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Translational Statement

To understand the overwhelming burden of kidney
disease in coronavirus disease 2019 (COVID-19), we
mapped the expression of the severe acute respiratory
syndrome coronavirus 2 receptor, ACE2, in healthy kid-
ney, early diabetic kidney diseases (DKDs), and COVID-
19–associated kidney diseases. Single-cell RNA
sequencing of 111,035 cells identified ACE2 predomi-
nantly in proximal tubular epithelial cells. ACE2 upre-
gulation was observed in DKD but was not associated
with renin-angiotensin-aldosterone system (RAAS) inhi-
bition, arguing against an increased risk of COVID-19
among patients taking RAAS inhibitors. Molecular
network analysis linked ACE2 expression to innate im-
mune response and viral entry machinery, thereby
revealing potential therapeutic strategies against
COVID-19.
COVID-19 morbidity and mortality are increased via
unknown mechanisms in patients with diabetes and kidney
disease. SARS-CoV-2 uses angiotensin-converting enzyme 2
(ACE2) for entry into host cells. Because ACE2 is a
susceptibility factor for infection, we investigated how
diabetic kidney disease and medications alter ACE2
receptor expression in kidneys. Single cell RNA profiling of
kidney biopsies from healthy living donors and patients
with diabetic kidney disease revealed ACE2 expression
primarily in proximal tubular epithelial cells. This cell-
specific localization was confirmed by in situ hybridization.
ACE2 expression levels were unaltered by exposures to
renin-angiotensin-aldosterone system inhibitors in diabetic
kidney disease. Bayesian integrative analysis of a large
compendium of public -omics datasets identified molecular
network modules induced in ACE2-expressing proximal
tubular epithelial cells in diabetic kidney disease
(searchable at hb.flatironinstitute.org/covid-kidney) that
were linked to viral entry, immune activation,
endomembrane reorganization, and RNA processing. The
diabetic kidney disease ACE2-positive proximal tubular
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epithelial cell module overlapped with expression patterns
seen in SARS-CoV-2–infected cells. Similar cellular
programs were seen in ACE2-positive proximal tubular
epithelial cells obtained from urine samples of 13
hospitalized patients with COVID-19, suggesting a
consistent ACE2-coregulated proximal tubular epithelial
cell expression program that may interact with the SARS-
CoV-2 infection processes. Thus SARS-CoV-2 receptor
networks can seed further research into risk stratification
and therapeutic strategies for COVID-19–related kidney
damage.

Kidney International (2020) 98, 1502–1518; https://doi.org/10.1016/
j.kint.2020.09.015
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C oronavirus disease 2019 (COVID-19) disproportion-
ally affects people with diabetes, hypertension, and
kidney disease.1–5 The underlying molecular and

physiologic causes of this association could be as varied as
drugs used to treat these conditions, disease biology,6–8 direct
infection of relevant organs by the virus9–11 and consequent
tissue destruction, and the cytokine storm that occurs sec-
ondary to infection.3 Upper- and lower-airway tissues are likely
the primary sites of infection, but recent data indicate that the
viral tropism includes kidney tissue.10,12 Furthermore, patients
with kidney disease have high mortality rates from COVID-
19.10,13–15 Understanding the disease-specific molecular pro-
cesses in COVID-19 relative to kidney disease and diabetes can
have a significant impact on public health.

COVID-19 develops from infection with severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), a
betacoronavirus with a single-stranded RNA genome. It
gains entry into specific cell types through interaction of
the viral surface spike protein with a cell surface receptor.16

As with the coronavirus (SARS-CoV)17,18 that caused severe
acute respiratory syndrome in the early 2000s, angiotensin-
converting enzyme 2 (ACE2) is the primary cell-entry re-
ceptor for SARS-CoV-2.16,19,20 ACE2 expression levels
correlate with higher risk of SARS-CoV-2 infection.9,21,22

ACE2, a membrane-bound metallopeptidase, is a master
regulator of the renin-angiotensin-aldosterone system
(RAAS).23 SARS-CoV and SARS-CoV-2 bind ACE2 on the
cell surface.24,25 Proteolytic cleavage of the coronavirus
spike protein enables fusion with host membranes.26

