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Abstract

Background—Using latent class analysis (LCA), in five randomized control trial (RCT) cohorts, 

two distinct phenotypes of ARDS have been identified (hypo-inflammatory and hyper-

inflammatory). The phenotypes are associated with differential outcomes and treatment response. 

The objective of this project was to develop parsimonious classifier models for phenotype 

identification that could be accurate and feasible to use in the clinical setting.

Methods—In this retrospective study, three ARDS network RCT cohorts (ARMA, ALVEOLI, 

and FACTT) were used as the derivation dataset (N=2022), and a fourth (SAILS) was used as the 

validation dataset (N=715). LCA-derived phenotypes in all of these cohorts served as the reference 

standard. Machine-learning algorithms were used to select important classifier variables, which 

were then used to develop nested logistic regression models. The best logistic regression models 

based on parsimony and predictive accuracy were then evaluated in the validation dataset. Finally, 

the models’ prognostic validity was tested in two external ARDS clinical trial datasets (START 

and HARP-2).
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Findings—The six most important classifier variables were IL-8, IL-6, protein C, soluble TNF-

receptor-1, bicarbonate, and vasopressor-use. From the nested models, 3-variable (IL-8, 

bicarbonate, and protein C) and 4-variable models (3-variable plus vasopressor use) were 

adjudicated to be the best performing. In the validation cohort, both models showed good accuracy 

(AUC 0·94; 95% CI: 0·92–0·95 and 0·95; 95% CI: 0·93–0·96 respectively). In the external 

datasets, 3-variable models developed in the derivation dataset identified two phenotypes with 

distinct clinical features and outcomes consistent with prior findings, including differential 

survival with simvastatin in HARP-2.

Interpretation—ARDS phenotypes can be accurately identified with simple classifier models 

using 3–4 variables. Pending the development of real-time testing for key biomarkers and 

prospective validation, these models could facilitate identification of ARDS phenotypes to enable 

their application in clinical trials and practice.

Introduction

Despite over 50 years of research, disappointingly few clinical trials in the acute respiratory 

distress syndrome (ARDS) have resulted in positive findings. A few trials that have 

succeeded include low tidal volume ventilation, prone-positioning and fluid-conservative 

strategies.1–3 Tellingly, all these interventions were designed to improve supportive care. No 

clinical trials testing pharmacological interventions in ARDS have identified a benefit. The 

broad clinical definition of ARDS and the ensuing heterogeneity in aetiology and 

pathophysiology coalesced under this definition are increasingly implicated as one of the 

reasons for these “negative” trials.4 To address the issue of heterogeneity, researchers have 

recently used latent class analysis (LCA) in ARDS. Two phenotypes, termed hyper-

inflammatory and hypo-inflammatory, have been consistently identified in five randomized 

controlled trials (RCTs) cohorts of ARDS.5–8 Mortality and other clinical outcomes are 

worse in the hyper-inflammatory phenotype.

Whilst other studies have used clinical data to identify phenotypes in ARDS that may be 

useful for prognostic enrichment,9,10 LCA-derived ARDS phenotypes also offer the 

potential for predictive enrichment. In secondary analyses of two RCTs, the LCA-derived 

phenotypes responded differently to positive-end expiratory pressure (PEEP)5 and fluid 

therapy6. Recently, in a secondary analysis of the completed Hydroxymethylglutaryl-CoA 

reductase inhibition with simvastatin in Acute lung injury to Reduce Pulmonary dysfunction 

(HARP-2) trial,11 a survival benefit was observed in the hyper-inflammatory phenotype in 

patients randomized to simvastatin compared to placebo.7 No treatment effects were 

observed in the original RCTs. These findings suggest a potential route for prognostic and 

predictive enrichment in ARDS trials.

Although these results are promising, key barriers limit the identification of these ARDS 

phenotypes in clinical practice. Most notably, the complexity of the described LCA models, 

which can consist of up to 40 predictor variables, renders them impractical for prospective 

clinical use. The main hypothesis of this study was that a simpler model consisting of a 

maximum of six variables could accurately classify ARDS phenotypes.
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In a prior study, a 3-variable model was shown to identify these phenotypes with good 

accuracy.6 The model, however, had several limitations. Most pertinently, the model used z-

scaled values of the classifier variables, rendering them unsuitable for prospective use 

because prior knowledge of the variables’ population distribution would be necessary. 

Additionally, the model was derived using a single RCT cohort and was variably accurate in 

independent cohorts, suggesting suboptimal stability.6 Further, differential treatment effects 

observed with the original LCA-models were not observed when patients were classified 

using this model.

