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SUMMARY
We performed RNA-seq and high-resolution mass spectrometry on 128 blood samples from COVID-19-pos-
itive and COVID-19-negative patients with diverse disease severities and outcomes. Quantified transcripts,
proteins, metabolites, and lipids were associated with clinical outcomes in a curated relational database,
uniquely enabling systems analysis and cross-ome correlations to molecules and patient prognoses. We
mapped 219 molecular features with high significance to COVID-19 status and severity, many of which
were involved in complement activation, dysregulated lipid transport, and neutrophil activation.We identified
sets of covarying molecules, e.g., protein gelsolin and metabolite citrate or plasmalogens and apolipopro-
teins, offering pathophysiological insights and therapeutic suggestions. The observed dysregulation of
platelet function, blood coagulation, acute phase response, and endotheliopathy further illuminated the
unique COVID-19 phenotype. We present a web-based tool (covid-omics.app) enabling interactive explora-
tion of our compendium and illustrate its utility through amachine learning approach for prediction of COVID-
19 severity.
INTRODUCTION

As of September 2020, the COVID-19 pandemic has caused

over a million deaths worldwide, primarily due to complications

from SARS-CoV-2-associated acute respiratory distress syn-

drome (ARDS) (Guan et al., 2020). The clinical course of

COVID-19 infection is highly variable, ranging from an asymp-

tomatic state to a life-threatening infection. Recent evidence in-

dicates that, in addition to viral factors, disease severity depends

substantially on host factors (Zhang et al., 2020a, 2020b, 2020c),

supporting the need to better understand the individuals’ re-

sponses at a molecular level. While rapidly accumulating evi-

dence indicates that distinct genetic (Ellinghaus et al., 2020),

physiological (Gattinoni et al., 2020), pathological (Fox et al.,

2020), and clinical (Richardson et al., 2020) signatures differen-

tiate patients with and without COVID-19-driven ARDS, more
Cell Systems 12, 23–40, J
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clarity on the molecular basis explaining the observed differ-

ences is needed.

It is widely accepted that clinical syndromes of non-COVID-19

ARDS and sepsis result from an aggregation of different patient

subgroups with distinct molecular signatures and responses to

standardized treatments (Reddy et al., 2020). For example, in

non-COVID-19 ARDS patients, a relatively hyper-inflammatory

phenotype is associated with higher mortality than a hypo-in-

flammatory state (Calfee et al., 2014). Information on the associ-

ation of the inflammatory landscape with COVID-19 patients’

outcomes is less clear (Sinha et al., 2020). Even though leuko-

cytes from patients with severe infections demonstrate an asso-

ciation between a relatively hyper-inflammatory transcriptome

and better prognosis (Davenport et al., 2016), further insight

into these processes could facilitate identification of potential

therapeutic targets of immunomodulation, leading to better
anuary 20, 2021 ª 2020 The Authors. Published by Elsevier Inc. 23
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outcomes. Beyond the typical inflammatory response, COVID-

19 patients demonstrate profound coagulation dysregulation

(Zhang et al., 2020a, 2020b, 2020c). A sensitive marker of fibrin-

ogen degradation, D-dimer, is found consistently elevated in se-

vere cases of COVID-19 (Guan et al., 2020; Richardson et al.,

2020). In addition, data from autopsies demonstrate microvas-

cular clotting (Fox et al., 2020), and clinical observations suggest

that anticoagulation therapies may lower mortality of COVID-19-

associated ARDS (Paranjpe et al., 2020).

Despite the rapid global scientific response to this new dis-

ease, relatively few studies have investigated the broad molecu-

lar-level reorganization that drives the host COVID-19 viral

response. Technologies for deep sequence analysis of nucleic

acids (i.e., transcriptomics) are broadly available. High-resolu-

tion mass spectrometry (MS) can provide similar quantitative

data for large-scale protein, metabolite, and lipidmeasurements.

With the supposition that broad profiling across these various

planes of biomolecular regulation could allow for a holistic view

of disease pathophysiology, we sought to leverage these tech-

nologies on a large number of patients.

Accordingly, we conducted a cohort study involving 128 pa-

tients with and without COVID-19 diagnosis. To ensure that we

generated molecular profiles that could illuminate the COVID-19

pathological signature, protein, metabolite, and lipid profiles

were measured from blood plasma. Additionally, leukocytes

derived from patient blood samples were isolated for RNA

sequencing. Using state-of-the-art sequencing and mass spec-

trometric technologies, we identified and quantified over 17,000

transcripts, proteins, metabolites, and lipids across these 128 pa-

tient samples. The abundances of these biomolecules were then

correlated with a range of clinical data and patient outcomes to

create a rich molecular resource for COVID-19 host response to

be made available to the biomedical research community.

Here, we leverage this resource to examine the pathophysi-

ology of COVID-19, identify potential therapeutic opportunities,

and facilitate accurate predictions of patient outcome. Briefly,

we found 219 biomolecules, which were highly correlated with

COVID-19 status and severity. Tapping into the ability of our

multi-omic method to uncover associations between different

biomolecule classes, we discovered sets of covaryingmolecules

that shed light on disease mechanisms and provide therapeutic

opportunities. Although some of the disease mechanisms

described here are not novel, our study provides critical, con-

firming evidence that key biological processes are indeedmodu-

lated under COVID-19, including complement system activation,

lipid transport, vessel damage, platelet activation and degranu-

lation, blood coagulation, and acute phase response. Given

the focus of our study on plasma, our data constitute unique in-

sights into the COVID-19 hypercoagulation phenotype. This rich

molecular compendium has been made available through a

freely accessible web resource (https://covid-omics.app) to aid

the current global efforts to study this disease. We also present

an application example that leverages this resource for the

development of a disease severity predictive model based on

all omics data. While patients’ comorbidities are powerfully

associated with COVID-19 outcomes, our multi-omics-based

predictive model significantly improved COVID-19-severity pre-

dictions over the standardized clinical Charlson comorbidity

score (Richardson et al., 2020).
24 Cell Systems 12, 23–40, January 20, 2021
RESULTS

Sample Cohort and Experimental Design
From 6 April 2020 through 1 May 2020, we collected blood sam-

ples from 128 adult patients admitted to Albany Medical Center

in Albany, NY, for moderate to severe respiratory issues presum-

ably related to SARS-CoV-2 infection. In addition to collection of

various clinical data (Table 1), a blood sample was obtained at

the time of enrollment. Patients who tested positive (n = 102)

and negative (n = 26) for the virus were assigned to COVID-19

and non-COVID-19 groups, respectively (see STAR Methods

for enrollment details). Females comprised 37.3% and 50.0%

of the COVID-19 and non-COVID-19 groups, respectively. The

average age of patients was similar—61.3 and 63.1 years in

the COVID-19 group (females and males, respectively; p value =

0.56)—with some statistically insignificant differences between

females and males in the non-COVID-19 group (59.5 and 67.0

years, respectively; p value = 0.25) (Figure 1A). The average

number of days hospitalized before study enrollment was 3

and 1 for the COVID-19 and non-COVID-19 groups, respectively

(Table 1). The COVID-19 group was more racially diverse than

the non-COVID-19 group, with white individuals comprising

only 46% of the total (versus 80% of the non-COVID-19 control

group); these demographics are consistent with the reported

racial and ethnic health disparities of COVID-19 (Webb Hooper

et al., 2020).

Severe COVID-19 infections require hospitalization and can

lead to death due to respiratory deterioration. Thus, patients

with the most severe cases requiring ventilatory support in the

ICU entail longer admissions, while those with the most extreme

cases die during hospitalization. In order to integrate length of

hospital stay with mortality in one single outcome measure re-

flecting disease burden, we scored hospital-free days at day

45 (HFD-45). This composite outcome variable assigns a zero

value (0-free days) to patients who remain admitted longer

than 45 days or die while admitted and higher values of HFD-

45 to patients with shorter hospitalizations and milder disease

severity. Similar composite outcome variables are frequently

used in the ICU setting (Young et al., 2015; Jaitovich et al.,

2019). The World Health Organization (WHO) has also desig-

nated a COVID-19-specific outcome measure for clinical

improvement (World Health Organization, 2020); this WHO

ordinal score from 0–8 captures disease-specific severity met-

rics and also mortality (8 denotes death). TheWHO ordinal score

at 28 days is provided as an alternative outcome metric for the

study and to facilitate future comparative studies. We found

that the WHO ordinal score at 28 days and HFD-45 provided

comparable outcome scores, yet HFD-45 was more granular

and enabled a severity assessment for our control, non-

COVID-19 patients (Figure S1). Other clinically relevant informa-

tion was obtained, including: acute physiologic assessment and

chronic health evaluation (APACHE II) score, sequential organ

failure assessment (SOFA) score, Charlson comorbidity index

score, the number of days spent on mechanical ventilators,

need for admission into the intensive care unit (ICU), and labora-

tory measurements of C-reactive protein (CRP), D-dimer, ferritin,

lactate, procalcitonin, fibrinogen, and others (Table 1). Members

of the non-COVID-19 group had, on average, considerably more

HFD-45 than those of the COVID-19 group (32.3 versus 22.0,

https://covid-omics.app


Table 1. Demographics and Baseline Characteristics of COVID-19 and Non-COVID-19 in Intensive Care Unit (ICU) and Non-ICU

Settings

COVID-19 Non-COVID-19

Variables

Total

n = 102

Non-ICU

n = 51

ICU

n = 51

Total

n = 26

Non-ICU

n = 10

ICU

n = 16

Days admitted

pre-enrollment (IQR)

3.37 (1–5) 2.78 (1–3) 3.96 (1–6) 0.97 (1–1) 0.9 (0.8–1) 0.94 (1–1)

Sex �n (%)

Male 64 (62.7%) 30 (58.8%) 34 (66.7%) 13 (50%) 4 (40%) 9 (56%)

Female 38 (37.3%) 21 (41.2%) 17 (33.3%) 13 (50%) 6 (60%) 7 (44%)

Age-year

Mean (IQR) 61.3

(50.0–74.3)

59.7

(49.0–80.0)

62.9

(55.0–73.0)

63.8

(52.3–76.8)

60.4

(47.3–74.0)

66

(55.3–80.3)

Ethnicity � n (%)

White 46 (45.1%) 28 (54.9%) 18 (35.3%) 21 (80.8%) 8 (80%) 13 (81.2%)

Black 11 (10.8%) 5 (9.8%) 6 (11.8%) 4 (15.4%) 2 (20%) 2 (12.5%)

Asian 2 (1.9%) 0 (0%) 2 (3.9%) 0 (0%) 0 (0%) 0 (0%)

Hispanic 21 (20.6%) 7 (13.7%) 14 (27.5%) 1 (3.8%) 0 (0%) 1 (6.3%)

Other 22 (21.6%) 11 (21.6%) 11 (21.6%) 0 (0%) 0 (0%) 0 (0%)

BMI, kg/m2 mean (IQR) 30.39

(25.30–32.24)

29.84

(26.09–32.37)

30.92

(24.50–32.05)

30.36

(26.53–33.10)

27.20

(23.68–30.38)

32.34

(26.98–37.67)

Severity Indexes (IQR)

Charlson comorbidity index 3.3 (1–5) 3.16 (1–5) 3.49 (2–5) 4.35 (2–6) 3.3 (1–5) 5 (3–7)

APACHEII N/A N/A 21.6 (15–27) N/A N/A 20.6 (12–26)

SOFA N/A N/A 8.2 (6–11) N/A N/A 8.6 (3–11)

SAPSII N/A N/A 51.8 (45–62) N/A N/A 47.6 (33–65)

Biomarkers (IQR)

Ferritin (ng/mL) 938.9

(301.8–1,203.8)

782.6

(206.0–934.5)

1,076.9

(378.0–1,294.0)

250.5

(80.5–382.5)

205.3

(58.0–411.0)

285.7

(92.0–438.5)

C-reactive protein (mg/L) 140.9

(52.0–204.3)

120.6

(44.7–155.0)

158.9

(61.7–248.3)

73.8

(20.0–110.2)

34.7

(8.9–56.8)

99.8

(37.8–175.2)

D-dimer (mg/L FEU) 11.7 (1.0–12.8) 2.3 (0.6–1.73) 18.6 (1.7–21.6) 5.3 (0.5–4.6) 5.2 (0.4–1.9) 5.5 (0.6–10.2)

Procalcitonin (ng/mL) 3.2 (0.2–1.8) 1.7 (0.2–1.0) 4.4 (0.3–2.3) 2.1 (0.2–0.7) 2.2 (0.1–3.4) 2.1 (0.3–1.21)

Lactate (mmol/ L) 1.2 (0.9–1.5) 1.2 (0.9–1.4) 1.3 (0.9–1.5) 2.1 (0.9–2.5) 1.2 (0.8–1.5) 2.53 (0.9–3.4)

Fibrinogen (mg/dL) 543.6

(413.0–667.0)

559.3

(420.0–703.0)

531.7

(391.5–663.0)

362.3

(257.3–550.0)

348.0

(256.75–441.5)

373

(257.3–572.0)