TMPRSS2 appears to be the primary protease responsible
for this cleavage in lung epithelial cells.27 However,
SARS-CoV-2 can also be internalized and the S protein can
be cleaved in the endosomal compartment by acid-activated
proteases such as cathepsin-L and dipeptidyl peptidase 4,
both of which are involved in glucose metabolism and
immune systems.8,20,28–30
Kidney International (2020) 98, 1502–1518
Single-cell RNA sequencing (scRNAseq) of SARS-CoV-2
target tissues provides a way to identify specific cell types
with enhanced ACE2 expression and determine whether these
cells possess molecular machinery that facilitate viral entry
and subsequent virus-induced cytotoxicity. Characterization
of these molecular processes could greatly accelerate the
identification and development of novel therapeutic options
for SARS-CoV-2 infection and noninvasive means for strati-
fying individuals at risk for COVID-19. Therefore, in the
present study, we explored the expression and associated
biological processes of ACE2 and other SARS-CoV-2 entry
factors in kidney cells from healthy living donors (LDs), pa-
tients with diabetic kidney disease (DKD), and COVID-19
patients that required hospitalization (COV). Using in situ
hybridization and scRNAseq techniques, we (i) localized the
cellular expression of ACE2 in kidneys, (ii) characterized the
cellular programs associated with ACE2 expression in DKD
and COV, (iii) mapped the ACE2-associated changes to
emerging data on SARS-CoV-2–induced cellular responses,
and (iv) tested associations with DKD phenotypic charac-
teristics (Figure 1). This study included a DKD cohort
because COVID-19 disproportionally affects individuals with
diabetes and kidney disease.3,5,8,14,31,32 Side-by-side analysis of
the DKD and COV cohorts were aimed at identifying ACE2-
associated mechanisms in DKD shared with COVID-19
associated kidney disease.

RESULTS
Cohort studied for SARS-CoV-2 receptor expression and
regulation
Kidney cell expression profiles were obtained from early DKD
(n ¼ 44) and LD (n ¼ 18) kidney biopsies and from COV
urine samples (n ¼ 13). Clinical characteristics at the time of
sample collection are provided for the DKD and COV
(Table 1) cohorts. Additional details are provided in the
Methods and the Supplementary Methods).

scRNAseq-based definition of SARS-CoV-2 receptor
expression in kidney tissue
To define the expression pattern of ACE2, cell populations
obtained by scRNAseq analysis of kidney biopsies (44 DKD
and 18 LD) were clustered based on the transcription pro-
files of individual cells. A combined analysis of 111,035 cells
from the 2 data sets with a resolution (clustering granu-
larity) of 0.6 defined 21 cell clusters (Figure 2a and b,
UMAP plots). Cells from both sample sources populated 18
of these, indicating the presence of cells with similar identity
in both sample sources (Supplementary Figure S1). The 18
cell clusters covered the entire spectrum of kidney cell types
found along the nephron- and tissue-resident immune cells.
Furthermore, we identified 2 DKD-specific clusters (disease-
specific and disease-specific thick ascending loop of Henle)
and 1 LD-specific cluster (transitional principal cell-
intercalated cluster). The violin plots in Figure 2c and
d show a restricted cell-type-specific mRNA expression of
ACE2 in proximal tubular epithelial cells (PTECs), identified
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Figure 1 | Study overview. To understand how the kidney may be affected by coronavirus disease 2019 (COVID-19) we performed spatial,
systems, and clinical association analyses of angiotensin-converting enzyme 2 (ACE2) and other severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) host factors in kidney biopsies from living donors (LD) and patients with diabetic kidney disease (DKD) and kidney cells isolated
from the urine of hospitalized COVID-19 patients (COV). (a) Biopsy samples from DKD and LD were processed for in situ hybridization (ISH) and
single-cell RNA sequencing (scRNAseq) profiling. scRNAseq of LD, DKD, and urine cell pellets from COV samples were analyzed to determine
cell type expression specificity of ACE2 in healthy and disease states. (b) For each scRNAseq dataset, ACE2þ differential expression signatures
were identified. (c) Association of ACE2 expression levels in DKD with clinical characteristics were evaluated, including exposure to renin-
angiotensin-aldosterone system (RAAS) blockers and ACE inhibitors. (d) Expression of ACE2 and key proteases between LD and DKD proximal
tubule epithelial cells (PTECs) were compared. (e) ACE2 expression signatures across datasets identified aspects induced in PTECs expressing
DKD samples compared to LD. These gene sets significantly overlapped those reported to be affected by direct SARS-CoV-2 infection. (f) The
biological processes in ACE2þ expression signatures were characterized by projecting these signature genes onto PTEC-specific functional
networks at HumanBase (https://hb.flatironinstitute.org/covid-kidney). These networks represent genes and their interactions in biological
processes and pathways active in PTECs.
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using standard transcript markers including cubilin.33 ACE2,
in both LD and DKD, was predominantly expressed in cells
expressing cubilin, found in 2 clusters: PTEC and a hybrid
cluster containing both distal limb of loop of Henle and
PTEC. For further analysis, we focused on the cubilin-
positive PTEC in these 2 clusters.
1504
Localization of ACE2 in kidneys
Cellular localization of ACE2 transcripts via in situ hybridi-
zation in the kidney is shown in Figure 3 and is consistent
with ACE2 expression only in proximal tubules and focally in
parietal cells. Representative images from 2 control kidney
biopsies (taken from 2 LD kidneys at time of transplantation)
Kidney International (2020) 98, 1502–1518
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Table 1 | Clinical characteristics of DKD and LD cohorts at time of biopsy and COV cohort at time of urine sample collection

