. We performed
the MH test for each viral family and for each of the four
nucleotides, and corrected for multiple testing using FDR
(Benjamini and Hochberg 1995).

Between and Within Host Mutation Counts of the
SARS-CoV-2 Virus
For the between host analysis SARS-CoV-2 a multiple se-
quence alignment containing 53,997 sequences was down-
loaded from GISAID (https://www.gisaid.org/, last accessed
October 6, 2020) on July 7, 2020. For each sequence we
counted the numbers of each mutation type relatively to
the EPI_ISL_402125 sequence (NCBI accession number:
MN908947) from Wuhan, China. We have also reconstructed
the most recent ancestor (MRCA) of the SARS-CoV-2 human
clade using the bat coronavirus RaTG13 sequence (accession
number: MN996532.1) as an outgroup, and the MRCA we
obtained was identical to the EPI_ISL_402125 sequence. Each
mutation was counted only once, under the assumption that
shared mutations were due to shared ancestry. We further
discarded positions that have been documented as prone to
errors based on the following resource: https://github.com/
W-L/ProblematicSites_SARS-CoV2 (last accessed October 6,
2020), although we note that retaining or discarding these
positions had almost no effect on the results. For the within
host analysis we analyzed deep sequencing data of 212 SARS-
CoV-2 samples that we have recently sequenced (Miller et al.
2020). To mitigate sequencing errors, we considered only
positions with coverage above 1,000 and mutation frequen-
cies above 5%.

Codon Usage Bias
We have calculated several measures of codon usage bias.
First, RSCU was calculated for each gene as previously de-
scribed (Sharp and Li 1986), where each sequence is repre-
sented as a 59D vector. We then performed CA to reduce
dimensionality and to detect major trends in codon usage
variation among the sequences. In order to asses separation of
the sequences on the first two CA axes we calculated the
silhouette score (Rousseeuw 1987) based on different cluster-
ing categories (host classification, protein type for the six
main protein types shared among all viral families depicted
in fig. 5, and viral family). Next, we calculated the ENC as
previously described (Wright 1990), where ENC values range
from 20 (when only one codon is used per amino acid) to 61
(when all synonymous codons are equally used for each
amino acid). We also calculated GC3s, which is the frequency
of GC content at the synonymous third codon position.
RSCU, CA, ENC, and GC3s were calculated using the
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codonW software (Peden JF, unpublished, available at http://
codonw.sourceforge.net/, last accessed October 6, 2020).
Finally, we calculated the tAI using the tAI package
(https://github.com/mariodosreis/tai, last accessed October
6, 2020) with genomic tRNA information from Homo sapiens
that was obtained from GtRNAdb (Chan and Lowe 2016).

MHC Nucleotide Prediction
To predict peptides that can serve as epitopes for MHC class I
recognition we used the NetMHCpan4 program (Jurtz et al.
2017). We ran the program over all PhyVirus sequences using
249 mammalian alleles from the following organisms: Human,
chimpanzee, swine, mouse, gorilla, rhesus macaque, and bo-
vine (supplementary table S2, Supplementary Material on-
line). The prediction was performed for peptide lengths of
nine with default parameters. We calculated the nucleotide
content for strong and weak binding areas and for areas with
no binding prediction. In our calculation we first considered
only nucleotides that determine the amino acid type un-
equivocally (for example, for valine we counted G and U
only, since the wobble position can be either one of the
four nucleotides). A similar analysis was performed consider-
ing all three nucleotides that code for these peptides, yielding
essentially the same results (supplementary fig. S11,
Supplementary Material online). A t-test was performed to
determine if the nucleotide content was significantly different
between the MHC binding strengths. Multiple test correction
was performed using FDR.

Data Availability
The PhyVirus data set is available online at https://www.ster-
nadi.com/phyvirus, and includes all alignments, phylogenies,
as well as metadata files. Raw sequencing data for the Miller
et al. (2020) SARS-CoV-2 samples are available in the NCBI
SRA database under BioProject ID PRJNA647529.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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