The primary objective of this study was to develop and validate parsimonious models that 

could ultimately be used prospectively to identify ARDS phenotypes. To improve model 

performance and increase their generalizability, a combined cohort of three RCTs was used 

to develop the models. Next, three contemporaneous ARDS RCTs, SAILS (Statins for 

Acutely injured lungs from Sepsis), HARP-2, and START (Stem cells for ARDS treatment) 

were used to evaluate model performance. The final objective was to test whether, as with 

LCA-derived phenotypes, a differential treatment effect with simvastatin was observed in 

phenotypes determined by these parsimonious models in HARP-2.

Methods

Study Population

Two datasets were generated. The ‘derivation’ dataset was used for variable selection and 

model development. This dataset combined three NHLBI ARDS Network’s RCTs, namely, 

ARMA (high versus low tidal volume)1, ALVEOLI (high versus low positive end-expiratory 

pressure)12, and FACCT (conservative versus liberal fluid management).3 For the primary 

analysis, the ‘validation dataset’ was used to evaluate the accuracy of two of the ‘best’ 

performing models from the derivation dataset. The validation dataset was derived from the 

most contemporaneous NHLBI ARDS Network RCT testing rosuvastatin versus placebo in 

sepsisrelated ARDS.13 Selected trial and population baseline characteristics are presented in 

Table S1. Additional details on trial protocols and study populations can be found in the 

original studies.

Data Synthesis and Analysis

Overview of primary analysis

An overview of the primary analysis plan devised a priori is outlined in Figure 1. Briefly, 

LCA was performed on the derivation dataset (N = 2022), and the resultant phenotypes 

served as both the dependent variable for machine learning models that were developed for 

variable selection and as the reference standard to test model performance. The most 

important variables were, in turn, used to develop nested logistic regression classifier 

models. Of these, the two ‘best’ models were used for out-of-sample testing in the validation 

dataset. LCA-derived phenotype assignment in the validation dataset (N = 715) was 

generated in a prior study and served as the reference standard to test model accuracy.8
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Latent Class Analysis

We used LCA in the derivation dataset to identify the optimal number of classes that best fit 

the population. In line with our previous work, we used a combination of demographic, 

clinical, standard laboratory, and protein biomarkers, all from at or before the time of 

randomization, as class-defining variables in the models (Table S2).5,6 No clinical outcome 

variables or severity scores were used in the modeling procedures. Four separate models 

consisting of one, two, three, and four classes were built. Optimal model selection for the 

population was judged using the Bayesian information criteria (BIC), Vuong-Lo-Mendell-

Rubin (VLMR) likelihood ratio test, the number of observations in the smallest class 

(classes containing small numbers were not considered clinically meaningful), and entropy. 

Further details on LCA procedures can be found in the supplementary material.

Selecting Predictor Variables

Two recursive-partitioning machine learning algorithms, classification tree with 

bootstrapped AGGregatING (bagging) and random forest, were used to identify the most 

important classifier variables in the derivation dataset. For variable selection, both 

techniques are known to penalize categorical variables, particularly those with the fewest 

categories.14 Therefore, a third method, least absolute shrinkage and selection operator 

(LASSO), was also used to identify important classifier variables. To limit the complexity of 

the parsimonious models, a priori, a decision was made to limit the maximum number of 

variables to six for the final modelling.

Prior work indicated that protein biomarkers were likely to be essential components of 

parsimonious classifier models.6 Only cases with complete biomarker data in the derivation 

dataset (n=1558) were, therefore, used for variable selection. Multiple imputation with 

chained equations (MICE) was used to impute missing clinical data in the derivation dataset 

(see supplementary material for details).

To select the most important variables, a goodness to split score was used for the BAGGING 

model and the Gini impurity index for the random forest model (see supplementary material 

for details). For the LASSO modeling, tuning parameter (λ) was sequentially altered such 

that there were less than eight variables in the final model. The six most important classifier 

variables common to all three machine learning algorithms were then used to generate 

nested logistic regression models.

Logistic Regression Models in the Derivation Dataset

The top six variables identified by the machine learning models were used in a forward 

stepwise regression. Nested logistic regression models of increasing complexity were 

generated by sequential addition of the variables. The order in which variables were entered 

into the nested models was determined by findings of stepwise regression analysis.

Model performance was assessed by generating receiver operating characteristic (ROC) 

curves and calculating area under the curve (AUC) for each model. Akaike information 

criteria (AIC) and the Youden Index were also generated for each model. Likelihood ratio 

Sinha et al. Page 4

Lancet Respir Med. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tests were used to compare nested model performance. In both datasets, data that were not 

normally distributed were log-transformed (loge) for regression modelling. To test for 

interaction between outcome and predictor variables, the analysis was repeated by 

introducing first-order interaction terms to the models.