Characteristic DKD at biopsy (n [ 44) COV at sample collection (n [ 13) LD at biospy (n [ 18)

Age, yr 41 � 11 50 � 17 45 � 10
Male, % 32 54 49

Race, %
White 0 38 88
Black 0 54 6
American Indian 100 0 0
Other 0 8 6

Diabetes duration, yr 12.2 � 7.5 – –

Body mass index, kg/m2 36.9 (7.3) 34.3 –

HbA1c, % 9.2 � 2.4 7.9 (N ¼ 4) –

Diastolic blood pressure, mm Hg 72 � 10 – –

ACR, mg/g, median [IQR] 18 [9–53] – –

iGFR, ml/min 159 � 58 – 101 � 17
Use of antihypertensives, % 43 54 –

Use of RASS blockers, % 43 8 –

Use of angiotensin receptor blockers, % 7 8 –

Use of ACE inhibitors, % 36 15 –

Baseline CKD, % – 46 –

History of kidney transplant, % – 23 –

History of DM, % 100 54 –

On immunosuppressant, % – 23 –

Time since first positive COVID-19 test, d [IQR] – 11 [5–29] –

AKI by KDIGO, % – 62 –

KDIGO stage 1 – 25 –

KDIGO stage 2 – 0 –

KDIGO stage 3 – 75 –

Renal recovery, % – 38 –

COVID-19 treatment features, % – –

Need for RRT – 23 –

Indwelling urinary catheter – 69 –

ICU admission – 85 –

Intubation – 85 –

ECMO – 23 –

ACE, angiotensin converting enzyme; ACR, albumin/creatinine ratio; AKI, acute kidney injury; CKD, chronic kidney disease; COV, coronavirus disease 2019 cohort; COVID-19,
coronavirus disease 2019; DKD, diabetic kidney disease; DM, diabetes mellitus; ECMO, extracorporeal membrane oxygenation; ICU, intensive care unit; iGFR, iothalamate-
measured glomerular filtration rate; KDIGO, Kidney Disease: Improving Global Outcomes; LD, living donor; RAAS, renin-angiotensin-aldosterone system; RRT, renal replace-
ment therapy.
Continuous variables are presented as mean (SD).
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after in situ hybridization with the use of ACE2 specific probes
revealed punctate signal of ACE2 expression in PTECs, but
not in distal tubular cells, glomeruli, or arterioles (Figure 3a
and b). A few parietal cells also showed positive signal
(arrowhead in inset of Figure 3a). A clear increase in ACE2
signal in PTEC was evident in representative images from 2
kidney biopsies with mild features of DKD (Figure 3b and c)
and 2 with advanced DKD (Figure 3d and e). Focally parietal
cells also showed increased signal (Figure 3c inset), while
other cell types remained negative. Loss of signal was seen in
areas of interstitial fibrosis and tubular atrophy (Figure 3e),
concomitant with loss of proximal cells in advanced DKD.

Defining proximal-tubule ACE2 coregulated gene programs
To define the functional context of ACE2 expression in PTECs,
we first identified genes specifically expressed in PTECs that
express ACE2 (ACE2þ). To this end, we first compared the
expression profiles of ACE2þ with PTECs with no detectable
ACE2 (ACE2�) in LD and DKD. The resulting gene expression
signatures (ACE2þ signatures) consisted of genes with
increased expression in ACE2þ compared with ACE2� in LD
Kidney International (2020) 98, 1502–1518
(LD ACE2þ signature; Supplementary Table S1) and DKD
(DKD ACE2þ signature; Supplementary Table S2).

To define the DKD-specific component of the ACE2þ
signature, we next identified disease-induced genes, i.e., those
upregulated in DKD ACE2þ compared with LD ACE2þ
(DKD-induced ACE2þ signature; Supplementary Table S3).
Table 2 provides a summary of the key ACE2þ gene signa-
tures defined in this study.