Albumin (mg/L) 2.9 (2.6–3.3) 3.2 (2.9–3.5) 2.7 (2.4–2.9) 3.4 (2.9–3.8) 3.8 (3.4–4.1) 3.19 (2.6–3.8)

Hemogram (IQR)

White blood cells (K/mL) 10.8 (6.1–12.5) 7.1 (4.9–8.5) 14.4 (8.4–15.4) 12.7 (7.2–17.3) 8.3 (6.7–9.7) 15.4 (8.2–20.9)

Hemoglobin (g/dL) 11.2

(9.7–12.6)

11.6

(10.2–13.0)

10.7

(9.4–12.1)

12.4

(9.9–14.7)

12.8

(10.45–14.85)

12.3

(9.6–14.5)

Mean corpuscular volume (fL) 87.1

(84.5–93.7)

88.0

(85.6–94.2)

86.2

(82.5–93.0)

92.3

(88.6–95.4)

91.2

(87.2–94.6)

93.0

(89.4–97.8)

Platelet (K/mL) 266.0

(192.5–320.5)

269.2

(209.0–334)

262.8

(187.0–317.0)

203.5

(151.8–247.8)

228.1

(163.5–278.0)

188.2

(127.5–229.5)

Neutrophils (%) 76.2

(68.5–86.0)

69.7

(61.0–82.0)

82.8

(80.0–90.0)

77.7

(74.0–87.0)

73.1

(58.8–82.5)

80.5

(79.25–89.25)

Lymphocytes (%) 13.8 (5.0–18.5) 19.4 (9.0–26.0) 8.3 (4.0–11.0) 12.7 (6.0–18.0) 16.9 (7.0–26.0) 10.1 (4.3–10.8)

Monocytes (%) 7.1 (4.0–9.0) 8.8 (6.0–11.0) 5.5 (3.0–8.0) 8.0 (4.0–9.3) 7.7 (4.0–10.3) 8.2 (4.0–9.0)

Eosinophils (%) 0.8 (0.0–1.0) 1.1 (0.0–1.0) 0.5 (0.0–1.0) 1.0 (0.0–1.25) 1.8 (0.0–3.3) 0.44 (0.0–1.0)

(Continued on next page)
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Table 1. Continued

COVID-19 Non-COVID-19

Variables

Total

n = 102

Non-ICU

n = 51

ICU

n = 51

Total

n = 26

Non-ICU

n = 10

ICU

n = 16

Respiratory Parameters

PaO2/FiO2 ratio N/A N/A 161.6 (98–211) N/A N/A 149.4 (73–184)

Positive-end expiratory

pressure (CmH2O)

N/A N/A 10.8 (10–12) N/A N/A 6.6 (73–184)

Inspiratory plateau (CmH2O) N/A N/A 22.8 (19.7–25.3) N/A N/A 23.9 (19.8–28.8)

Treatment �n (%)

Replacement therapy (pre-

enrollment)

12 (11.8%) 3 (5.9%) 9 (17.6%) 3 (11.5%) 0 (0%) 3 (18.8%)

Hydroxychloroquine 87 (85.3%) 43 (84.3%) 44 (86.3%) 0 (0%) 0 (0%) 0 (0%)

Antibiotics 98 (96.1%) 47 (92.2%) 51 (100%) 16 (61.5%) 3 (30.0%) 13 (81.3%)

Antiviral 1 (0.98%) 0 (0%) 1 (1.9%) 0 (0%) 0 (0%) 0 (0%)

IL6� antagoinist 4 (3.9%) 1 (1.9%) 2 (3.9%) 0 (0%) 0 (0%) 0 (0%)

Convalescent plasma 26 (25.5%) 8 (15.7%) 18 (35.3%) 0 (0%) 0 (0%) 0 (0%)

Steroid 46 (45.1%) 12 (23.5%) 34 (66.7%) 4 (15.4%) 1 (10.0%) 3 (18.8%)

Therapeutic anticoagulation 37 (36.3%) 2 (3.9%) 35 (68.6%) 8 (30.8%) 1 (10.0%) 7 (43.8%)
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respectively, p value = 0.004; Figure 1B). APACHE II and SOFA

severity scores, used to stratify the severity of critical illness,

were assigned to ICU-requiring patients, and both metrics ex-

hibited similar distributions between the groups (Table 1).

Consistent with previous reports, we observed male sex pre-

dominance in the ICU-requiring COVID-19 group (53.1% versus

44.7%) and the group requiring mechanical ventilatory support

(46.9% versus 34.2%) (Figure 1C).

This comprehensive clinical characterization of the cohort pro-

vided substantial data to be integrated with multi-omic measure-

ments. Following collection, blood samples were centrifuged to

separate their components for various omic analyses. We per-

formed four individual MS-based assays— shotgun proteomics,

discovery lipidomics, discovery metabolomics, and targeted

metabolomics—on the plasma components using high- resolu-

tion, high-mass-accuracy MS coupled with either gas or liquid

chromatography. RNA-seq was used to characterize the tran-

scriptomes of leukocytes extracted from patient samples.

Collectively, these data, containing abundance measure-

ments of over 17,000 diverse biomolecules (517 proteins,

13,263 transcripts, 646 lipids, 110 metabolites, and 2,786 un-

identified small molecule features), enabled a comprehensive

systems analysis of COVID-19 blood samples. The clinical mea-

surements correlatedwell with themulti-omicsmeasurements of

the same molecules (i.e., clinically measured albumin and ALB

measured by MS), and blood cell counts/percentages were

correlated with the expected proteins and transcripts and en-

riched for matching gene ontology (GO) terms; for example,

the percentage neutrophils correlated with molecules involved

in neutrophil degranulation (Figure S2). We compiled all biomol-

ecule abundance measurements and de-identified patient infor-

mation with clinical data into a highly curated relational (SQLite)

database, which is publicly available for exploration and further

analysis (see Data and Code Availability; Figure S3). The data-

base includes additional metadata for each molecular measure-

ment, such as GO terms, alternative identifiers, and analytical
26 Cell Systems 12, 23–40, January 20, 2021
metrics used to filter data, among others (see STAR Methods).

To facilitate exploration of this dataset by the broader scientific

community, we also created a companion webtool (https://

covid-omics.app) that accesses data and various analyses and

performs on-demand data visualization. Detailed description of

this tool is presented in a later section.

Systems Analysis Reveals Strong Biomolecule
Associations with COVID-19 Status and Severity
Wehypothesized thatmeasurement of a large number of biomol-

ecules across different molecular classes (i.e., nucleic acids,

proteins, lipids, and metabolites) would provide insight into the

COVID-19 molecular landscape and facilitate understanding of

factors associated with higher severity. To test this hypothesis

in an unsupervised manner, we initially performed a principal

component analysis (PCA) (Figure 2A). Here, we note grouping

of patient samples based on severity (HFD-45) with samples of

high and low severity diverging along the diagonal axis of prin-

cipal components 1 and 2. This, together with a subtler grouping

based on status (COVID-19 versus non-COVID-19), merited

further supervised exploration.

To gain biological insight into the host’s response to SARS-

CoV-2 and pathways influencing its severity, we integrated our

biomolecule measurements with clinical outcome variables.

For this supervised analysis, we used univariate and multivariate

regression to identify features that associate with (1) COVID-19

status and (2) HFD-45. Significant changes in plasma proteins,

lipids, and metabolites associated with COVID-19 were deter-

mined by ANOVA and log-likelihood ratio tests, which incorpo-

rated potentially confounding variables, such as sex, age, and

ICU status. Significant changes in leukocyte transcripts associ-

ated with COVID-19 diagnosis were analyzed separately by

EB-seq. Figure 2B presents the statistical significance relative

to the log2 of the fold changes of means for COVID-19 versus

non-COVID-19 groups for each biomolecule. In total, 2,537

leukocyte transcripts, 146 plasma proteins, 168 plasma lipids,

https://covid-omics.app
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A B C

Figure 1. Overview of Sample Cohort and Experimental Design

(A) Age and sex distributions of COVID-19 (n = 102) and non-COVID-19 (n = 26) groups; for each box, the middle horizontal line is at the median, and boxmargins

are first and third quartiles, with vertical lines extending ± 1.5-times the interquartile range.

(B) Distributions of hospital-free days over a continuous 45-day period aggregated with survival (HFD-45, see ‘‘Outcomes Selection’’ section in the STAR

Methods) among COVID-19 and non-COVID-19 groups.

(C) The proportion (%) of female and male patients that were admitted to the intensive care unit (ICU) and that required the support of a mechanical ventilator.
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and 13 plasma metabolites were significantly associated with

COVID-19 status (Table S1). Next, we applied GO and molecular

class enrichment analysis to these features (Tables S2A and

S2B). Among the biological processes that were enriched in bio-

molecules whose abundance was altered with COVID-19 (com-

bined proteins and transcripts), many support recent findings

(Messner et al., 2020) (Shen et al., 2020). TheseGO terms include

mitotic cell cycle, phagocytosis recognition, positive recognition

of B cell activation, complement activation (classical pathway),

and innate immune response. Some of these enriched GO terms

were driven by transcripts, for example, mitotic cell cycle (38

transcripts versus 0 proteins up with COVID-19), while other

GO terms, like phagocytosis recognition or positive regulation

of B cell activation, were driven by both transcripts and proteins

(11 transcripts/18 proteins and 10 transcripts/18 proteins,

respectively; Tables S2C–S2F). Triacylglycerides (TGs) were

also enriched and more abundant in COVID-19 samples, while

plasmenyl–phosphatidylcholines (PCs) were less abundant in

COVID-19 samples compared to non-COVID-19 samples. These

results are in line with prior reports of significant changes in lipid

composition in COVID-19 sera (Shen et al., 2020).

In addition to the annotated features, 511 unidentified metab-

olites and lipids were also significantly associated with COVID-

19 diagnosis. We performed additional spectral database

searching andmanually confirmed the identity of several of these

features (Table S3). Initially, we explored the features with the

largest fold change between COVID-19 and non-COVID-19 (Fig-

ure 2B). The tandem mass spectrum from the unidentified

feature with a mass-to-charge ratio (m/z) of 350.1625, and the

largest fold-change in COVID-19 versus non-COVID-19, con-

tained a fragment ion diagnostic of chloroquine/hydroxychloro-

quine (m/z 247.10, C14H16ClN2) suggesting this top feature is a

metabolite of the experimental therapeutic hydroxychloroquine

(Figure S4). The feature with the second largest increase in abun-

dance in COVID-19-positive plasma (Figure 2B) having a m/z

value of 749.5155 was matched to the antibiotic azithromycin

(Figure S4). By referencing patient medical records (Table 1),

we determined that 85% of COVID-19 patients received hydrox-
ychloroquine and 80% of COVID-19 patients received azithro-

mycin treatment prior to sample collection (versus 0% and 8%

of non-COVID-19 patients, respectively), thus explaining the

strong association with COVID-19 status. This ability to detect

drug metabolites highlights both the power of this discovery

approach and the complexity of these samples, as these biomol-

ecular data provide an archival-quality detailed snapshot of both

the patients’ physiological response and exposures to therapies.

One ongoing challenge with COVID-19 disease is the broad

and unpredictable range of patient outcomes, i.e., disease

severity. To find biomolecules associated with severity, we re-

gressed HFD-45 against abundance of each biomolecule. Using

this univariate approach that accounted for confounders sex and

age, we found 6,202 transcripts, 189 plasma proteins, 218

plasma lipids, and 35 plasma small molecules that were associ-

ated with disease severity (Table S1). To further refine features of

interest, for eachmolecule-type we performedmultivariate linear

regression on HFD-45 using the elastic net penalty (Zou and

Hastie, 2005) (STAR Methods). The elastic net simultaneously

performs regression and feature selection; the elastic net penalty

induces sparsity in the fit coefficients, which leads to selection of

key features that best predict the response variable. In contrast

to other approaches that also incorporate sparsity, such as

LASSO, elastic net is known to have a ‘‘grouping effect’’ where

it selects groups of correlated, predictive features enabling

more informative results in downstream enrichment analyses.

With the elastic net approach, 497 transcripts, 382 proteins,

140 lipids, and 60 metabolites were retained as predictive fea-

tures for the outcome HFD-45 (Table S1). In total, we used the

following criteria: (1) significance with COVID-19 status, (2) sig-

nificance with HFD-45, and (3) elastic net feature selection,

and generated a list of 219 features that were most significantly

associated with COVID-19 status and severity (Figure 2C; Table

S1). Levels of these biomolecules in each sample are visualized

in a heatmap in Figure 2D. Hierarchical clustering in the heatmap

shows clear grouping by COVID-19 status and severity and re-

veals clusters of molecules (across omes) with similar trends

across patient samples.
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Figure 2. Multi-omics Analysis Reveals Strong Molecular Signatures Associated with COVID-19 Status and Severity

(A) PCA using quantitative values from all omics data (leukocyte transcripts, and plasma proteins, lipids, and small molecules, log2 transformed and centered

around 0, for n = 125 patient samples, also see STAR Methods) shows that principal components 1 and 2 capture 16% and 10%, respectively, of the variance

between patient samples. Plotting samples by these two components show a linear trend with hospital-free days at 45 days (HFD-45).