Model Performance in the Validation Dataset

A priori, a decision was made to take forward two nested logistic regression models and 

their coefficients from the derivation dataset to test in the validation dataset. The two ‘best’ 

models were determined by a combination of accuracy in the derivation dataset and model 

parsimony. These models were used to generate probabilities for phenotype assignment in 

the validation dataset. For each model, hyper-inflammatory phenotype was assigned using a 

probability cut-off of either (1) ≥ 0·5 or (2) ≥ Youden Index generated in the derivation 

dataset. These phenotype assignments were used to calculate sensitivity, specificity, and 

accuracy of the models. DeLong’s test was used to compare ROC curves and chi-squared 

test was used to compare model performance. As a sensitivity analysis, the accuracy of 

alternative classifier models using permutations of the six best predictor variables were also 

tested in the validation dataset, with each model composed of 3–4 variables.

Model Performance in External Datasets

To test the validity of the models in identifying phenotypes in non-ARDS network RCTs, 

model performance was evaluated in two recently completed trial datasets. The first RCT 

used to test model performance was HARP-2. HARP-2 tested the efficacy of simvastatin (80 

mg once daily) versus placebo in ARDS.11 The second RCT, the START study, was a phase 

2a trial that tested the safety of intravenous human bone marrow-derived mesenchymal 

stromal cells for moderate to severe ARDS.15 Briefly, START was a double-blind, RCT 

conducted in five U.S. academic medical centres between 2014–2017. Randomization was 

based on a 2:1 assignment in favour of the treatment arm. In both studies, clinical and 

biological data at enrollment were used to assign phenotype using the classifier model 

developed as above, and outcome data (mortality at day 28, 60, 90 and ventilator-free days 

to day 28) were used to assess the prognostic validity of phenotype classification.

Assay procedures for plasma biomarker quantification can be found in the original studies.
5,7,8 In HARP-2, phenotypes identified by the parsimonious model were evaluated against 

prior LCAassignment.7 Additionally, randomization data in HARP-2 was used to evaluate 

treatment interaction with parsimonious model-derived phenotypes and simvastatin. In 

START, LCA was not performed due to insufficient sample size. The characterization and 

appropriateness of the identified phenotypes were evaluated using clinical data and 

outcomes. Details of study protocols and patient populations can be found in the original 

studies.11

Spearman’s correlation coefficients were calculated to index agreement of class probabilities 

generated by LCA and parsimonious models. Between-group differences were tested using 

2-sample t-test and Mann-Whitney-U-test depending on the distribution of the variable. 

Difference in outcome in phenotypes were tested using Pearson’s chi-square test. For testing 
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differential response to treatment by class for survival (time to death), time-to-event Kaplan-

Meier curves were compared using Wilcoxon test. LCA was performed using Mplus 

software v8·2. All other analyses were performed using R Studio version 3·3·0.

Role of the Funding Source

Funding sources for this study had no role in study design, data collection, data analysis, 

interpretation of the data or writing of report. The corresponding author had full access to all 

of the data and the final responsibility to submit for publication. CSC and KLD also had 

access to all of the raw data. CMO, DFM and MAM had access to part of the raw data.

Results

Latent Class Analysis

The derivation dataset was comprised of 2022 patients. A 2-class model best fit this dataset. 

The 2-class model was a significantly improved fit compared to the 1-class model 

(p<0·0001). Improvement in model fit was not observed when going to a 3-class (p=0·35) or 

a 4-class model (p=0·13). Good class separation was observed in the 2-class model 

(entropy=0·83). There were 1431 patients (70·8%) classified as the hypo-inflammatory and 

591 (29·2%) as the hyper-inflammatory phenotype. Mean probabilities for class membership 

were 0.96 (± 0·1) for the hypo-inflammatory class and 0.93 (± 0·1) for the hyper-

inflammatory class. The hyper-inflammatory phenotype was associated with higher 

mortality at day 90 (45% vs 22%, p<0·0001) and with fewer ventilatory-free days (median 3 

days, IQR 0 – 19 days vs 20 days, IQR 1 – 24 days; p<0·0001). Key characteristic 

differences between phenotypes are summarized in Table S2 and are in keeping with prior 

studies.

Variable Selection (Derivation Dataset)

The most important classifier variables from BAGGING model and Random Forest model 

are presented in Table S3 and Figure S1 respectively. Using LASSO with a lambda (λ) of 

0·1, the seven predictor variables included in the final model were bicarbonate, interleukin-6 

(IL-6), interleukin-8 (IL-8), plasminogen-activator inhibitor-1 (PAI-1), protein C, soluble 

tumournecrosis factor-1 (sTNFR-1), and vasopressors. Bicarbonate, IL-6, IL-8, protein C, 

sTNFR-1, and vasopressor use were common to all three models and were therefore selected 

as the six best classifier variables for the parsimonious models.