Functional characterization of the ACE2-coregulated gene
programs in proximal tubular epithelial cells
To functionally characterize the molecular machinery
expressed in ACE2 þ cells in DKD, we projected the DKD
ACE2þ signature genes onto the HumanBase functional
network that represents biological processes and pathways
active in PTECs. Intuitively, this functional network is
constructed by probabilistically integrating a large com-
pendium of thousands of public omics datasets to predict
the likelihood of 2 genes acting together in processes in
PTECs.34,35 We clustered the DKD ACE2þ signature genes
within this PTEC functional network (Figure 4a36;
1505
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Figure 2 | Unsupervised clustering of cells from living donors (LD) and patients with diabetic kidney disease (DKD). UMAP plots
showing the distributions in unsupervised clustering of (a) 25,163 LD kidney cells into 19 clusters and (b) 85,872 cells from DKD into 21
clusters; 22% of the total cells in both DKD and LD were cubilin-positive proximal tubular epithelial cells (PTECs). The violin plots for (c) LD and
(d) DKD show cell type specificity of ACE2 expression. DTL, distal limb of loop of Henle.
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Supplementary Table S2), and the resulting modules
(Figure 4a; Supplementary Table S4) contained key pro-
cesses of tubular function and failure (M7) as well as disease
signals (M3–M5, M7). Importantly, we also identified key
processes important to both host response and viral
1506
replication, including viral entry and genome replication
(M1, M4), viral gene transcription (M1, M3), and endo-
membrane organization and transport (M2–M4, M7). Im-
mune processes were significantly enriched across multiple
modules and encompassed innate immune responses (M1,
Kidney International (2020) 98, 1502–1518



Figure 3 | In situ detection of angiotensin-converting enzyme 2 (ACE2) in deidentified living donor (LD) and diabetic kidney disease
tissue. In situ hybridization for ACE2 mRNA in (a,b) 2 LD reference control biopsies, (c,d) 2 renal biopsies from patients with mild diabetic
nephropathy, and (e,f) 2 cases of advanced diabetic nephropathy. Small brown dots representing ACE2 mRNA transcripts are seen scattered at
low density in proximal tubules (PTs) of control biopsies (a,b) and at higher density in mild (c,d) and advanced (e,f) diabetic nephropathy. Small
brown dots can also be seen in parietal cells in control biopsies (a) and mild diabetic nephropathy (c). No ACE2 transcript signal is seen in distal
tubules (D), glomeruli (G), or arterioles (A). Original magnification �200. Bars ¼ 50 mm. Arrowheads indicate parietal cells. To optimize viewing of
this image, please see the online version of this article at www.kidney-international.org/.
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M4) and both production and response to tumor necrosis
factor, interferons, and cytokine and macrophage activation
(M4). Thus, this signature contains both key elements of
documented DKD pathophysiology and processes generally
associated with viral infections.37,38

The signature above describes processes in ACE2þ
compared with ACE2� PTECs in DKD. To discover which
aspects of DKD could be linked to a more severe COVID-19
disease progression, we identified genes upregulated in
ACE2þ DKD compared with LD (Supplementary Table S3).
Analysis of these genes demonstrated prominent signals
reflecting induction of processes such as inflammation and
immune signaling, regulation of kidney size, and morpho-
genesis of kidney epithelium, which are consistent with re-
ported impacts of diabetic pathology on proximal tubules and
Kidney International (2020) 98, 1502–1518
PTECs (Supplementary Table S5; Supplementary Figure S2A).
Notably, many genes and processes connected to RNA
splicing and several aspects related to viral biology were also
induced in DKD.

We compared the DKD ACE2þ signature genes with
published SARS-CoV-2–relevant gene sets20,36,39,40 (see
Methods). In each comparison, a significant fraction of each
of the SARS-CoV-2 gene sets was shared with the DKD
ACE2þ signature (Table 3), suggesting a set of common re-
sponses to SARS-CoV-2 infection shared with the DKD
ACE2þ signature. Specifically, a significant fraction of the
proteins that change expression in response to SARS-CoV-2
infection36 are also DKD ACE2þ signature genes (40%;
P < 2.2 � 10�16), showing consistency at both levels of
regulation (Figure 4b; Table 3; Supplementary Table S6).
1507
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Table 2 | ACE2D signatures defined from single-cell sequencing data

Signature Definition Figure Table

LD ACE2þ signature Genes with increased expression in ACE2þ vs. ACE2� PTECs in LD Not shown Supplementary
Table S1