(B) Associations of biomolecules with COVID-19 status were determined using differential expression analysis (EB-seq) for transcripts and linear regression log-

likelihood tests for plasma biomolecules (see Table S1). The adjusted p values (1 - posterior probability or Benjamini Hochberg-adjusted p values, respectively)

are plotted relative to the log2 fold-change of mean values between COVID and non-COVID samples. In total, 2,537 leukocyte transcripts, 146 plasma proteins,

168 plasma lipids, and 13 plasma metabolites had adjusted p values < 0.05.

(C) Associations between biomolecules and HFD-45 was estimated using a univariate linear regression (HFD-45 ~ biomolecule abundance + age + sex) resulting

in 7,408 biomolecules significantly associated with HFD-45, see Table S1. A multivariate linear regression with elastic net penalty was applied to each omics

dataset separately to further refine features of interest, and resulted in 946 features that were retained as coefficients predictive for HFD-45, also see Table S1. In

total, 219 features were determined as most important for distinguishing COVID status and severity.

(legend continued on next page)
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Applying GO term and molecular class enrichment analysis to

these 219 most differentially abundant features (Figures 2E and

2F), we found that biomolecules in GO terms for complement

activation (classical pathway), antimicrobial humoral response,

and neutrophil degranulation were enriched with COVID-19

severity (Tables S2G and S2H). The ‘‘complement activation’’

term encompassed many variable segments of immunoglobu-

lins encoded by genes that undergo recombination to allow

expression of light or heavy chains; twelve of them (8 IGHVs, 2

IGHVs, and 2 IGLVs) correlated with and predicted lower HFD-

45 (Table S1). In general, the complement system is involved in

immune response to virus infection (Stoermer and Morrison,

2011) and has been postulated as a target for therapeutics (Ris-

itano et al., 2020). Our observations about immunoglobulins offer

a glimpse into the early humoral response to SARS-CoV-2 and

the relationship between preferential variable segment use and

individual response trajectories. To better understand produc-

tion of protective, or possibly injurious antibodies, serial studies

and characterization of the properties of individual antibodies are

required (Ju et al., 2020; Seydoux et al., 2020). Another top

feature was pulmonary surfactant-associated protein B (SFTPB),

notable because circulating SFTPB correlates with decreased

lung function in smokers (Leung et al., 2015), and may be a sur-

rogate marker of lung deterioration in COVID-19 individuals.

Features that were reduced in COVID-19 samples and whose

abundance was lowest in the most severe cases were enriched

in the following categories: response to folic acid, PCs, plas-

menyl-PCs, and high density lipoprotein particle remodeling.

These features suggest a significant change in plasma lipid regu-

lation. Similar to previous reports, we observed lower levels of

APOA1, APOA2, and APOM in COVID-19 patients relative to

non-COVID-19 patients (Messner et al., 2020); (Shen et al., 2020).

Cross-ome Correlation Analysis
Correlating Plasma Proteins, Metabolites, and Lipids

A major strength of multi-omic approaches is the ability to un-

cover functional connections or co-regulation between different

classes of biomolecules. This effort is particularly informative for

small molecules, especially lipids, whose biological roles are

often less well annotated. Strongly perturbed biological systems,

as found with COVID-19, are instrumental for finding these

meaningful connections because of enhanced phenotypic varia-

tion (Stefely et al., 2016). For this analysis, we integrated all omic

measurements acquired by performing cross-ome correlation

analysis (Table S4); this was conducted in an unsupervised

manner and all sample data were included regardless of

COVID-19 status. We calculated Kendall’s Tau coefficients in

the pairwise fashion for all features. The heatmap in Figure 3A fo-

cuses on measurements from plasma; these associations reveal

significant hierarchical clustering of Kendall Tau coefficients be-

tween proteins (rows) and small molecules (lipids and metabo-

lites; columns) with statistical significance for their correlation

with each other. Significance for COVID-19 status and HFD-45

is also annotated along the top to indicate biomolecules that

also had disease associations (colored as a binary metric where
(D) Abundance of the 219 features were visualized via a heatmap (Z scored by ro

(E and F) Features that were elevated (E) or reduced (F) with COVID-19 status and

Table S2).
the q value < 0.05). The approach identified many dense clusters

with strong associations across biomolecule classes.

One cluster with a diverse mix of biomolecules and multiple as-

sociations between each other and with COVID-19 status and

severity is highlighted in Figure 3B. This cluster captured the lipids,

PC and plasmenyl-PCs, and high-density lipoproteins (Figure 3C).

These categories were found to be significantly associated with

COVID-19 status and severity (vide supra), and the cross-ome

analysis links these molecules as possible molecular interactors.

Plasmenyl-PCs are among lipids known as plasmalogens, and

these lipids act as potent antioxidants due the ether linkage at

the sn1 position (Messias et al., 2018). We recently reported that

plasmaplasmenyl-PCs (containing 16:0) had strong genetic asso-

ciations to the APOA2 locus in mice (Linke et al., in. press, http://

LipidGenie.com), and this cross-ome correlation analysis pro-

vides further evidence that these plasmalogen species are

associated with APOA2 and APOA1 in humans. APOA1 and

APOA2 are among the most abundant proteins in HDL particles

(Figure 3D) (Davidson et al., 2009). During a proinflammatory

response, SAA2 can displace APOA1 within HDL particles and

change HDL particles’ functions and lead to increased clearance

of HDL (Feingold andGrunfeld, 2019; Khovidhunkit et al., 2004). In

our correlation analysis, we found SAA, S100A8/A9, SERPINA3,

and LCP1 to be negatively correlated with plasmenly-PCs, oppo-

site to that of APOA1 and APOA2 proteins (Figure 3B). Relevant to

COVID-19, reduced levels of HDL-cholesterol are associated with

an increased risk of hospitalization for infections (Trinder et al.,

2020) and poorer outcomes during infections (Feingold and Grun-

feld, 2019). Consistent with this, more severe COVID-19 patients

have significantly lower blood HDL cholesterol and ApoA1 (Nie

et al., 2020; Wei et al., 2020). These multi-omic data provide

further evidence that HDL is lower with increased COVID-19

severity and implicate other biomolecules, such as plasmenyl-

PCs, as components of this process. These data point to the

potential of mitigating COVID-19 severity by using therapeutic

strategies aimed at restoring HDL particles, for example, through

statins (Feingold and Grunfeld, 2019).

The notable cluster in Figure 3C also includes the protein gel-

solin (GSN) and the metabolite citrate. Citrate is a calcium

chelator that is used to prevent coagulation, while GSN is a

Ca2+-activated, actin-severing protein. Both features were

among the 219 most significant features relating to COVID-19

infection and severity, and their reduced abundanceswere asso-

ciated with worse outcomes. A possible confounding variable is

that some patients received citrate as part of renal replacement

therapy prior to sample collection; however, we found that this

confounder had no significant effect on the overall observation

that citrate was lower in COVID-19 versus non-COVID-19 (Fig-

ure S5). The decrease in abundance of circulating GSN in sera

was recently reported by Messner et al. (2020) and Shen et al.

(2020); however, confirming the reduced GSN levels in plasma

samples (versus sera) can help mitigate the confounding issue

of variable loss of GSN into the fibrin clot (Piktel et al., 2018).

Two proteoforms of GSN arise from the use of alternative tran-

scriptional start sites: the cytoplasmic form, involved in
w) and clustered with hierarchical clustering.

severity were used for GO term and molecular class enrichment analysis (see
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Figure 3. Leveraging the Value of Multi-omic Data through Cross-ome Correlation Analysis

(A) Hierarchical clustering of Kendall’s Tau coefficients calculated for correlations between abundances of proteins (rows) and small molecules (lipids and

metabolites; columns) in the pairwise fashion, using data from n = 127 samples (also see Table S4). Significance of their association with HFD-45 and COVID-19

status is indicated above the biomolecule clusters, and significance of the correlation is denoted by *, corresponding to adjusted p values < 0.05.

(B) Re-clustering of biomolecules found in the clusters highlighted in panel-a with molecule annotations.

(C) Enrichment analyses of protein GO terms (purple) and small molecule classes (green) present in the cluster in (B).

(D) A schematic of a high-density lipoprotein (HDL) particle containing APOA1 and APOA2 proteins surrounded by various lipids, specifically plasmalogens.

SAA2, also detected in the cluster in (B), can replace APOA1 within the particle.

(E) Relative abundancemeasurements of plasma gelsolin (pGSN), cellular gelsolin (cGSN), and total gelsolin obtained using parallel reaction monitoring (PRM) on

representative peptide sequences (see Table S5); p values based on linear regression are presented. For each box, themiddle horizontal line is at themedian, and

box margins are first and third quartiles, with vertical lines extending ± 1.5-times the interquartile range.

(F) Regression analysis of plasma gelsolin levels and SOFA scores (R2 = 0.267, p = 4.53 3 10�5).
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remodeling of intracellular actin (cGSN) (Feldt et al., 2019), and

the plasma form, secreted by multiple cell types, including skel-

etal muscle (pGSN). Pools of circulating GSN, the aggregation of

the two proteoforms, scavenge circulating filamentous actin and

possess anti-inflammatory activities (Piktel et al., 2018). As

cGSNmay enter plasma upon cellular injury, we used parallel re-

action monitoring to independently quantify levels of pGSN and

cGSN via targeting five distinguishing peptides (Table S5) (Peter-

son et al., 2012). Abundance of pGSN correlated strongly with

COVID-19 and ICU status, while cGSN levels were not reduced

and did not correlate with COVID-19 severity (Figure 3E). These

results indicate that cGSN from damaged cells is a relatively

small contributor to the pool of circulating GSN and suggest

that reduction of pGSN in COVID-19 may result from decreased

biosynthesis and/or increased clearance from plasma.

Furthermore, in the sub-group of ICU patients, decreased

pGSN significantly correlated with SOFA scores (R2 = 0.27, p

value = 4.5 3 10�5; Figure 3F), demonstrating its potential utility

as a prognostic biomarker of COVID-19 severity. These data also

indicate that pGSN supplementation has excellent potential as a

COVID-19 therapeutic, as recently suggested by Messner et al

(2020). Indeed, pGSN is known to decrease in acute lung injury,

and in animal models of lung injury repletion of pGSN has favor-

able effects (Piktel et al., 2018). Recombinant pGSN has been

given safely in phase I/II trials to patients with community-ac-

quired pneumonia (NCT03466073, ClinicalTrials.gov). As of this

writing, a trial of the recombinant pGSN in COVID-19 is in the re-

cruiting stage (NCT04358406).

Biological Processes Dysregulated in COVID-19
Patients
Based on recent literature reports onCOVID-19 pathophysiology

and our systems analyses, we subsequently focused on specific

biological processes evidently dysregulated in COVID-19 pa-

tients: neutrophil degranulation, vessel damage, platelet activa-

tion and degranulation, blood coagulation, and acute phase

response.

Neutrophil Degranulation

Our list of 219 features strongly correlated toCOVID-19 status and

severity contained multiple transcripts and proteins involved in

neutrophil degranulation (GO term 0043312; Table S2g); enrich-

ment of this term has been previously reported by Shen et al

based on protein abundance measurements alone. The volcano

plot in Figure 4A illustrates the mean fold-change in abundance

of GO-associated proteins (pink) and transcripts (purple), plotted

against adjusted p values of significance with COVID-19. We

noticed an increased expression of multiple genes related to

neutrophil function, including PRTN3, LCN2, CD24, BPI, CTSG,

DEFA1, DEFA4, MMP8, and MPO (Table S1). The latter encodes

neutrophil myeloperoxidase, a protein instrumental in complexing

extracellular DNA for the development of neutrophil extracellular

traps (NETs) (Jiao et al., 2020). NETs are extracellular aggregates

of DNA, histones, toxic proteins, and oxidative enzymes released

by neutrophils to control infections, and their overdrive can

amplify tissue injury by inflammation and thrombosis (Twaddell

et al., 2019). NETs have been associated with the pathogenesis

of ARDS (Narasaraju et al., 2011; Middleton et al., 2020; Lefran-

çais et al., 2018) and thrombosis (Ali et al., 2019), both phenotypes

observed in severe COVID-19 patients, and elevated neutrophil
counts predict worse outcomes in COVID-19 patients (Wang

et al., 2020a, 2020b). Several NETs proteins that are also linked

to thrombosis (Wang et al., 2017; Healy et al., 2006), including cal-

protectin (S100A8/9), ferritin, CRP, and histone H3, were also

increased in our cohort (Table 1; Table S1). Thus, our data

strengthen earlier suggestions (Barnes et al; Shen et al, 2020;

Zuo et al, 2020) that combating dysregulated NETs may present

an avenue toward mitigation of disease severity in COVID-19.

For example, dipyridamole, an FDA-approved drug that can

inhibit NET formation by activation of adenosine A2A receptors

(Ali et al., 2019), has recently been shown to improve outcomes

of COVID-19 patients with respiratory failure (Liu et al., 2020).