Multivariate Logistic Regression Models in the Derivation Dataset

Forward stepwise regression failed to eliminate any of the six variables. The six nested 

models using these variables and their performance in the derivation dataset are summarized 

in Table 1. No significant interactions were observed when first-order interaction terms were 

introduced in the models. Increasing model complexity with sequential addition of 

predictors led to significantly improved model performance (p<0·0001). There was, 

however, a relative plateauing of AUC and AIC in the 4-variable, 5-variable, and 6-variable 

models. The 3-variable (IL-8, bicarbonate, and protein C) and 4-variable (IL-8, bicarbonate, 

protein C, and vasopressor) models were, therefore, considered most optimal in terms of 
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balancing classifying accuracy and model simplicity. The Youden Index generated from the 

derivation dataset was 0·295 for the 3-variable model and 0·301 for the 4-variable model.

Model Performance in the Validation Dataset

Differences in the baseline characteristics between the derivation and validation datasets are 

summarized in Table 2. In the validation dataset, AUC for the 3-variable and 4-variable 

model were 0·94 (95% CI: 0·92–0·95) and 0·95 (95% CI: 0·93–0·96) respectively (Figure 2). 

Sensitivities and specificities of the models are presented in Table 3. Setting the Youden 

Index as the probability cut-off to assign phenotype, the 3-variable model had higher 

specificity compared to the 4-variable model; however, the sensitivity of the 4-variable 

model was higher. With the probability cut-off set at 0·5, specificity increased in both 

models to greater than 0·9, with the 3-variable model having higher specificity (0·95).

The median probabilities (IQR) generated by the models for belonging to the 

hyperinflammatory phenotype (cut-off > 0·5) were as follows: 3-variable model 0·85 (IQR 

0·68–0·97) and 4-variable model 0·93 (IQR 0·79–0·99). The distribution of probabilities was 

sparse in the range of 0·3 – 0·7 (Figure S2), suggesting good phenotype discriminatory 

properties of both the 3 and 4 variable models. The probabilities for phenotype assignment 

generated by the LCA model showed strong positive correlation with those generated by the 

parsimonious models (3-variable model r=0·85, 4-variable model r=0·87; p<0·0001 for 

both).

For the 3-variable model with 0·5 as the probability cut-off, the mean LCA-derived 

probability was lower for the misclassified subjects compared to the correctly classified 

subjects in both the hyper-inflammatory (0·88 vs 0·98) and hypo-inflammatory phenotype 

(0·89 vs 0·96). This finding would suggest that assignment of LCA-derived phenotypes was 

less certain in subjects misclassified by the parsimonious models. Compared to the hypo-

inflammatory phenotype, the hyper-inflammatory phenotype was associated with higher 

mortality at day 90 (39% vs 23%; p < 0·0001) and fewer ventilator free days (14 days, IQR 0 

– 22 days vs 22 days, IQR 0 – 25 days; p < 0·0001). These differences in clinical outcomes 

were consistent when the four-variable model was used to assign phenotype (data not 

shown) and when the Youden index was used to assign class in both models (data not 

shown). Overall, differences in clinical outcomes were similar to the original LCA-derived 

phenotypes.

Sensitivity Analysis: Ancillary Models

Details of the procedures for the ancillary model development and testing can be found in 

the supplementary material. The performance of the ancillary models using permutations of 

the six variables in the validation dataset are presented in Table S4. Most of the ancillary 

models showed good accuracy in classifying phenotypes, with an AUC ≥ 0·9 in the 

validation dataset for all models. Replacing Protein C with sTNFR1 resulted in similar 

AUCs in both the 3-variable and 4-variable models. Replacing IL-8 with IL-6 generally 

increased model sensitivity, but specificity was lower.
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External Validation

HARP-2 Study

In HARP-2, IL-8 and Protein C were not available; therefore, we used an ancillary 3-

variable model (Table S4) comprised of IL-6, sTNFR1, and vasopressor use to classify 

phenotypes in this dataset. 510 of 540 patients had complete data available to estimate 

classification probabilities. AUC for the model was 0·92 (95% CI: 0·89–0·94). Using the 

Youden Index from the derivation dataset as the probability cut-off to assign the hyper-

inflammatory phenotype (≥ 0·276) resulted in a sensitivity of 0·93 and specificity of 0·62 

(Table S5). Using a probability cut-off ≥ 0·5 to assign the hyper-inflammatory phenotype led 

to a sensitivity of 0·88 and specificity of 0·77.

When a probability cut-off of 0·5 was used for phenotype assignment, 180 (35%) patients 

were classified as hyper-inflammatory and 328 (65%) patients as hypo-inflammatory. These 

proportions were similar in comparison to the original LCA-derived phenotypes (Table S5).7 

Mortality at day 28 (37% vs 18%; p<0·0001) and at hospital discharge (41% vs 22%; 

p<0·0001) were significantly higher in the hyper-inflammatory phenotype. The 

hyperinflammatory phenotype was also associated with fewer ventilator-free days (4 days, 

IQR 0 – 19 days, vs 17 days, IQR 0 – 23 days; p<0·0001).