DKD ACE2þ signature Genes with increased expression in ACE2þ vs. ACE2� PTECs in DKD Figure 4a Supplementary
Table S2

DKD induced ACE2þ
signature

Genes with increased expression in DKD ACE2þ PTECs compared with LD
ACE2þ PTECs

Supplementary
Figure S2

Supplementary
Table S3

COV ACE2þ signature Genes with increased expression in ACE2þ vs. ACE2� PTECs in COV Figure 7a Supplementary
Table S10

ACE2þ, angiotensin-converting enzyme 2–positive; COV, coronavirus disease 2019–associated disease that required hospitalization; DKD, diabetic kidney disease; LD, living
donor; PTEC, proximal tubular epithelial cell.
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Processes in nearly all of the modules of the DKD ACE2þ
signature contained genes that were perturbed in SARS-CoV-
2–infected cells (Supplementary Table S7). However, the
module most relevant to kidney biology (M7) was not
enriched in SARS-CoV-2 processes (1.17-fold enrichment;
P ¼ 0.048), reflecting the kidney specificity of the DKD
ACE2þ signature. The transcripts in the DKD-induced
ACE2þ signature (Supplementary Figure S2A;
Supplementary Table S3) also significantly overlapped with
specific SARS-CoV-2 infection gene sets (Table 3). The shared
signals are focused on translation, antiviral responses, and anti-
gen presentation and related signaling (as evidenced by signifi-
cant enrichment of the SARS-CoV-2 infection gene set from
Bojkova et al.36 in individual modules M1, M2, and M5 in
Supplementary Figure S2B [red nodes] and Supplementary
Table S8). Taken together, these functional analyses suggest that
expression programs active in ACE2-expressing PTECs in DKD
could interact with viral infection and modulate host response.

Association of ACE2 mRNA expression in proximal tubular
epithelial cells with clinical features
We analyzed the association between ACE2 gene expression
levels and clinical measures of DKD to identify potential
contributors to elevated ACE2 expression. Higher expression
of ACE2 was observed in cubilin-positive PTECs in DKD
compared with LD (Wilcoxon rank sum test, P < 0.009; log
fold change ¼ 0.05; Figure 5a). Meanwhile, proteases impli-
cated in coronavirus infection,39,41 including ANPEP, BSG,
cathepsin-L, dipeptidyl peptidase 4, ENPEP, FURIN, and
TMPRSS2, also were detected at varying levels in PTECs in
LD and DKD (Figure 5b). In testing for individual-level as-
sociations with clinical characteristics, ACE2 expression levels
in PTECs per participant was associated with neither baseline
characteristics in the DKD cohort (e.g. age and sex; Figure 5c
and d) nor treatment exposures to RAAS inhibitors
(Figure 5e–g). No consistent relationships were found be-
tween ACE2 expression in PTECs and parameters of struc-
tural injury across the spectrum of DKD available to us in this
cohort.
Transcriptional profile of urine-derived PTECs from COVID-19
patients
Finally, to determine the COVID-19–induced cellular re-
sponses in kidneys, we used scRNAseq to analyze urine-
1508
derived PTECs from patients hospitalized for COVID-19.
Urine from 13 COV patients yielded 25,791 cells that
passed our quality control threshold. Unsupervised clustering
produced 7 clusters: a PTEC/kidney cell, 3 immune cell types,
a red blood cell, a urothelial cell, and an undifferentiated cell
cluster (Figure 6a; Supplementary Figure S3; Supplementary
Table S9 for cluster markers). Of the cells in the PTEC clus-
ter, 13% expressed ACE2, and proteases including ANPEP,
BSG, cathepsin-L, dipeptidyl peptidase 4, ENPEP, FURIN,
and TMPRSS2 also were expressed in this cluster (Figure 6b).

Functional network analysis of the COV ACE2þ signature
identified 10 modules, with M3, M5, and M6 enriched for viral
processes, including viral genome replication and viral gene
expression (Figure 7a36; Supplementary Tables S10 and S11).
Cellular functions in the modules also reported to be critical
for coronavirus infections were identified, such as translation,
endomembrane system remodeling, and RNA metabolism
pathways (M1, M3, M5, M7). Modules enriched in mito-
chondrial pathways indicative of cell stress were also present in
the signature (M2, M7), and PTEC-specific processes (M8).