Similarly, the platelet P2Y12 receptor antagonist, ticagrelor, has

been proposed to attenuate NET formation in COVID-19 (Omarjee

et al., 2020) and may simultaneously inhibit platelet activation, a

process also involved in COVID-19 pathophysiology (Manne

et al., 2020). Drugs that antagonize the NET–IL1b loop, such as

anakinra, are currently being tested (NCT04324021), and colchi-

cine, a potent neutrophil recruiter and IL1b-secretion inhibitor, is

also under evaluation (NCT04326790).

Vessel Damage

Numerous proteins involved in the body’s response to blood

vessel damage, including AGT, FBLN5, NID1, and SERPINB1,

increased in the COVID-19 samples relative to the non-COVID-

19 group and were especially higher in abundance in more se-

vere patients (Figures 4B and S6, Category #1). Neuropilin-1

(NRP1) is a regulator of vascular endothelial growth factor

(VEGF)-induced angiogenesis, and an increase in its abundance

with COVID-19 severity is of particular relevance given the recent

report describing excessive pulmonary intussusceptive angio-

genesis at autopsy in COVID-19 (Ackermann et al., 2020). In

contrast, other vessel damage-associated proteins, such as

SERPINA4, were significantly decreased in abundance in

COVID-19 patients (p value = 2.7153 10�4), highlighting the reg-

ulatory intricacies of this biological process.

Platelet Degranulation

In accord with earlier reports, we observed severe dysregulation

of proteins associated with platelet activation and degranulation

(Figure 4B, Category #2) (Manne et al., 2020). For example,

abundance of histidine-rich glycoprotein (HRG), which binds

heme, heparin, thrombospondin, and plasminogen (Priebatsch

et al., 2017), was significantly reduced in patients with COVID-

19, with the mean level 1.8-fold lower than in non-COVID-19 pa-

tients (Figure S5; p value = 8.1383 10�12). Similarly, abundances

of GPLD1 and CLEC3B significantly decreased in COVID-19 and

correlated with disease severity (Figure 4B, Category #2; Fig-

ure S6). In contrast, the abundances of other platelet-associated

proteins were increased in COVID-19 samples versus non-

COVID-19 samples (Figure S5), for example, serglycin (SRGN)

and the von Willebrand Factor (VWF); through the use of an

FDA-approved antibody test, VWF has recently been implicated

in COVID-19-associated endotheliopathy (Goshua et al., 2020).

VWF is synthesized by endothelial cells as a 2,813 amino acid-

long protein that is processed intracellularly to form VWF antigen

2 (VWFAg2) and VWF multimers (Haberichter, 2015). VWFAg2 is

released constitutively into circulation, whereas VWF multimers

are stored for later release upon stimulation of endothelial cells

(Nightingale and Cutler, 2013). To distinguish between these

two products, we quantified 19 peptides unique to VWFAg2
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Figure 4. Biological Processes Dysregulated in COVID-19

(A) Volcano plots highlighting proteins (pink) and transcripts (purple) assigned with the GO term 0043312 ‘‘Neutrophil Degranulation,’’ where an increased point

size signifies the inclusion of the biomolecule in the list of 219 features most significantly associated with COVID-19 status and severity (see Figure 2E; Tables S1

and S2).

(B) Linear regressions of protein abundance versus HFD-45 for the indicated proteins as measured in COVID-19 (left) and non-COVID-19 patients (right). Re-

sulting R2 values and their associated ± slope indicate the goodness of fit and change in abundance of a given protein with severity (HFD-45). Proteins that are

more decreased in severe cases appear blue, while proteins that are increased in severe cases appear red. Significance of the protein versus HFD-45 correlation

is denoted by a dot (p value < 0.01).

(C) Relative abundance measurements of peptides attributed to plasma fibronectin (pFN) and cellular fibronectin (cFN).

(D) Relative abundance measurements of VWF multimers and VWF antigen-2 (VWF Ag2), as estimated based on relative abundances of their unique peptides.

Peptide- and protein-level data are log2-transformed and grouped into two categories, according to patient status: COVID-19 (red), non-COVID-19 (blue), where

3 and ** indicate p values < 0.05 and 0.001, respectively, calculated with ANOVA; for each box, the middle horizontal line is at the median, and box margins are

first and third quartiles, with vertical lines extending ± 1.5-times the interquartile range.
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and 107 peptides unique to VWF (Figure 4C). Abundances of

both VWFAg2 and VWF multimer were increased and correlated

with COVID-19 severity (p values = 4.860 3 10�2 and 1.715 3

10�2, respectively). We propose that endothelial cells increase

synthesis of, package, and release both VWFAg2 and VWF mul-

timers, particularly in severe COVID-19 cases.

Fibronectin (FN1) works alongside VWF and fibrinogen to

mediate the interaction of platelets with endothelial surfaces of

injured vessels (Wang et al., 2014). Previous studies have re-

ported increased FN1 levels in COVID-19 patients, relative to

non-COVID-19 patients (Stukalov et al., 2020), but did not

distinguish cellular (cFN) and plasma (pFN) proteoforms. By

monitoring unique peptides (IAWESPQGQVSR for cFN and ESV-

PISDTIIPAVPPPTDLR for pFN), we specifically determined the

abundance of each and revealed that cFN was significantly

increased (p value = 2.8 3 10�6) in COVID-19 patients, relative

to non-COVID-19 patients, whereas pFN was not (Figure 4D).

Such a finding is of considerable interest given that forced

over-expression of cFN in plasma of mice is associated with

increased thrombo-inflammation (Dhanesha et al., 2019).
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Coagulation Cascade

Consistent with thewidely reported hypercoagulative phenotype

of COVID-19 patients (Becker, 2020; Lax et al., 2020; Goshua

et al., 2020), all our patients exhibited evidence of excessive clot-

ting in vivo, as demonstrated by the increased levels of circu-

lating fibrin D-dimer (Table 1). To further examine the coagulative

dysregulation in COVID-19 patients at a molecular level, we

deliberately conducted our proteomic analyses using plasma,

which retains clotting factors otherwise depleted in serum.

These plasma proteins, working alongside proteins of the vessel

wall and platelets, undergo a cascade of regulated proteolytic re-

actions to generate thrombin, which converts fibrinogen to fibrin

(Kattula et al., 2017). We detected significant increases in abun-

dance of fibrinogen alpha (FGA) and beta (FGB) in COVID-19

versus non-COVID-19 patient plasma, which was consistent

with the clinically measured fibrinogen (Figure S6; Table 1); how-

ever, gamma (FGG) chains showed less significant trends

in COVID-19 patients. We also observed decreases in

abundance of prothrombin (F2) and thrombin-activation factor

XIII (F13A1 and F13B) in COVID-19 samples compared with
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non-COVID-19, and these proteins were further decreased in the

most severe COVID-19 patients (Figures 4B and S5, Category

#3). Significant reductions and correlations with HFD-45 were

found for plasminogen (PLG), the zymogen precursor of plasmin

(Urano et al., 2018); kallikrein (KLKB1) and kininogen (KNG1),

which function in the intrinsic coagulation cascade leading to

generation of thrombin (Schmaier, 2016); heparin cofactor 2

(SERPIND1), which forms an inhibitory complex with thrombin

(Huntington, 2013); protein C (PROC), which is activated by

thrombin to activated protein C (APC) (Griffin et al., 2018); and

protein C inhibitor (SERPINA5) (Figures 4B and S6). The de-

creases of abundance of PROC and SERPINA5 with severity as-

sume greater significance when considered alongside the

finding that soluble plasma thrombomodulin (THBD) rivals

elevated VWF as a predictor of mortality in COVID-19 (Goshua

et al., 2020). THBD is normally tethered to the surface of endo-

thelial cells, where it forms a complex with thrombin that effi-

ciently activates PROC to APC (Ikezoe, 2015). APC also serves

to modulate inflammatory response, and administration of

recombinant APC mutant has been proposed as a therapy to

mitigate thrombo-inflammation, which occurs with ARDS and

in severe COVID-19 patients (Griffin and Lyden, 2020).

Our data are pertinent to current discourse on prevention and

treatment of the thrombotic diathesis in COVID-19. Several ser-

pin-protease interactions, modified by heparin and heparin-like

compounds, are being investigated as anticoagulant therapeu-

tics for COVID-19 patients (Cattaneo et al., 2020). Our data sug-

gest such compounds and alternative antithrombotic therapies

(e.g., anti-platelets) may also be useful in the subset of most

severely affected COVID-19 patients.

Acute Phase Response

Next, we evaluated acute phase proteins, i.e., proteins—

including S100A8, S100A9, SAA1, and SAA2—whose plasma

concentration changes by at least 25% during inflammatory dis-

orders as a result of reprogramming by cytokines, and these are

often secreted from the liver (Gabay and Kushner, 1999). Our

findings both support previous reports of significant increase in

abundance of these four proteins in COVID-19 patient samples

(p values = 1.673 3 10�3, 1.966 3 10�4, 2.830 3 10�2, and

9.71 3 10�3, respectively) and reveal their correlation with

severity as estimated by HFD-45 (p values = 1.408 3 10�8,

1.996 3 10�7, 1.808 3 10�4, and 1.420 3 10�5, respectively)

(Figures S6 and 4B, Category #4). We also found that attractin

(ATRN), a protein involved in chemotactic activity (Duke-Cohan

et al., 1998), decreased in abundance in COVID-19 samples

versus non-COVID-19 samples and was significantly associated

with severity (p value = 1.124 3 10�3). Four of these proteins

were also found in the cross-ome correlation analysis (Figure 3B),

where S100A8, S100A9, and SAA2 were negatively correlated

with plasmalogens, while ATRN was positively correlated with

these lipids.

Our data also revealed the increase in abundance of a liver-

derived protein transketolase (TKT). One of the top 219 signifi-

cant features (Figure 2), TKT was significantly elevated in

COVID-19 patient plasma (p value = 5.592 3 10�4, Table S1).

Other acute-phase proteins detected include GSN (vide supra)

and SERPINA3, both of which decreased in abundance in

COVID-19 patients and correlated with HFD-45 (p value =

7.823 3 10�4 for SERPINA3). In general, abundances of most
identified plasma proteins associated with the acute phase

response were significantly altered with COVID-19 status and

indicative of severity.

An InteractiveWebtool for Accessible Data Visualization
A primary goal of this study was to create a multi-omic compen-

dium of biomolecules and their abundances in COVID-19 that

could aid in the elucidation of disease pathophysiology and ther-

apeutic development. To make our dataset accessible, we have

developed a web-based tool with interactive visualizations that

allows for simple and quick navigation of our resource and per-

forms on-demand PCA, linear regression, differential expres-

sion, and hierarchical clustering analysis via a clustered heatmap

(https://covid-omics.app; Figure 5). The webtool provides inter-

active visualizations with supervised and unsupervised, and uni-

variate and multivariate, analysis of the omic datasets in the

context of highly curated clinical data. While the web resource

will enable accessibility of our dataset, the underlying relational

database and unprocessed data are also made freely available

(STAR Methods) to support reproducibility and further analysis

as desired.

To illustrate how these interactive visualizations may facilitate

biological insights, we focus on a standout in the proteomics da-

taset, cartilage acidic protein 1 (CRTAC1), which appears on the

diagonal axis of the PCA loadings plot separated in both prin-

cipal components 1 and 2 (Figure 5A). The biomolecule bar plots

and boxplots, found just below the PCA plot on the homepage,

show the per-sample abundance and distribution across sample

groups of this protein, respectively (Figure 5A). Collectively,

these data visualizations identify CRTAC1 as an important

feature in the innate structure of the proteomics data with a

distinct abundance distribution for each patient subgroup.

CRTAC1 is a secreted matrix-associated protein involved in

chondrocyte development and also belongs to the GO process

‘‘Olfactory Bulb Development’’ (GO:0021772), which is notable

given previous reports of anosmia in COVID-19 patients (Marino-

sci et al., 2020).

To learn how CRTAC1 relates to our clinical measurements,

such as HFD-45, the user can redirect to the linear regression

page, which provides scatter plots and calculations of R2 values

and (coefficient) p values between any biomolecule and clinical

covariate pair (Figure 5B). For the levels of CRTAC1 and HFD-

45, the linear regression tool reports the R2 value as 0.14 and a

p value of 1.704e-05 (n = 125). Checkboxes on the control panel

of the page allow users to select various patient subgroups and

independently calculate the metrics for them. For example, for

the COVID-19 subset, the R2 is 0.079 and p value is 4.490e-03

(n = 100) (Figure S7A), whereas for the non-COVID-19 subset

of patient samples, the R2 is 0.099 and p value is 1.254 e-01

(n = 25) (Figure S7B).

The third analysis enabled by the web tool is differential

expression. The page depicts a volcano plot, where effect size

represents the log2 of the fold-change of biomolecule abun-

dance in COVID-19 versus non-COVID-19 patient samples,

and significance is �log10 (p value). Here, the p value is calcu-

lated using a likelihood ratio that compares linear models with

and without possible confounders, including age, sex, and ICU

status. For any given biomolecule, an accompanying table

(data not shown) lists the effect size, p value, q value (adjusted
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Figure 5. Overview of the COVID-19 Multi-omics Webtool

(A) The homepage provides PCA scores and loadings plots (also see

STAR Methods). Selected biomolecules are presented in a barplot

and a boxplot. Boxplots have a horizontal line at the median and the

box extends to the first and third quartile with whiskers extending to

1.5-times the interquartile range. Each page provides buttons to

navigate to the other web tools.