Significantly different survival curves were observed across patients stratified by 

parsimonious model derived phenotype and treatment (Figure 3, p<0·0001). In the hyper-

inflammatory phenotype, compared to placebo, treatment with simvastatin was associated 

with significantly higher survival at 28 days (p = 0·02). This pattern for survival was also 

similar at day 90 although the higher observed survival with simvastatin failed to reach 

statistical significance (overall p<0·0001; p=0·06 for simvastatin compared to placebo in the 

hyper-inflammatory phenotype). These treatment effects were not observed in the hypo-

inflammatory phenotype. Overall, these findings were similar to our prior analysis using 

LCA-derived phenotypes.7

START Trial

Biomarker data was available for 58 of the 60 patients. The 3-variable and 4-variable models 

both identified the phenotypes with similar prevalence as in our prior studies (approximately 

70% in hypo-inflammatory, 30% in hyper-inflammatory; Table S6). Mortality at day 60 was 

significantly higher in the hyper-inflammatory group regardless of the model (Table S6). 

Likewise, as illustrated by the 3-variable model using 0·5 as a cut-off, other metrics of 

clinical outcome, such as mortality at day 28 (60% vs 14%; p=0·0015) and ventilator-free 

days (0 days, IQR 0 – 2 days, vs 13 days, IQR 0 – 24 days; p = 0·0040), were also 

significantly worse in the hyper-inflammatory phenotype. Significant differences in 

mortality were not observed when patients were stratified by APACHE III score (p=0·13). 

Aside from clinical outcomes, plasma levels of several inflammatory biomarkers were 

higher in the hyper-inflammatory phenotype compared to the hypo-inflammatory phenotype 

(Figure 4A–4B), and platelets were lower in the hyper-inflammatory phenotype (Figure 4C). 

As with LCA-derived phenotypes, there was no significant difference in PaO2/FiO2 between 

the identified phenotypes in START (Figure 4D).
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Discussion

Latent class analysis has consistently identified two ARDS phenotypes that show differential 

outcomes and response to treatment, but the complexity of latent class models has to date 

rendered ARDS phenotypes inaccessible in the clinical setting. In these analyses, simple 

classifier models are presented that can accurately identify ARDS phenotypes. The ability to 

identify phenotypes using a limited set of variables is a critical step towards their clinical 

application and has important implications for the feasibility of future phenotype-guided 

clinical trials.

Elevated levels of pro-inflammatory cytokines, such as IL-8, IL-6, and sTNFR1, are known 

individually to be associated with worse outcomes in ARDS and unsurprisingly emerged as 

the most important phenotype-defining variables. Protein C, a zymogen with anti-coagulant 

and anti-inflammatory properties, was also an important variable, and lower levels have been 

independently associated with increased mortality and adverse outcomes in ARDS.16 Lower 

levels of bicarbonate in the setting of acute inflammation act as a surrogate for worsening 

metabolic acidosis, which in turn may reflect tissue hypoxia and dysregulated inflammation. 

Both Protein C and bicarbonate, therefore, had negative coefficients in the models predicting 

the hyper-inflammatory phenotype. In comparison to prior studies that have used these 

variables in isolation to predict outcomes, the presented models developed and validated in 

this study have the additional benefit of using a composite of these variables and their values 

relative to each other.

Although the two ‘best’ models both performed with high accuracy, the 3-variable model 

(IL-8, Bicarbonate, and Protein C) offers some obvious practical advantages for prospective 

clinical use. The added complexity of the 4-variable model was insufficiently offset by 

additional accuracy. Moreover, the fourth variable, vasopressor use, is an ambiguous 

predictor variable. First, it does not factor in dose, thereby providing little insight into 

severity of shock. Second, the threshold to commence vasopressors in shock varies 

considerably and is often dictated by institutional, if not individual, discretion.17 Therefore, 

the 3-variable model which does not incorporate vasopressor use might be preferred. At the 

same time, given that the 4-variable model itself, and vasopressor use independently, both 

identify patients with higher mortality 18, it may be potentially valuable in certain ARDS 

trials.

A priori, a decision was made to compare two probability cut-offs to assign phenotype: the 

Youden Index from the derivation dataset and 0·5. In all models, the Youden Index cut-off 

was lower than the 0·5 cut-off and therefore unsurprisingly led to higher sensitivity but lower 

specificity (Table 3). The proportion of patients with LCA-derived hyper-inflammatory 

phenotype in the validation dataset and HARP-2 was approximately 35%; this value was 

more closely matched when using 0·5 as the cut-off in all models. Calculating the Youden 

Index from the derivation (in-sample) dataset may have led to an over-estimation of model 

accuracy. In practical terms, the purpose of identifying phenotypes and the potential risk/

benefit ratio of the proposed treatment strategy may ultimately dictate the best cut-off. For 

example, in a trial of a low risk intervention, it may be reasonable to accept lower specificity 

in order to enhance sensitivity, whereas when studying a higher risk intervention, it might be 
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more important to maximize specificity. Prospectively conducted studies are needed to 

further test optimal probability cut-offs.