Overall, the COV ACE2þ signature significantly over-
lapped the DKD ACE2þ signature (P < 2.22 � 10�16; 30% of
DKD ACE2þ signature genes are also in COV ACE2þ
signature) and was functionally consonant with processes
critical for viral infection and immune response (processes
represented in starred modules showed significant enrich-
ments in Figure 7b and Supplementary Tables S12 and S13).
A module specific to the COVACE2þ signature was enriched
in mitochondrial pathways (M2), which may reflect a stress
signal in kidney cells shed in the urine (Supplementary
Table S14). A more extensive set of interferon receptors,
interferon-stimulated genes, and cytokines were differentially
expressed in the COV ACE2þ signature (Supplementary
Table S10) compared with the DKD ACE2þ signature. In
addition, the COV ACE2þ signature also had significant
concordance with other reported SARS-CoV-2 data-
sets20,36,39,40 (Table 3), sharing key viral processes such as viral
regulation, interferon response, stress signaling, and endo-
membrane organization and transport (as evidenced by sig-
nificant enrichments of the SARS-CoV-2 infection gene list36

in COVACE2þ signature modules M3, M5, M6, and others,
as depicted in Figure 7c and listed in Supplementary
Table S14). This is further confirmed by examination of the
processes that are enriched when the PTEC network is
Kidney International (2020) 98, 1502–1518
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Table 3 | Overlap between ACE2 expression signature lists
and previously reported SARS-CoV-2–associated gene sets

No. of genes in overlap

DKD ACE2D
signature
(3734)

DKD-induced
ACE2D (839)

COV ACE2D
signature
(2895)

Bojkova_proteome
(2666)

1073 (40%) 185 (7%) 809 (30%)

Gordon_interactome
(332)

123 (37%) 4 (1%) 84 (25%)

Zhou_interactome (119) 53 (44.5%) 3 (3%) 33 (28%)
Blanco-Melo_NHBE (553) 126 (23%) 37 (7%) 76 (14%)

Fold enrichment
Bojkova_proteome
(2666)

2.16 1.65 2.10

Gordon_interactome
(332)

1.98 0.29 1.75

Zhou_interactome
(119)

2.39 0.60 1.92

Blanco-Melo_NHBE
(553)

1.22 1.59 0.95

P value
Bojkova_proteome
(2666)

<2.2 � 10�16 1.01 � 10�12 <2.2 � 10�16

Gordon_interactome
(332)

1.78 � 10�15 0.9996 1.21 � 10�7

Zhou_interactome
(119)

7.95 � 10�11 0.88 0.00012

Blanco-Melo_NHBE
(553)

0.0079 0.0036 0.71

ACE2, angiotensin-converting enzyme 2–positive; COV, coronavirus disease 2019;
DKD, diabetic kidney disease; SARS-CoV-2, severe acute respiratory syndrome
coronavirus 2.
The size of each gene set is indicated in parentheses with its name.
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clustered with only the shared genes (intersection of COV
ACE2þ signature and the SARS-CoV-2 infection set from
Bojkova et al.36 (Supplementary Table S15).

DISCUSSION
With the pandemic spread of SARS-CoV-2 and the increased
morbidity and mortality of COVID-19–associated disease in
patients with diabetes and kidney disease, it is imperative to
define the underlying mechanisms that would promote
rapid development of risk reduction strategies. Autopsy
studies of patients with COVID-19 as well as susceptibility
and infection of ex vivo kidney cultures are consistent with a
direct SARS-CoV-2 infection of the kidney tissue with viral
tropism being limited to specific renal cell types.10,15,41

ACE2, the primary SARS-CoV-2 receptor, governs RAAS
and associated pathways critical to kidney function. There-
fore, we studied the cell types expressing ACE2 in kidney
and the corresponding activated functional programs with
the goal of uncovering mechanisms that underlie viral
susceptibility.

ACE2 expression was localized, in kidneys, predominately
to PTECs in LD and DKD. The only other nephron segment
with low ACE2 expression were parietal glomerular epithelial
cells, which is consistent with their shared developmental
origin with PTEC. In contrast to published murine data,42–47

no significant expression was seen in glomerular podocytes or
1510
endothelial cell compartments. Consistent with our findings,
PTEC appear to be the main cell type for SARS-CoV-2
infection in the kidney.10,12,15 Unlike in other organ sys-
tems, little coexpression of ACE2 and TMPRSS2 was
observed, but robust coexpression of other cell surface pro-
teases, including cathepsin-L, which is associated with viral
infection and uptake, were detected.15,41 The viral mRNA
signal in the glomerular compartment detected by Puelles
et al. may represent intracellular viral particles gaining access
to glomerular cells via an ACE2-independent mechanism.12