(B) The differential expression page displays a multi-omics volcano

plot with the y axis representing �log10 (p values) where the p values

are derived from the analysis in Figure 2 and the x axis is the log2 fold-

change between the means of COVID-19 samples versus non-

COVID-19 samples.

(C) The linear regression page allows users to select any combination

of biomolecule and clinical measurement to analyze via univariate

linear regression. R2 and p values for the F-statistic are displayed on

the plot.

(D) The Clustergrammer page offers an interactive clustered heat-

map (see STAR Methods).
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Figure 6. Results from Analyses Demonstrating a Use-Case of this Multi-omic Resource

(A) Data splitting scheme for training and test sets from the 100 COVID-19 patients with all four omics datasets. A random 20%was held out to be used for model

evaluation, and the remaining 80% was used to determine the best hyperparameters with 5-fold cross validation.

(B) ExtraTrees classifier performance metrics on the test set after hyperparameter optimization using each of the four omic datasets separately for training or all

omics data combined.

(C) Macro-averaged receiver-operator characteristic curves for the models trained with multi-omic data, Charlson score, or both multi-omic data and Charl-

son score.

(D) Test set predictions of the extra trees model trained on the combined multi-omic dataset showing correct predictions as a function of the disease severity

defined by hospital-free days.

(E) Top 5 most important predictive features for each of the models trained on the four omic subsets (see Table S6). Feature importance for each set was

normalized to the most important feature.
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by false discovery rate [FDR]), type of statistical test, and asso-

ciated formula used to calculate the p values. This information

provides users with a convenient means of examining the impli-

cations of potential confounding variables. According to the

differential expression analysis, abundance of CRTAC1 is the

second-most reduced in the comparison of COVID-19 versus

non-COVID-19 patients (Figure 5C). Even after accounting for

age, sex, and ICU status, the adjusted p value of the reduction

in abundance of CRTAC1 in COVID-19 versus non-COVID-19

samples is 2.236e-08.

The final data visualization tool is an interactive heatmap, pow-

ered by Clustergrammer (Fernandez et al., 2017) and provided to

aid in investigation of how a biomolecule of interest may fit into

larger patterns across samples (Figure 5D). Here, CRTAC1

groups with a series of apolipoproteins (vide supra). Thus, as

exemplified by our examination of CRTAC1, the covid-omic-

s.app website provides a convenient interface to visualize and

analyze our multi-omics dataset.
A Resource Application: Machine Learning Approach
To demonstrate how the scientific community could leverage our

resource, we present a complementary analysis by utilizing our

multi-omic data to trainmachine-learningmodels that accurately

predict COVID-19 outcome. The data provided in this resource

can be leveraged for training clinically relevant models for pre-

dicting COVID-19 severity. The ability to predict COVID-19

severity early on in admission would help clinicians prioritize pa-

tients for treatments. Thus, we tested whether a machine-

learning model trained with the multi-omic data in our resource

could accurately predict COVID-19 severity. The 100 COVID-

19 patients with complete multi-omic profiles were assigned to

‘‘severe’’ and ‘‘less severe’’ groups based on HFD-45 using the

median day 26 as the threshold. They were then randomly split

into two groups: 80 were used for training and the remaining

20 were held out as a test set (Figure 6A). We optimized hyper-

parameters of ExtraTrees classification models using both the

combined data and each of the four omic datasets separately
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via 5-fold cross-validation on the training set. This comparison

shows that each omic dataset possessed a different predictive

utility (combined model AUROC = 0.93, average precision =

0.96; Figure 6B). Examination of the individual predictions from

the combined model show that 2/4 incorrect predictions were

for the patients with HFD-45 values near the median (Figure 6C),

all of whom were also misclassified by the omic subset models

(Figure S8). Although preexisting comorbidities are associated

with poor COVID-19 outcomes (Guan et al., 2020), the model

based on the combined multi-omic data was a substantially bet-

ter predictor of disease severity than a model based on Charlson

scores—the clinical estimate of 10-year survival (Richardson

et al., 2020). Adding Charlson scores to the multi-omic data

did not improve model performance (Figure 6D).

The use of the tree-based model also enabled determination

of the most predictive features (Figure 6E; Table S6). Some of

themoverlapwith other analyses presented above, such as plas-

malogen lipids and proteins S100A8 and S100A9. However, this

model-based prioritization also highlighted potentially disease-

relevant features not yet discussed. For example, for the metab-

olomic model, the most important features were the tryptophan

metabolites, kyneurinin and quinolinic acid, which are known

mediators of immune function and inflammation in various con-

texts (Heyes et al., 1992; Sofia et al., 2018) and have recently

been implicated in COVID-19 severity (Migaud et al., 2020).

Comparison of the top 25 predictive features from our proteomic

and metabolomic models to those from another COVID-19

severity prediction model (Shen et al., 2020) revealed several

overlapping features, including metabolite L-kynurenine and

proteins SAA2, SERPINA3, and LCP1. All in all, these results indi-

cate that ourmulti-omic data can be utilized to accurately predict

COVID-19 severity, and the significant features highlighted by

these models might further aid in understanding disease

pathophysiology.

DISCUSSION

In this cohort study, we used cutting-edge technologies to

monitor—in relation to the disease severity and outcomes—

thousands of diverse biomolecules from patients with and

without COVID-19. The overarching aim of this work was to cap-

ture the molecular signatures of COVID-19, correlate them with

disease severity and clinical metadata, and generate both test-

able hypotheses and opportunities for therapeutic intervention.

Altogether, we have made these data broadly available through

a free web resource—covid-omics.app—in the hope that ex-

perts worldwide will continue to mine these data.

This resource has revealed several exciting findings that merit

further exploration. First, our discovery that citrate, plasmenyl-

PCs containing 16:0, and pGSN are covarying and reduced

with COVID-19 severity is notable, especially because several

studies have found lower circulating gelsolin in COVID-19 pa-

tients (Messner et al., 2020; Shen et al., 2020). In contrast, other

studies have measured circulating citrate and have reported it to

be unchanged (Thomas et al., 2020; Shen et al., 2020) or mildly

reduced (Song et al., 2020). Similarly, conflicting results have

been reported with plasmenyl-PCs; Shen et al. found no signifi-

cant change in abundance with COVID-19 (Shen et al., 2020),

while Song et al. found that reductions in plasmenyl-PCs species
36 Cell Systems 12, 23–40, January 20, 2021
significantly negatively correlated with upregulated inflammatory

markers, CRP and IL-6 (Song et al., 2020). Loss of citrate, plas-

menyl-PCs, and pGSN would likely promote a poorer disease

outcome, and as previously suggested for GSN (Messner

et al., 2020), these molecules have the potential to be supple-

mented in patients to mitigate the dysregulated response.

pGSN, a circulating protein that regulates innate immunity by in-

hibiting proinflammatory mediators, inactivating bacterial endo-

toxins, and boosting endogenous antimicrobial peptides (Piktel

et al., 2018), is already being investigated as a therapy for treat-

ment of community-acquired pneumonia and is being investi-

gated for repurposing in COVID-19 treatment (NCT04358406).

Citrate has been tested as a regional anticoagulant in dialysis

procedures and has also been noted to reduce the negative ef-

fects of neutrophil degranulation (Gritters et al., 2006).

Monitoring and supplementing citrate levels could offer benefi-

cial effects in severe COVID-19 patients. Lastly, treatment with

statins or polyunsaturated lipid supplements could counteract

the reductions in HDL in severe COVID-19 patients; statin use

has already been associated with improved survival in COVID-

19 patients (Zhang et al., 2020a, 2020b, 2020c).

Our data not only confirm the pronounced hypercoagulative

signature of COVID-19 but also expand on our current under-

standing of its pathophysiology. Anticoagulation strategies in

non-COVID-19 critical illness have been extensively discussed,

but no treatment has yet been identified. Note that activated pro-

tein C has been tested but has not shown benefits in large trials

(Ranieri et al., 2012), and recent evidence suggests that heparin

use in COVID-19 patients may be beneficial. Our data strengthen

the motivation for additional candidate therapeutics (Messner

et al., 2020; Shen et al., 2020; Goshua et al., 2020; Connors

and Levy, 2020). For example, we observed significant reduction

in abundance of prothrombin and its correlation with disease

severity. Levels of another coagulation-related protein, cellular

fibronectin (cFN), not pFN, were highly increased in COVID-19

patients. Finally, we confirmed previously reported dysregulation

of VWF and circulating coagulation factors (Goshua et al., 2020),

using an orthogonal technique. These data provide a rationale for

more tailored antithrombotic treatments, including the addition

of several drugs that work synergistically at different levels,

e.g., coagulation and upstream endotheliopathy events.

Currently, the potential benefits of systemic corticosteroids in

COVID-19 patients are under intense debate (Wu et al., 2020;

Huang et al., 2020). While patients with severe non-COVID-19 in-

fectionsandARDS represent an aggregation of different transcrip-

tomic sub-phenotypes (Calfee et al., 2014; Davenport et al., 2016;

Bos et al., 2017), corticosteroids appear to be beneficial only to

specific patient subgroups (Antcliffe et al., 2019). Our RNA-seq

analysis will allow further characterization of immunomodulation

targets thatcouldeitherbe focusedongloballycapturedpathways

or on subpopulations associated with specific outcomes demon-

strating enriched features. Moreover, the identification of a leuko-

cyte and proteomic signature confirms earlier observations on the

critical role of neutrophil extracellular trap formation (NETosis) in

COVID-19andstrengthens thesearch fordrugs that targetspecific

steps in neutrophil activation and function for COVID-19 repurpos-

ing (Zuo et al., 2020; Barnes et al., 2020).

The use of machine learning revealed additional features

relevant to COVID-19 severity and underlined the utility of the
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multi-omics based model for predictions, as this model per-

formed better than the well-established Charlson comorbidity in-

dex. Moreover, adding the Charlson score as a variable to our

proposed model did not result in better predictive power. This

finding could indicate that the clinical score is highly collinear

with the multi-omic variables used by the model and that the

clinical observation cannot fully capture the features leading to

patient outcomes. Furthermore, the combination of leukocyte

transcripts with plasma biomolecules for predictive modeling

provides a valuable resource for future investigations.

All large-scale omics studies have limitations but, ideally, still

stimulate the generation of numerous testable hypotheses.

This work is no exception, and, in a very real sense, it represents

a starting point in the response to the urgent need to wholly

define this devastating disease. Future work should include a

larger and broader patient population. The samples derived

here came from a single center, and although our population is

racially diverse, it does not necessarily replicate factors related

to, among others, geography or population socioeconomic sta-

tus. Another limitation was that the control group was generated

by blindly enrolling patients presenting with COVID-19-compat-

ible symptoms.While this approach provided an important refer-

ence, not all of these non-COVID-19 patients that were admitted

to the ICU presented with the same criteria of ARDS. We recog-

nize this approach is not ideal and expect that future studies with

prospective enrollment of patients fully matching the present

COVID-19 clinical features will provide a better reference to the

current cohort.

The practicalities associated with study design and implemen-

tation during a pandemic presented another possible limitation.

For example, while we enrolled the patients near the time of

hospital admission, we could not control the period that elapsed

between the disease development and the blood sampling. Typi-

cally, most observational clinical ICU research is based on

inception cohort studies, in which the timeline is arbitrarily

defined by the moment of patient enrollment (Sakr et al., 2016).

Relevant to this study, previous research on the genomic land-

scape of patients with sepsis indicates the timing of blood

sampling in relation to ICU admission was not predictive of the

patients transcriptomic profiling (Davenport et al., 2016). Relat-

edly, we had no control of the various drugs administered to

the patients based on recommendations including azithromycin,

hydroxychloroquine, and others, which could have impacted the

overall COVID-19 data generated. We note, however, that our

detection of these therapeutics and their strong correlation

with COVID-19 adds credibility to the quality of our analytical

platform.

Disease burden was difficult to assess, and we relied upon the

metric of HFD-45. Ultimately, the data presented here conveys

that this metric is a good outcome measure; however, our study

was not powered to demonstrate the association of omic data

with survival, which is the most impactful patient-centered

outcome measure. Finally, our study relies on a single sample

per patient, which, despite reflecting the patient’s status to

some extent, is limited compared with trajectory analyses that

could be contributed by serial blood sample determinations.

Future studies will ideally have multiple temporal sampling time

points per patient to allow for better controlled longitudinal

severity correlations.
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Finfer, S., Gårdlund, B., Marshall, J.C., Rhodes, A., Artigas, A., et al. (2012).

Drotrecogin alfa (activated) in adults with septic shock. N. Engl. J. Med. 366,

2055–2064.

Reddy, K., Sinha, P., O’Kane, C.M., Gordon, A.C., Calfee, C.S., and McAuley,

D.F. (2020). Subphenotypes in critical care: translation into clinical practice.

Lancet Respir. Med. 8, 631–643.