In addition to need for prospective validation, immediate implementation of these models is 

limited by the lack of a real-time test for biomarker quantification. To our knowledge, there 

are no commercially available point-of-care or real-time quantifiable assays for IL-8, protein 

C, or sTNFR1. The current study adds to the increasing weight of evidence which suggests 

that rapid measurement of plasma protein biomarkers may be crucial in delivering precision-

based care in critical illness.19 Recently, the NHLBI convened a multidisciplinary working 

group to discuss the development of rapid biomarker testing in cardiovascular medicine.20 

Similar initiatives in critical care would be timely and essential to shift from the current 

over-reliance on a ‘one-size fits all’ approach to treating syndromes such as sepsis and 

ARDS.

Keeping this limitation in mind, we adopted a pragmatic view on model development and 

sought to develop and evaluate ancillary models using permutations of the six most 

important variables (Table S4). Most of these models were sufficiently accurate; however, 

those based on IL-6 were more sensitive and less specific for identifying the hyper-

inflammatory phenotype compared to IL-8 based models. One of the ancillary models 

afforded the opportunity to test its accuracy in the HARP-2 trial, where only a limited set of 

variables were available for phenotyping. The ability of one of the least accurate ancillary 

models to not only identify phenotypes in HARP-2 but also to detect the disparate treatment 

effect in this dataset supports the robustness of the findings and their potential validity in 

trial cohorts beyond the ARDS network. The performance of the 3-variable model in the 

START trial adds face-validity to this argument. In START, albeit in a small cohort, the 

models identified phenotypes that were distinct from each other and also had vastly 

divergent clinical outcomes (Table S6). More importantly, when stratified by APACHE III 

score, the same differences in mortality were not observed in the phenotypes, suggesting that 

the severity of illness identified by phenotypes cannot be extracted from standard measures 

of severity. Pending rapid biomarker quantification, these models offer a simple and unique 

method for prognostic, and potentially, predictive enrichment.

This study has several strengths. First, we used four large RCT cohorts, where, in order to 

avoid overfitting, the validation cohort was kept completely naïve to model development. 

Additionally, the derivation dataset was the largest in which we have applied LCA. The 

finding that in this population the two-phenotype model was the optimal fit suggests that 

ARDS phenotypes are consistent despite changing practice over two decades and across 

diverse populations. Second, the validation dataset was a contemporary trial of infection-

associated ARDS and had a higher incidence of hyper-inflammatory phenotype and 

significantly different levels of biomarkers and vasopressor-use (Table 2). Despite these key 

differences in the derivation and validation datasets, the parsimonious models performed 

with high accuracy in the latter. Taken together with the model performance in the START 

and HARP-2 trials, the results suggest that the models are likely to be generalizable to other 

clinical trial populations in ARDS and robust to changes in assays and clinical practice over 

time, though prospective validation will still be required.
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The study also has several limitations. All the presented data are secondary analyses of 

previously conducted RCTs. Interpretation of the performance of parsimonious models 

must, therefore, be limited to trial populations. These models must be evaluated in 

observational cohorts and prospectively before they can be generalized to the ARDS 

population and used in the clinical setting.

A further limitation is that all the studies used for this analysis except for the START trial 

were conducted prior to 2014. Since then, prone-positioning has been shown to be beneficial 

in select populations of ARDS and is now in widespread use for some severe ARDS 

patients.2 We were unable to test the impact of prone-positioning on phenotype allocation 

due to lack of data on this therapy. Additionally, the SAILS cohort represents a specific 

subset of ARDS patients with infection/sepsis, albeit a subset that makes up the majority of 

ARDS patients.

In addition, the time from ARDS diagnosis to enrollment was different among cohorts 

(TABLE S1). This variability may have resulted in clinical management strategies playing 

an important, yet undetermined, role in patient phenotype. A prior study by our group has 

reported that phenotypes remained stable over a period of 72 hours, suggesting limited 

impact of management strategy on patient phenotype in this time frame.21 Due to the 

retrospective study design, however, it not feasible to ascertain the extent to which 

ventilatory and other management strategies leading up to enrollment altered the 

inflammatory response in these patients.

The limited sets of variables available in HARP-2 meant that the accuracy of the two 

primary classifier models was not tested in this dataset. A further limitation of this study is 

that heterogeneous treatment interaction with phenotype assignment using the parsimonious 

model was only tested in HARP-2. Differential treatment responses in FACTT and 

ALVEOLI were not evaluated because both studies served as the derivation dataset, and 

positive results would be subject to bias and data circularity.