Even though none of the DKD cohort were infected with
SARS-CoV-2 at the time of biopsy, our pathway analysis
showed that processes including viral infection, protein pro-
cessing, and antigen presentation were enriched in ACE2-
expressing PTECs in DKD. ACE2 is coexpressed in PTECs
with a set of genes that also function in establishing viral
replication, host responses, and innate immunity. These re-
sults and the consistent functional themes observed between
DKD and COVACE2þ signatures suggest that the PTEC gene
sets coexpressed with ACE2 in DKD may establish a cellular
program that interacts with processes induced by viral
infection and host immune response. The ACE2-associated
pathways could interact in 2 ways with SARS-CoV-2 in-
fections: (i) The upregulation of viral infection pathways in
DKD could explain the higher susceptibility of this patient
population; and (ii) if viral infection of ACE2þ PTECs
further activates pathways already increased in diabetes, this
cumulative and exacerbating activation might lead to kidney
damage.

The ACE2 program presents several testable hypotheses
for studying the cytopathology of infection and the in-
fluence of commonly used diabetes and hypertension
drugs. For example, ACE2þ signature genes that are also
reported to change expression in response to SARS-CoV-
2 infection (highlighted in Figure 4c and listed in
Supplementary Table S6 [“Bojkova proteome list”]) may
directly interface with SARS-CoV-2 infection in kidney
PTECs. We clustered the PTEC functional network with
this overlap gene list and identified enriched pathways
(Supplementary Table S16). Genes involved in endo-
membrane transport and viral gene expression could
facilitate viral entry, replication, and exit48 (see the
Supplementary Discussion for more details). Inflamma-
tion and interferon response genes in the list include
IFNGR1, ILF3, TNFAIP2, and TNFAIP8, and successful
host defense against SARS-CoV-2 may hinge on their
activity. It is intriguing that a number of the ACE2þ
DKD signature genes encode for proteins that may
interact with SARS-CoV-2 proteins,39 including the
membrane “M” protein (which suppresses type 1 inter-
feron and cytokine responses) and others (Supplementary
Discussion). If these physical interactions occur during
infection and diminish host defense, ACE2þ PTECs could
be impaired in their ability to mount an appropriate host
response, providing one explanation for increased sus-
ceptibility. A number of commonly used drugs may
Kidney International (2020) 98, 1502–1518
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influence the ACE2þ coexpression signature. Therapeutic
targets in the DKD ACE2þ signature (Figure 4a) include
insulin receptor (M4), insulin-like growth factor 1 re-
ceptor (M4), and dipeptidyl peptidase 4 (M7). Dipeptidyl
peptidase 4 is a protease associated with the entry of
other coronaviruses and a key factor in glucose meta-
bolism.8,30 Studies in the kidney organoid model confirm
expression of ACE2 in the correct functional context of
tubular cell clusters, and support ACE2-mediated SARS-
CoV-2 infection and subsequent reduced cytotoxicity on
addition of soluble ACE2.49 Combining this organoid
system with the human interaction maps generated in
this study can form an experimental framework for
mechanistic studies on the cytopathology of infection and
influence of commonly used drugs.

The inflammatory signals observed in the DKD PTECs,
expected based on prior studies in this and other cohorts,50,51

could be maladaptive for viral infection. Recent results from
COVID-19 pulmonary samples described impaired immune
responses,52,53 and work on SARS-CoV-2–infected cultured
lung epithelial cells specifically showed a blunted interferon
response despite robust cytokine production.40 Thus, there
may be immune hallmarks associated with SARS-CoV-2 pa-
thology. If a similarly asymmetric inflammatory response is
already present in DKD kidneys at time of infection, viral
infection could amplify the stress responses, increasing cyto-
pathology and enabling further viral propagation. PTECs shed
in urine from COV, presented here, showed an interferon
activation and response signature, indicating that interferon
response to SARS-CoV-2 infection can be robust in the kidney.