Richardson, S., Hirsch, J.S., Narasimhan, M., Crawford, J.M., McGinn, T.,

Davidson, K.W., the Northwell COVID-19 Research Consortium, Barnaby,

D.P., Becker, L.B., Chelico, J.D., et al. (2020). Presenting characteristics, co-

morbidities, and outcomes Among 5700 patients hospitalized with COVID-19

in the New York City area. JAMA 323, 2052–2059.
Cell Systems 12, 23–40, January 20, 2021 39

http://refhub.elsevier.com/S2405-4712(20)30371-9/sref32
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref32
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref33
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref33
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref33
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref33
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref34
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref34
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref34
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref35
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref35
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref36
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref36
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref37
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref37
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref38
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref38
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref38
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref38
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref39
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref39
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref39
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref40
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref40
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref40
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref41
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref41
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref42
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref42
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref42
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref42
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref43
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref43
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref44
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref44
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref44
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref44
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref45
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref45
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref45
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref46
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref46
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref46
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref46
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref47
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref47
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref47
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref47
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref48
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref48
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref48
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref49
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref49
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref49
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref50
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref50
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref50
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref50
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref51
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref51
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref51
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref52
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref52
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref52
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref52
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref53
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref53
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref53
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref54
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref54
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref54
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref55
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref55
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref55
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref55
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref56
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref56
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref56
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref56
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref57
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref57
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref57
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref58
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref58
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref58
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref58
https://www.medrxiv.org/content/10.1101/2020.03.24.20042283v1.abstract
https://www.medrxiv.org/content/10.1101/2020.03.24.20042283v1.abstract
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref60
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref60
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref60
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref61
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref61
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref61
https://www.who.int/publications/i/item/covid-19-therapeutic-trial-synopsis
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref63
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref63
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref63
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref63
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref64
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref64
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref64
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref65
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref65
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref65
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref66
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref66
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref66
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref66
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref67
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref67
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref67
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref68
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref68
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref68
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref68
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref69
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref69
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref69
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref70
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref70
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref70
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref70
http://refhub.elsevier.com/S2405-4712(20)30371-9/sref70


ll
OPEN ACCESS Article
Risitano, A.M., Mastellos, D.C., Huber-Lang, M., Yancopoulou, D., Garlanda,

C., Ciceri, F., and Lambris, J.D. (2020). Complement as a target in COVID-

19? Nat. Rev. Immunol. 20, 343–344.

Sakr, Y., Ferrer, R., Reinhart, K., Beale, R., Rhodes, A., Moreno, R., Timsit, J.F.,

Brochard, L., Thompson, B.T., Rezende, E., et al. (2016). The intensive care

global study on severe acute respiratory infection (IC-GLOSSARI): a multi-

center, multinational, 14-day inception cohort study. Intensive Care Med. 42,

817–828.

Schmaier, A.H. (2016). The contact activation and kallikrein/kinin systems:

pathophysiologic and physiologic activities. J. Thromb. Haemost. 14, 28–39.

Seydoux, E., Homad, L.J., MacCamy, A.J., Parks, K.R., Hurlburt, N.K.,

Jennewein, M.F., Akins, N.R., Stuart, A.B., Wan, Y.H., Feng, J., et al. (2020).

Analysis of a SARS-CoV-2-infected individual reveals development of potent

neutralizing antibodies with limited somatic mutation. Immunity 53, 98–105.e5.

Shen, B., Yi, X., Sun, Y., Bi, X., Du, J., Zhang, C., Quan, S., Zhang, F., Sun, R.,

Qian, L., et al. (2020). Proteomic and metabolomic characterization of COVID-

19 patient sera. Cell 182, 59–72.e15.

Sievert, C. (2020). Interactive Web-Based Data Visualization with R, Plotly, and

Shiny (CRC Press).

Sinha, P., Matthay, M.A., and Calfee, C.S. (2020). Is a ‘cytokine storm’ relevant

to COVID-19? JAMA Intern. Med. 180, 1152–1154.

Sofia, M.A., Ciorba, M.A., Meckel, K., Lim, C.K., Guillemin, G.J., Weber, C.R.,

Bissonnette, M., and Pekow, J.R. (2018). Tryptophan metabolism through the

kynurenine pathway is associated with endoscopic inflammation in ulcerative

colitis. Inflamm. Bowel Dis. 24, 1471–1480.

Song, J.-W., Lam, S.M., Fan, X., Cao, W.-J., Wang, S.-Y., Tian, H., Chua, G.H.,

et al. (2020). Omics-driven systems interrogation of metabolic dysregulation in

covid-19 pathogenesis. Cell Metab. 32, 188–202.e5.

Stefely, J.A., Kwiecien, N.W., Freiberger, E.C., Richards, A.L., Jochem, A.,

Rush, M.J.P., Ulbrich, A., Robinson, K.P., Hutchins, P.D., Veling, M.T., et al.

(2016). Mitochondrial protein functions elucidated by multi-Omic mass spec-

trometry profiling. Nat. Biotechnol. 34, 1191–1197.

Stoermer, K.A., and Morrison, T.E. (2011). Complement and viral pathogen-

esis. Virology 411, 362–373.

Stukalov, A., Girault, V., Grass, V., Bergant, V., Karayel, O., Urban, C., Haas,

D.A., Huang, Y., Oubraham, L., andWang, A. (2020). Multi-level proteomics re-

veals host-perturbation strategies of SARS-CoV-2 and SARS-CoV. bioRxiv.

https://doi.org/10.1101/2020.06.17.156455.

R Core, Team (2017). R: a language and environment for statistical computing

(Vienna). http://finzi.psych.upenn.edu/R/library/dplR/doc/intro-dplR.pdf.

Thomas, T., Stefanoni, D., Reisz, J.A., Nemkov, T., Bertolone, L., Francis, R.O.,

Hudson, K.E., Zimring, J.C., Hansen, K.C., Hod, E.A., et al. (2020). COVID-19

infection alters kynurenine and fatty acid metabolism, correlating with IL-6

levels and renal status. JCI Insight 5, e140327.

Trinder, M., Walley, K.R., Boyd, J.H., and Brunham, L.R. (2020). Causal infer-

ence for genetically determined levels of high-density lipoprotein cholesterol

and risk of infectious disease. Arterioscler. Thromb. Vasc. Biol. 40, 267–278.

Twaddell, S.H., Baines, K.J., Grainge, C., and Gibson, P.G. (2019). The

emerging role of neutrophil extracellular traps in respiratory disease. Chest

156, 774–782.
40 Cell Systems 12, 23–40, January 20, 2021
Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M.Y., Geiger, T., Mann,

M., and Cox, J. (2016). The perseus computational platform for comprehensive

analysis of (prote)omics data. Nat. Methods 13, 731–740.

Urano, T., Castellino, F.J., and Suzuki, Y. (2018). Regulation of plasminogen

activation on cell surfaces and fibrin. J. Thromb. Haemost. 16, 1487–1497.

van Rossum, G., and Drake, F.L., Jr. (1995). Python reference manual,

Department of Computer Science [CS]. CWI https://ir.cwi.nl/pub/5008.

Venables, W.N., and Ripley, B.D. (2002). Modern Applied Statistics with S

(Springer). https://doi.org/10.1007/978-0-387-21706-2.

Wang, Y., Reheman, Adili, Spring, C.M., Kalantari, J., Marshall, A.H., Wolberg,

A.S., Gross, P.L., Weitz, J.I., Rand, M.L., Mosher, D.F., et al. (2014). Plasma

fibronectin supports hemostasis and regulates thrombosis. J. Clin. Invest.

124, 4281–4293.

Wang, Y., Gao, H., Kessinger, C.W., Schmaier, A., Jaffer, F.A., and Simon, D.I.

(2017). Myeloid-related Protein-14 regulates deep vein thrombosis. JCI Insight

2, e91356.

Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J.,Wang, B., Xiang, H., Cheng,

Z., Xiong, Y., and Yhao, Y. (2020a). Clinical characteristics of 138 hospitalized

patients With 2019 novel coronavirus-infected pneumonia in Wuhan, China.

JAMA 323, 1061–1069.

Wang, Y., Lu, X., Li, Y., Chen, H., Chen, T., Su, N., Huang, F., Zhou, J., Zhang,

B., Yan, F., et al. (2020b). Clinical Course and Outcomes of 344 intensive care

patients with COVID-19. Am. J. Respir. Crit. Care Med. 201, 1430–1434.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Human plasma, NaHep, pooled gender BioIVT Cat# HMN378062

Chemicals, Peptides, and Recombinant Proteins

Lysyl Endopeptidase (Lys-C) Wako Chemicals Cat# NC9242798

Sequencing Grade Modified Trypsin Promega Cat# V5111

MSTFA (N-Methyl-N-

trimethylsilyltrifluoroacetamide)

Thermo Fisher Scientific Cat# TS-48911

MTBE (tert-Butyl methyl ether), ACS

reagent, R99.0%

Sigma Aldrich Cat# 443808-1L

Pyridine for HPLC, R99.9% Sigma Aldrich Cat# 270407

2-Propanol (Optima� LC/MS) Fisher Scientific Cat# A461-4

Acetonitrile (Optima� LC/MS) Fisher Scientific Cat# A9554 (CS)

Methanol (Optima� LC/MS) Fisher Scientific Cat# A454SK-4

Water (Optima� LC/MS) Fisher Scientific Cat# W6-4

Pierce� Formic Acid, LC-MS Grade Thermo Scientific Cat# PI28905

TCEP HCl (tris(2-carboxyethyl)phosphine

hydrochloride) for biotechnology

VWR Cat# VWRVK831-10G

Critical Commercial Assays

LeukoLOCK� Total RNA Isolation System Thermo Fisher Scientific Cat# AM1923

Quantitative Colorimetric Peptide Assay Pierce Cat# 23275

Deposited Data

Mass spectrometry raw and analyzed data This study MassIVE: MSV000085703 https://doi.org/

10.25345/C5F74G

Raw fastq data and RSEM expression

estimates

This study GEO: GSE157103 https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?

acc=GSE157103

Software and Algorithms

Xcalibur Qual Browser Thermo Scientific V 4.0.27.10

Y3K-GC-Quantitation-Software Stefely et al 2016 https://github.com/coongroup/Y3K-GC-

Quantitation-Software

LipiDex v1.1.0 Hutchins et al 2018 https://github.com/coongroup/LipiDex;

Compound Discoverer Thermo Scientific V 2.1 and 3.1

MaxQuant Quantitative Software

v1.6.10.43

Cox et al 2014 https://www.maxquant.org/

Skyline Open Access Software v20.1 MacLean et al 2010 https://skyline.ms/wiki/home/software/

Skyline/page.view?name=default

R Statistical Software v3.3.3 and 3.6.2 R Core Team, 2017 https://www.r-project.org/

Python Programming Language v3.7.4 van Rossum and Drake, 1995 https://www.python.org/

Plotly Dash v1.12.0 Sievert, 2020 https://plotly-r.com

RSEM v1.3.0 Li and Dewey 2011 https://deweylab.github.io/RSEM/

EBSeq v1.26.0 Leng et al. 2013 https://www.bioconductor.org/packages/

release/bioc/html/EBSeq.html

Bowtie-2 v2.3.4.1 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

MASS v7.3-53 Venables and Ripley 2002 https://cran.r-project.org/web/packages/

MASS/index.html

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

SQLite https://www.sqlite.org V 3.32.0

Webtool covid-omics.app This study https://github.com/ijmiller2/COVID-

19_Multi-Omics/

Scikit-learn v0.23.0 Zou and Hastie 2005;

Pedregosa et al., 2011

https://scikit-learn.org/stable/

Other

ACQUITY UPLC CSH C18 Column, 130Å,

1.7 mm, 1 mm X 150 mm

Waters Cat# 186005294

TraceGOLD TG-5SilMS GC Columns;

0.25um film thickness; 0.25mm ID; 30m

length

Thermo Scientific Cat# 26096-1420

IonPac AS-11 HC strong anion-exchange

analytical column, 2 mm x 250 mm, 4 mm

particle diameter

Thermo Scientific Cat# 082313

Strata�-X 33 mm Polymeric Reversed

Phase, 10 mg / well, 96-Well Plates

Phenomenex Part# 8E-S100-AGB

Self-Pack PicoFrit Columns 360x75x10 New Objective Part# PF-360-75-10-N-5

1.7 mm, 130 Å pore size, Bridged Ethylene

Hybrid (BEH) C18 particles

Waters Cat# 186004690
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Ariel Jaitovich (jaitova@

amc.edu).

Materials Availability
This study did not generate any new reagents.

Data and Code Availability
- Mass spectrometry raw files and the SQLite database file have been deposited to the MassIVE database (accession number

MSV000085703; https://doi.org/10.25345/C5F74G). Raw fastq data and RSEM expression estimates are available at GEO

(accession GSE157103; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE157103).

- Original code for the data analysis and webtool creation is accessible via GitHub (https://github.com/ijmiller2/COVID-19_Multi-

Omics/).