What are some of the key knowledge gaps in the field going forward? Currently, 

identification of ARDS phenotypes using LCA has been limited to patients enrolled in 

RCTs, so it is unknown whether these phenotypes are generalizable to broader ARDS 

populations. Further, it is also not known whether these phenotypes may be identifiable in 

critical care clinical syndromes beyond ARDS. In particular, given that SAILS was a sepsis-

associated cohort, these phenotypes may be applicable to sepsis. In order to fully realise the 

potential of these phenotypes to deliver precision-based care in ARDS, a better 

understanding is needed of the underlying biology of the phenotypes; this objective will 

require more experimental research. Additionally, a better understanding of the longitudinal 

kinetics of the phenotypes and their response to interventions is needed. For example, the 

diagnosis of ARDS itself is known to be volatile to standard ventilatory practice in the first 

24-hours;22 whether these changes are specific to either phenotype or impact phenotype 

assignment themselves is unknown.
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In summary, this study provides evidence for accurate parsimonious classifier models for 

ARDS phenotypes. These simple models may facilitate the study of phenotypes in the 

prospective setting and improve selection of patients for clinical trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in context

Evidence before the study

Using latent class analysis (LCA), previous studies have consistently identified two 

phenotypes across five randomised controlled trial (RCT) cohorts of acute respiratory 

distress syndrome (ARDS). The phenotypes have distinct biological and clinical 

characteristics with divergent clinical outcomes and differential responses to therapy in 

secondary analyses of randomized controlled trials. The complexity of the LCA models 

that identify the phenotypes is a major impediment to their application in the clinical 

setting. Whether parsimonious models using a selection of key variables could be used to 

identify the two ARDS phenotypes remains unknown.

Added value of this study

Using an array of machine learning algorithms, the presented study identifies 

parsimonious models comprised of three to four variables that can accurately classify 

ARDS phenotypes in two validation cohorts. The phenotypes identified using these 

parsimonious models shared similar characteristics and outcomes to phenotypes 

identified using LCA. The survival benefit observed with simvastatin in a prior analysis 

was also observed in the hyper-inflammatory phenotype identified using the 

parsimonious model. In a recent trial testing the efficacy of mesenchymal stem cells in 

ARDS, the hyper-inflammatory phenotype identified by parsimonious models was 

associated with significantly higher mortality at day 60.

Implication of all the available evidence

Heterogeneity in ARDS is increasingly being recognized as a potential contributing 

factor to failed clinical trials. LCA-identified phenotypes offer researchers more 

biologically and clinically uniform subgroups to test hypotheses and interventions. With 

the simpler models described in this study, identification of the phenotypes may become 

more feasible and may herald a new era of prospective, phenotype-specific trials in 

ARDS.
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Figure 1: Overview of the analysis plan designed a priori for the primary analysis.
The portion of the plan above the dotted line were performed in the derivation dataset (black 

font) and the portion below the dotted line in the represents the portion of the analysis 

performed on the validation dataset (blue font).
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Figure 2: Receiver operator characteristics (ROC) two best performing regression models in the 
validation dataset and the respective model coefficients.
3-variable model: IL-8, bicarbonate, and Protein C; 4-variable model: IL-8, bicarbonate, 

Protein C, and Vasopressor use. AUC = Area under the curve. (Log = logarithm, e = 

2·718281, IL-8 = interleukin-8).
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Figure 3. Kaplan-Meier survival curve in HARP-2 stratified by phenotypes assigned using a 3-
variable ancillary parsimonious model (interleukin-6, soluble tumour necrosis factor receptor-1, 
and vasopressor-use) and treatment (simvastatin or placebo).
Class was assigned using a probability cut-off of ≥ 0·5 to assign phenotype. The number of 

patients censored at the analysis end-point for each phenotype and treatment level are 

presented in brackets. A. Censored at 28 days; B. Censored at 90 days.
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Figure 4. Box-Whisker plot depicting difference in key variables between the hyperinflammatory 
and hypo-inflammatory phenotypes in START using the 3-variable model (Interleukin-8, 
bicarbonate, and protein C) with a probability cut-off of ≥ 0·5 to assign phenotype.
A. Interleukin-6 (one value not shown in hypo-inflammatory class due to y-axis censoring 

for visual interpretation) B. Soluble tumour necrosis factor receptor-1 C. Platelet count D. 

PaO2/FiO2 (P-values are representative of Man-Whitney-U test).
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Table 1.

Nested model composition and accuracy in the derivation dataset. IL-8 = interleukin8, sTNFR1= Soluble 

tumour necrosis factor receptor-1, IL-6 = interleukin-6, AUC = Area under the receiver operator characteristic 

curve, AIC = Akaike Information Criteria.

IL-8 Bicarbonate Protein C Vasopressor use sTNFR1 IL-6 AUC AIC

Model 1 + - - - - - 1268

Model 2 + + - - - - 0·92 (0.90–0.93) 1005

Model 3 + + + - - - 0·95 (0.93–0.96) 835

Model 4 + + + + - - 0·96 (0.95–0.97) 719

Model 5 + + + + + - 0·97 (0.96–0.98) 638

Model 6 + + + + + + 0·97 (0.97–0.98) 585

CI: Confidence Interval
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Table 2.

Comparison of the derivation (ARMA + ALVEOLI + FACTT) and validation (SAILS) datasets in the primary 

analysis.

Derivation (complete cases) Validation (complete cases) P-Value

Number of patients 1558 715

Sex (Female) 709 (46%) 363 (51%) 0·78
b

Race
White 1107 (71%) 564 (78·9%)

0·0001
b

Non-white 451 (29%) 151 (21·1%

Body mass index kg/m2 28·1 ± 7·3 30·7 ± 10·1 <0·0001

Age (years) 50·3 ± 16·4 54·1 ± 16·3 <0·0001

Temperature (°C) 38·4 ± 1·0 38·1 ± 1·0 <0·0001

Systolic Blood Pressure (mmHg) 89 ± 17 85 ± 16 <0·0001

Heart rate (bpm) 125 ± 22 119 ± 23 <0·0001

PaO2/FiO2 ratio 131 ± 61 139 ± 64 0·007

Tidal Volume (mL) 507 ± 132 414 ± 88 <0·0001

Minute Ventilation (mL/min) 12·5 ± 4 10·8 ± 3 <0·0001

PEEP (cm H2O) 10 (5–12) 10 (5 – 10) 0·90
a

PaCO2 (mmHg) 39 ± 10 40 ± 11 0·01

Respiratory rate (breath/min−1) 33 (26–40) 32 (27 – 38) 0·58
a

Urine Output (L/24 hr) 2·2 ± 1·7 1·6 ± 1·2 <0·0001

Haematocrit (%) 30 ± 6 30 ± 6 0·73

White Blood Cell (103/μL) 14·4 ± 11 15·7 ± 12 0·02

Platelets (103/μL) 182 ± 121 185 ± 121 0·58

Sodium (mmol/L) 137 ± 6 138 ± 5 0·006

Creatinine (mg/dL) 1·5 ± 1·4 1·5 ± 1·2 0·98

Glucose (mg/dL) 129 ± 61 125 ± 46 0·06

Albumin (g/dL) 2·2 ± 0·6 2·2 ± 0·6 0·41

Bilirubin (mg/dL) 1·6 ± 2·8 1·3 ± 1·8 0·006

Bicarbonate (mmol/L) 21·3 ± 6 21·8 ± 6 0·08

Protein C (% control) 84·8 ± 54 80·4 ± 42 0·036

PAI-1 (ng/mL)* 66 (40 – 110) 4 (2 – 9) <0·0001
a

Interleukin-6 (pg/mL) 179 (64 – 567) 448 (174 –1531) <0·0001
a

Interleukin -8 (pg/mL) 33 (17 – 83) 53 (25 – 137) <0·0001 
a

sTNFR1 (pg/mL) 3964 (2500 – 7176) 5355 (3090 – 8876) <0·0001 
a

ICAM-1 (ng/mL) 1074 (632 – 1751) 360 (236 – 511) <0·0001 
a

APACHE-3 Score 91·2 (± 30·9) 93·4 (± 28·2) 0·10

ARDS Risk Factors Trauma 133 (9%) 6 (1%) <0·0001
b
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Derivation (complete cases) Validation (complete cases) P-Value

Sepsis 369 (24%) 140 (20%)

Aspiration 231 (15%) 44 (6%)

Pneumonia 662 (42%) 510 (71%)

Other 163 (10%) 15 (2%)

Vasopressor Use on day of Enrolment(n) 471 (30·2%) 394 (55·1%) <0·0001
b

Ventilator Free Days 17 (0 – 23) 20 (0 – 25) 0·0009 
a

Mortality at 90 days 437 (28%) 199 (27·8%) 0·96
b

PAI-1 = Plasminogen activator inhibitor-1, sTNFR1 = soluble tumour necrosis factor-1, ICAM-1 = intercellular adhesion molecule-1.

*
Observed differences in values in PAI-1 may be due to different assays used for quantification. P-values represent t-test unless annotated (

a
= Mann-Whitney U test

b
= chi-squared test)
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Table 3.

Percentage of patients classified as hyperinflammatory subphenotype, sensitivity and specificity of the two 

‘best’ models in the validation (SAILS) dataset. A. Probability cut-off set as Youden Index (3-variable: 0·295, 

4-variable: 0·301) B. Probability cut off set as 0·5.

Models
A. Youden Index B. Probability ≥ 0·5

Hyper-Inflammatory Sensitivity Specificity Hyper-Inflammatory Sensitivity Specificity

3-Variable:
IL-8, Bicarbonate, Protein C 40% 0·84 0·87 31% 0·74 0·95

4-Variable:
IL-8, Bicarbonate, Protein C, 
Vasopressors

44% 0·91 0·83 36% 0·82 0·91
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