- Scripts for reproducing figures in the manuscript can be found in the GitHub repository: https://github.com/ijmiller2/COVID-

19_Multi-Omics/

- Any additional information required to reproduce this work is available from the Lead Contact.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subject Enrollment
We conducted a single-center observational study of adult subjects admitted to either the medical floor or the medical intensive care

unit (MICU) of Albany Medical Center. Ethical approval was obtained from the Albany Medical College Committee on Research

Involving Human Subjects (IRB# 5670-20). Enrollment took place between April 6th, 2020 andMay 1st, 2020 and follow-up continued

until June 15, 2020. Patients were considered for enrollment if they were older than 18 years and were admitted to the hospital due to

symptoms compatible with COVID-19 infection. Exclusion criteria were imminent death or inability to provide consent, which was

obtained from the patient or a legally authorized representative. Patients who tested positive for COVID-19 were later assigned to

that specific group and analyzed accordingly, and the COVID-19 negative group was composed of the remaining individuals. Pre-

hospital comorbidities were determined by clinical history and with hospital documentation, and aggregated through the validated

Charlson comorbidity index (Charlson et al., 1987). Severity of critical illness at ICU admission was collected with the validated

APACHE II and SOFA scores (Ferreira et al., 2001). Sex and age of the subjects is summarized in Table 1 and available for each sub-

ject in the SQLite database table ‘deidentified_patient_metadata’ found in the MassIVE repository (https://massive.ucsd.edu/

ProteoSAFe/dataset.jsp?accession=MSV000085703).
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Selection of Outcome Measure
We intended to analyze the data with one encompassing outcome measure that fulfills the following criteria: 1) be able to combine

severity of disease with mortality in one single metric; 2) be amenable to both ICU and medical floor populations; 3) use a timeframe

that accounts for the fact that COVID-19 patients with respiratory failure require longer hospitalizations compared with non-COVID-

19 individuals (Wang et al., 2020a, 2020b); 4) consider that COVID-19 causes a linear disease’s deterioration pattern that transition

frommild respiratory compromise to respiratory failure, followed by respiratory distress requiringmechanical ventilatory support and

eventually death. Thus, we selected the composite outcome variable ‘‘hospital-free days at day 45’’ (HFD-45), which assigns zero

value to patients requiring admission longer than 45 days or who die during the admission, and progressively more free days depend-

ing on the hospitalization length.

METHOD DETAILS

Sample Collection, Storage, and Aliquoting
At enrollment, blood samples were collected in two plasma preparation tubes (PPT) tubes. One tube, used for Leukocyte RNA

sequencing, was processed through LeukoLOCK� filters, and the remaining blood was centrifuged for plasma separation and ali-

quoted for further analysis. RNA was then eluted from LeukoLOCK filters following manufacturer recommendation, and samples

were stored at -80�C degrees for later analyses.

Samples were shipped on dry ice and kept in the -80�C freezer until analysis was performed. For MS acquisition, samples were

randomly assigned into seven analytical batches. Samples for each batch were thawed on ice and mixed gently by tapping on a

hard surface prior to aliquoting. In addition to patient plasma samples, an aliquot of pooled, mixed-gender plasma sample (BioIVT,

Human Plasma NaHep Lot# HMN378062) was used as a batch control in mass spectrometry based assays. An aliquot of pooled

plasma was extracted with each batch.

Metabolomics MS Analyses
Sample Preparation

100 mL of plasma was aliquoted into 750 mL of Methyl Tert-Butyl Ether in a 1.5 mL Eppendorf tubes labelled with the sample name.

This formed a biphasic separation, which was then vortexed for 1-2 s and shaken on an orbital mixer for 15minutes. Then, 350 mL of a

1:1 chilled water:methanol mixture was added to each tube and then vortexed for 20 seconds and then centrifuged at 4�C for 2 mi-

nutes at a speed of 14,000 x g to separate the fractions completely. 250 mL of the bottom layer of this biphasic extraction was pipetted

into a 1.5 mL Eppendorf tube containing 250 mL acetonitrile to precipitate proteins. This mixture was centrifuged at 4�C for 2 minutes

at a speed of 14000 x g to pellet the protein completely. GC-MS: 100 mL of the extract was removed from the tube and collected into a

low volume borosilicate glass autosampler vial with tapered insert. The volume of extract was dried in a vacuum concentrator until

completely dry. The sample was resuspended in 50 mL methoxyamine hydrochloride solution (20mg/mL, pyridine solution), vortexed

for 15 s and incubated at 37�C for 90 minutes. Then, 100 mL of N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) was added, vor-

texed for 15 s and heated at 60�C for an additional 30 minutes. The sample was cooled at room temperature and then quickly centri-

fuged to ensure no sample remained near the vial’s cap. Samples were placed in the instrument autosampler at room temperature to

await injection with no more than 24 hours between final centrifugation and analysis.

GC-MS

Samples were analyzed using a GC-MS instrument comprising a Trace 1310 GC coupled to a Q Exactive Orbitrap mass spectrom-

eter (Thermo Scientific). A temperature gradient ranging from 50�C to 320�C was employed spanning a total runtime of 30 min. An-

alytes were injected onto a 30m TraceGOLD TG-5SILMS column (Thermo Scientific) using a 1:25 split at a temperature of 275�C and

ionized using electron ionization (EI). The mass spectrometer was operated in full scan mode using a resolution of 30,000.

AEX-LC-MS/MS

100 mL of protein precipitated solution (as for GC-MS analysis) was aliquoted into a low volume borosilicate glass autosampler vial

with tapered insert. This volume was dried in a vacuum concentrator until completely dry. Then 100 mL of water was added to each

tube to resuspend the contents and the sample was vortexed for 10 s to resuspend and then quickly centrifuged to ensure no sample

remained near the vial’s cap. Samples were placed in the instrument’s autosampler at 4�C to await injection with no more than 30

hours between final centrifugation and analysis. LC-MS/MS analyses were performed using a randomized sample order with a

10 mL injection volume. An Ultimate HPG-3400RS pump and WPS-3000RS autosampler cooled to 4�C (Thermo Fisher) were mated

to an IonPac AS-11 HC strong anion-exchange analytical column (2 mm x 250 mm, 4 mm particle diameter, Thermo Scientific) with

AG-11 HC guard column (2 mm x 50 mm) heated to 40�C. Mobile phase A (Waters) and mobile phase B (100 mM NaOH) were de-

gassed and used in a gradient to elute analytes of interest. Column eluent passed through a 2 mm AERS 500e suppressor operated

via a reagent-free controller (RFC-10, Dionex) set to 50 mA. The suppressor was operated in external water regeneration mode with

water delivered at 0.5 mL/min by an Agilent 1100 binary pump. The multi-step gradient method was performed at 0.350 mL/min and

performed as follows: 0.0 to 5.0min (hold at 12.5%B), 5.0 to 10.0min (12.5 - 20%B), 10.0 to 17.5min (20 - 27.5%B), 17.5 to 22.5min

(27.5 - 42.5%B), 22.5 to 33.5min(42.5 - 95%B), 33.5 to 34.0min (hold at 95%B, increase to 0.400mL/min), 34.0 to 43.0 (hold at 95%

B, 0.400mL/min), 43.0 to 43.5min (95 - 12.5%B, hold at 0.400mL/min). The LC systemwas coupled to a TSQQuantiva Triple Quad-

rupole mass spectrometer (Thermo Scientific) by a heated ESI source. The Ion Transfer Tube and Vaporizer Temp were kept at

350�C. Sheath gas was set to 18 units, Auxiliary Gas to 4 units, and Sweep Gas to 1 unit. Both positive and negative spray voltage
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was static and set to 3,800 V. For targeted analysis the MSwas operated in single reaction monitoring (SRM) mode acquiring sched-

uled, targeted scans to quantify selected metabolite transitions. All transitions and collision energies were previously optimized by

infusion of each metabolite. The retention time window ranged from 3.5 min - 10 min and the ‘‘Use Calibrated RF Lens’’ option was

selected. MS acquisition parameters were 0.7 FWHM resolution for Q1 and 1.2 FWHM for Q3, 0.8 s cycle time, 1.5 mTorr CID gas,

and 30 s Chrom Filter.

Shotgun Proteomics
Sample Preparation

5ml plasma from each sample were aliquoted into 1.5 ml Eppendorf tubes, containing 50 ml Lysis Buffer A (5.4 M guanidinium hydro-

chloride, 50mM Tris, 10mM TCEP, 40 mM chloroacetamide, pH ~ 8). After brief, gentle mixing by inversion, tubes were placed into a

sand bath and boiled at 100-110�C for 10 min. Samples were then allowed to cool down to room temperature, and 450 ml methanol

(up to ~90% vol/vol) were added. Proteins were precipitated by spinning at 13,000 g for 6min, and supernatants were discarded. The

tubes were briefly air dried, and protein pellets were resuspended in 100 ml Lysis Buffer B (8 M urea, 100 mM Tris, 10 mM TCEP,

40 mM chloroacetamide, pH ~ 8). Samples were vortexed for ~10 min to ensure the pellets dissolved completely. 7 ml LysC (1:50

enzyme: protein ratio; Wako Chemicals, Richmond, VA) was added to each sample; tubes were inverted to mix and incubated at

37�C for 1 hour. Then samples were diluted with 450 ml 100 mM Tris (pH=8.0), and 15 ml trypsin (1:50 enzyme: protein ratio; Promega,

Madison, WI) was added. After 1 hr incubation at 37�C samples were acidified with 10% trifluoroacetic acid to final concentration of

1%. Digested peptides were extracted using Strata X SPE cartridges in a 96-well plate format. Samples were dried in a SpeedVac

(Thermo Fisher, Waltham, MA) and resuspended in 0.2% formic acid. Peptide concentrations were determined using Quantitative

Colorimetric Peptide Assay (Pierce, Rockford, IL), and 1 mg peptides were used in each analysis.NanoLC-MS/MS. A capillary column

was fabricated in-house by filling self-pack PicoFrit 75–360 mm inner-outer diameter bare-fused silica shells with integrated 10 mm

electrospray emitter tips (New Objective, Woburn, MA) with 1.7 mm, 130 Å pore size, Bridged Ethylene Hybrid (BEH) C18 particles

(Waters, Milford, MA) to a final length of ~40 cm using in-house built ultra-high-pressure column packing station (Shishkova et al.

Analytical Chem 2018). The column was installed on a Dionex Ultimate 3000 nano HPLC system (Thermo Fisher, Sunnyvale, CA)

and kept at 53�C inside an in-house made heater. The gradient was delivered using mobile phase A (0.2% formic acid in water)

and mobile phase B (0.2% formic acid in 70% HPLC-MS grade acetonitrile) at a flow rate of 300 nl/min over a 90-minute gradient,

including column wash and re-equilibration time. Electrosprayed peptide ions were analyzed on a quadrupole-ion trap-Orbitrap

hybrid Eclipse� mass spectrometer (Thermo Scientific, San Jose, CA). Orbitrap survey scans were performed at a resolving power

of 240,000 at 200 m/z with normalized AGC target of 250% ions and maximum injection time of 50 ms. The instrument was operated

in the Top Speed mode with 1 s cycle time using an advanced precursor determination algorithm(Hebert et al., 2018) for monoiso-

topic precursor selection. Precursors were isolated in the quadrupole with an isolation window of 0.5 Th. Tandem MS scans were

performed in the ion trap using turbo scan rate on precursors with 2-5 charge states using HCD fragmentation with normalized colli-

sion energy of 25 and dynamic exclusion of 10 s. Normalized ion trap MS/MS ion count target was set to 300% with the maximum

injection time of 14 ms and the fixed m/z range of 150–1,350.

Parallel Reaction Monitoring (PRM)
Tryptic plasma peptides, generated for shotgun proteomics, were separated over 35-min gradients using the Dionex Ultimate 3000

nano HPLC system. Five peptide ions, whose sequences were representative of cellular gelsolin (cGSN), plasma GSN (pGSN) or

shared between the two isoforms, were sequentially targeted for MS2 analysis using Orbitrap Eclipse for the length of five minute

windows centered around their expected retention times (Table S5). Precursor ions were isolated using a quadrupole with 1.3 Da

isolation window and fragmented using HCD with an NCE of 25. Orbitrap MS2 scans of all fragments were performed over a 150-

2,000 m/z scan range at a resolving power of 60,000 at m/z of 200 with an AGC target of 2x105 ions and maximum injection time

of 350 ms.

Lipidomics
Sample Preparation

20 mL of plasmawas extracted with 500 mL of ice-cold extraction solvent containing 3:1:1 n-Butanol:water:acetonitrile. Samples were

vortexed for 10 s, incubated on ice for 5 min, vortexed for another 10 s, and then centrifuged at 14,000 x g for 2 min to precipitate

protein. 200 mL of the supernatant was dried by vacuum concentration in amber glass autosampler vials and resuspended in 100 mL

of 9:1 Methanol:Toluene. Instrumental Analysis: for LC-MS analysis, 10 mL of extract was injected by a Vanquish Split Sampler HT

autosampler (Thermo Scientific) onto an Acquity CSH C18 column held at 50�C (100 mm x 2.1 mm x 1.7 mm particle size; Waters)

using a Vanquish Binary Pump (200 mL/min flow rate; Thermo Scientific). Mobile phase A was 0.2% formic acid in water, and mobile

phase B was 0.2% formic acid in IPA:ACN (90:10, v/v) with 10 mM ammonium formate. Mobile phase B was initially held at 5% for

1 min and then increased to 40% over 3 min. Mobile phase B was further increased to 70% over 11 min, then raised to 80.5% over

4 min, raised to 85% over next 2 min, raised to 89.5% over next 5 min, raised to 91% over next 3 min, and finally raised to 100% over

5 min and held at 100% for 5 min. The column was re-equilibrated with mobile phase B at 5% for 9 min before the next injection. The

LC system was coupled to a Q Exactive HF Orbitrap mass spectrometer through a heated electrospray ionization (HESI II) source

(Thermo Scientific). Source conditions were as follows: HESI II and capillary temperature at 275�C, sheath gas flow rate at 30 units,

aux gas flow rate at 6 units, sweep gas flow rate at 0 units, spray voltage at |4.5 kV| for both positive and negative modes, and S-lens
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RF at 60.0 units. The MS was operated in a polarity switching mode acquiring positive and negative full MS and MS2 spectra (Top2)

within the same injection. Acquisition parameters for full MS scans in both modes were 30,000 resolution, 1 3 106 automatic gain

control (AGC) target, 100 ms ion accumulation time (max IT), and 200 to 1600 m/z scan range. MS2 scans in both modes were

then performed at 30,000 resolution, 13 105 AGC target, 50 ms max IT, 1.0 m/z isolation window, stepped normalized collision en-

ergy (NCE) at 20, 30, 40, and a 30.0 s dynamic exclusion.

RNA-Seq
Librarieswere standardized to 2nM. Paired-end 2x50bp sequencingwas performed using standard SBS chemistry (v3) on an Illumina

NovaSeq6000 sequencer. Images were analyzed using the standard Illumina Pipeline (version 1.8.2). Two samples did not pass qual-

ity control criteria and were excluded from further analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Metabolomics Data Processing
GC-MS

GC-MS raw files were processed using a software suite developed in-house that is available at https://github.com/coongroup.

Following data acquisition, raw EI-GC/MS spectral data was deconvolved into chromatographic features and then grouped into fea-

tures based on co-elution. Only featureswith at least 10 fragment ions and present in 33%of samples were kept. Feature groups from

samples and background were compared, and only feature groups greater than 3-fold higher than background were retained. Com-

pound identifications for the metabolites analyzed were assigned by comparing deconvolved high-resolution spectra against unit-

resolution reference spectra present in the NIST 12MS/EI library as well as to authentic standards run in-house. To calculate spectral

similarity between experimental and reference spectra, a weighted dot product calculation was used.Metabolites lacking a confident

identification were classified as ‘‘Unknown metabolites’’ and appended a unique identifier based on retention time. Peak heights of

specified quant m/z were used to represent feature (metabolite) abundance. The data set was also processed through, where we

applied a robust linear regression approach, rlm() function (Marazzi et al., 1993), non- log2 transformed intensity values versus run

order, to normalize for run order effects on signal. AEX-LC-MS/MS: raw files were processed using Xcalibur Qual Browser

(v4.0.27.10, Thermo Scientific) with results exported and further processed using Microsoft Excel 2010. The prepared standard so-

lution was used to locate appropriate peaks for peak area analysis.

Proteomics Data Processing
Shotgun Proteomics

raw files were searched using MaxQuant quantitative software package (Cox et al., 2014) (version 1.6.10.43) against UniProt Homo

Sapiens database (downloaded on 6.18.2019), containing protein isoforms and computationally predicted proteins. If not specified,

default MaxQuant settings were used. LFQ quantification was performed using LFQminimum ratio count of 1 and noMS/MS require-

ment for LFQ comparisons. iBAQ quantitation and ‘‘match between runs’’ were enabled with default settings. ITMSMS/MS tolerance

was set to 0.35 Da. Lists of quantified protein groups were filtered to remove reverse identifications, potential contaminants, and pro-

teins identified only by a modification site. LFQ abundance values were log2 transformed. Missing quantitative values were imputed

by randomly drawing values from the left tail of the normal distribution of all measured protein abundance values (Tyanova et al.,

2016). Protein groups that contained more than 50%missing values were removed from final analyses. Relative standard deviations

(RSDs) for each protein group quantified across all seven technical replicates of healthy plasma controls were calculated, and pro-

teins with RSD greater than 30% were removed from final analyses. PRM: identification and quantification of targeted peptides for

PRM analysis were performed using Skyline open access software package (version 20.1). 4-5 most intense and specific transitions

were used to quantify peptide abundances, and area-under-the-curve measurements for each peptide were exported for further

analysis.

Lipidomics Data Processing
The LC–MSdata were processed using Compound Discoverer 2.1 (Thermo Scientific) and LipiDex (Hutchins et al., 2018) (v. 1.1.0). All

peaks between 1 min and 45 min retention time and 100 Da to 5000 Da MS1 precursor mass were grouped into distinct chromato-

graphic profiles (i.e., compound groups) and aligned using a 10-ppmmass and 0.3min retention time tolerance. Profiles not reaching

a minimum peak intensity of 5x10^5, a maximum peak-width of 0.75, a signal-to-noise (S/N) ratio of 3, and a 3-fold intensity increase

over blanks were excluded from further processing. MS/MS spectra were searched against an in-silico generated lipid spectral li-

brary containing 35,000 unique molecular compositions representing 48 distinct lipid classes (LipiDex library ‘‘LipiDex_HCD_For-

mic’’, with a full range of acyl-chains included). Spectral matches with a dot product score greater than 500 and a reverse dot product

score greater than 700 were retained for further analysis, with a minimum 75% spectral purity for designating fatty acid composition.

Removed from the data set were adducts, class IDs greater than 3.5 median absolute retention time deviation (M.A.D. RT) of each

other, and features found in less than 3 files. Data were additionally searched with Compound Discoverer 3.1 with the discovery me-

tabolomics nodes for additional spectral matching to mzCloud andmzVault libraries but retaining the feature group and peak picking

settings as detailed for the Compound Discoverer 2.1 analysis.
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RNA-Seq Data Processing
All RNA transcripts were downloaded from the NCBI refseq ftp site (wget ftp://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/mRNA_Prot/

*.rna.fna.gz ). Only mRNA (accessions NM_xxxx and XM_xxxx) and rRNA (excluding 5.8S) was then extracted, and immunoglobulin

transcripts were downloaded from ENSEMBL (IG_C, IG_D, IG_J and IG_V ). We created a file mapping accession numbers to gene

symbols, and then used rsem-prepare-reference to build a bowtie-2 reference database. Fastq files were trimmed and filtered using

a custom algorithm tailored to improve quality scores and maximize retained reads in paired-end data. RNA-Seq expression estima-

tion was performed by RSEM v 1.3.0 (parameters: seed-length=20, no-qualities, bowtie2-k=200, bowtie2-sensitivity-level=sensitive)

(Li and Dewey, 2011), with bowtie-2 (v 2.3.4.1) for the alignment step (Langmead and Salzberg, 2012), using the custom hg38 refer-

ence described above. After the collation of expression estimates, hemoglobin transcripts were removed from further analysis, and

TPM values were rescaled to total 1,000,000 in each sample. Differential Expression analysis was performed using the EBSeq pack-

age (v 1.26.0) (Leng et al., 2013) in R (v 3.6.2).

Principal Component Analysis
With log2() transformed abundancemeasurements from patient samples that had transcript, protein, lipids, and small molecule mea-

surements (complete cases, n=125), we performed principal component analysis (PCA) using the R statistical and graphing environ-

ment (R version 3.3.3) and the function prcomp(). With this method, log2() transformed data were scaled to a mean equal to zero prior

to PCA analysis.

Determining Significance with COVID-19 Status
Log2 normalized abundance values were used as a response variable and the following models were fit against the data using the R

statistical and graphing environment and lm() function (R version 3.3.3) (R Core, Team, 2017).

(1) Normalized_abundance ~ COVID status + Age + Sex + ICU status

(2) Normalized_abudnace ~ Age + Sex + ICU status

Models (1) and (2) were compared using the anova() function in R, which returns the log-likelihood ratio and significance. The

p.adjust() function was applied to resulting p-value tables using the ‘fdr’ method to return adjusted p-values. Included in the database

‘pvalues’ table are p-values calculated with robust methods: linear regression using the rlm() function from the MASS package (Ven-

ables and Ripley, 2002) and likelihood ratio comparisons using the lrtest() function in the lmtest package in R.

Determining Significance with HFD-45
HFD-45 were used as the response variable and the following models were fit against the data using the lm() function in R.

(3) HFD-45 ~ normalized_abundance + Age + Sex

(4) HFD-45 ~ Age + Sex

Models (3) and (4) were compared using the anova() function in R which returns the log-likelihood ratio and significance. The

p.adjust() function was applied to resulting p-value tables using the ‘fdr’ method to return adjusted p-values. As above, we have

also included in the database p-values calculated with robust methods: linear regression using the rlm() function from the MASS

package (Venables and Ripley, 2002) and likelihood ratio comparisons using the lrtest() function in the lmtest package in R.

Elastic Net Regression Analysis on HFD-45
We fit a least-squares, linear regression model with an elastic net penalty (Zou and Hastie, 2005) using each molecule’s value for all

COVID-19 patients as covariates and HFD-45 as the response variable. For the transcriptomic data, we first transform the transcripts

per million (TPM) output from RSEM using log(TPM+1). We also include age and gender as covariates. Specifically, elastic net solves

the following optimization problem:

argminb

1

2n
jjy � Xbjj22 + lajjbjj1 +

1

2
lð1�aÞjjbjj22

where n is the number of training samples, c is thematrix of covariates, y are the response variables, b are themodel coefficients, l is

a parameter that sets the strength of regularization, and a is a parameter that balances the strength of the L1 and L2 penalty-terms.

To determine the parameters for the elastic netmodel (i.e. a and l), we performed a grid search over a set of pairs of values for these

two parameters where for each set of parameters, we perform five-fold cross-validation and evaluate each trained model according

to the mean squared error on the held-out test set. We selected the best parameters according to this grid search and then used

these parameters to fit the full dataset.

GO and Molecular Class Enrichment Analysis

GO biological processes were obtained fromUniProt for transcripts and proteins. These terms were used, in addition to terms based

on compound class (e.g., triglyceride), to perform a Fisher’s exact test for biomolecules within a subset relative to all measured bio-

molecules (phyper() function in R).
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Correlation Analysis
Cor.test() function in R was used to perform cross-ome correlation analysis using method = Kendall. The Kendall correlation method

is a rank-based approach and was chosen because it performs well with non-parametric data and, in contrast to Spearman, can

perform better when values of the same rank occur (Arndt et al., 1999).

Creation of Covid-omics.app
The webtool was developed in Python (3.7.4) using the Plotly Dash package (1.12.0), and the source code is accessible via GitHub

(https://github.com/ijmiller2/COVID-19_Multi-Omics/), under the src/dash directory. All package versions are described in the requir-

ements.txt file. The R2 and p-value metrics displayed on the linear regression page are calculated using the statsmodels (0.11.1) li-

brary in Python. Note that, because the transcriptomics and lipidomics datasets have thousands of features, scatter plots in the

webtool (including the volcano plot on the differential expression page and the loadings plot on the PCA page), only the top 1,000

features (ranked by variance across samples) are displayed to ensure reasonable speed and performance from the web server. How-

ever, all biomolecules that passed QC cutoffs are queryable using their respective drop down tools and available in the curated

SQLite database (see Data and Code Availability).

ExtraTrees Classification of Cases
Molecular measurements of metabolites, lipids, proteins, and transcripts were read into Python from the SQLite database. Note un-

known features detected in the metabolomic and lipidomic analyses were excluded from machine learning models. Patients were

filtered to include only those with all four omic datasets, resulting in a total of 100 COVID-19 patients. 20% of the data was randomly

held aside to be the true test set, and the other 80% of the data was used for 5-fold cross validation to determine the best model

hyperparameters. Multiple classification models were compared with scikit-learn (Pedregosa et al., 2011), and Extratrees Classifica-

tionwas found to perform best and used for further modeling. Themedian HFD-45 of the 100 patients was chosen to split the patients

into severe and less severe (26 days). ExtraTrees classifier hyperparameters were optimized separately for each omic data subset or

the combinedmulti-omic data. Five folds were fitted for each of 5,940 candidates, totalling 29,700model fits per dataset. A grid of the

following parameters were tested: ’n_estimators’: [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000], ’max_features’: [’auto’, ’sqrt’,

’log2’], ’max_depth’: [10, 31, 52, 73, 94, 115, 136, 157, 178, 200, None], ’min_samples_split’: [2, 5, 10], ’min_samples_leaf’: [1, 2, 4],

’bootstrap’: [True, False]. All metrics were computed with the standard functions in scikit-learn, and the reported feature importances

are the Gini type. All code is available on github as a jupyter notebook along with the python environment.yml for building the unique

python environment with anaconda.
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