As data emerged on the role of ACE2 as a receptor for
SARS-CoV-2, significant concerns were raised about risks of
RAAS inhibitors, frequently prescribed in patients with dia-
betes and chronic kidney diseases. Based on nonhuman ani-
mal models, RAAS inhibitors were predicted to increase ACE2
levels thereby elevating COVID-19 morbidity and mortal-
ity.31,54,55 However, our findings in this DKD cohort counter
such predictions by providing evidence for an absence of
RAAS inhibition–associated ACE2 expression induction in
PTECs. Meanwhile, a series of case-control, database, and
electronic health record studies also did not find any associ-
ation of RAAS inhibitors with poor outcomes in 3 indepen-
dent cohorts of patients with COVID-19 and RAAS
exposures.56–58

Studies on regulation of ACE2 gene expression in kidney
disease, to date, have been inconclusive.44,59–61 A strength of
the present study is the localization of the ACE2 expression to
the cellular context of PTECs in kidney disease and COVID-
19, consistent with published work from reference kidney
tissue12,62,63 and the Human Protein Atlas64 (https://www.
=

Figure 5 (continued) (d) age, (e) exposure to any renin-angiotensin-aldos
blockers, and (g) exposure to ACE inhibitors were examined. No signific
found in the DKD cohort.

1512
proteinatlas.org; Supplementary Figure S4). The resolution
from single-cell studies is critical because disease-associated
loss of PTECs can confound bulk tissue analysis.

This study was limited to assessing mRNA levels, which
capture only one of several levels of regulation of ACE2 function.
Our analyses, therefore, focused on the changes in transcriptional
programs as a functional readout and not protein activity.
However, ourmRNAfindings for ACE2 expression are consistent
with protein expression specificity from theHumanProtein Atlas
and the ACE2 signatures with reported SARS-CoV-2 infection
gene sets at both mRNA and protein levels. We restricted our
analysis to ACE2, the best characterized SARS-CoV-2 receptor.
As additional receptors or mechanisms of SARS-CoV-2 cellular
entry are discovered, our data sets can be mined for regulation
and coexpression in a disease-specific context.

In summary, the present work identifies the regulation and
associated cellular machinery of ACE2 and associated SARS-
CoV-2 coreceptors in PTECs in kidney health and meta-
bolic and viral disease.

The SARS-CoV-2 receptor associated networks are now
available (https://hb.flatironinstitute.org/covid-kidneyhb.
flatironinstitute.org/covid-kidney) to seed further research
into urgently needed therapeutic strategies for COVID-19.

METHODS
Study population

Diabetic kidney disease biopsy cohort. An early DKD cohort
was selected as the discovery cohort, given the impact of COVID-19
on individuals with diabetes and kidney disease.3,5,8,14,31,32 Patient
characteristics are provided in Table 1 and the Supplementary
Methods.

Living donor biopsy cohort. Reference healthy tissue, 18 LD
biopsies, were obtained before perfusion and before placement in
the recipient. Participant mean age was 45.1 � 10.2 years (range
30–66), 11 of the 18 donors were female (61%), mean spot urine
protein-to-creatinine ratio was 0.08 � 0.04 g/g with range (0.03–
0.20), and mean iothalamate glomerular filtration rate (GFR) was
100.6 � 16.9 ml/min per 1.73 m2 (range 81–144). Fifteen of 17
donors were white, 1 of Hispanic descent, and 1 of African
ancestry.

COVID-19 cohort. The procurement protocol of urinary cells
for single-cell analysis is described in the Supplementary Methods,
and baseline characteristics of the study participants are summarized
in Table 1.

Kidney biopsy sample processing for single cell
Single-cell transcriptomes were generated with 2–3 mg of the biopsy
core samples from 62 CryoStor (Stemcell Technologies) preserved
DKD and LD biopsies. Tissue processing and single-cell isolation
were performed according to our published protocol65 and as
detailed in the Supplementary Methods and at https://www.kpmp.
org/for-researchers#protocols.
terone-system (RAAS) blockers, (f) exposure to angiotensin receptor
ant correlations between clinical factors and ACE2 expression were
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Figure 6 | Single-cell analysis of cells isolated from the urine of patients hospitalized with coronavirus disease 2019. (a) UMAP plot
showing the 7 clusters identified from 25,791 cells. (b) Violin plots of severe acute respiratory syndrome coronavirus 2–associated proteases
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Urine cell preparation for scRNAseq in patients with
COVID-19
Urine single-cell preparation followed the protocol published by
Arazi et al.66 with various modifications as detailed in the
Supplementary Methods.
Kidney International (2020) 98, 1502–1518
scRNAseq data generation and analysis
scRNAseq data generation followed methods developed for the
Kidney Precision Medicine Project (KPMP) and are described in
detail in the Supplementary Methods and at https://www.kpmp.org/
for-researchers#protocols.65,67
1513
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Figure 7 | Functional summary of angiotensin-converting enzyme 2–positive (ACE2D) expression signature in kidney cells isolated
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kidneys and PTECs in the context of COVID-19. (c) Highlight of ACE2þ signature genes (red circles) shared with the set of proteins that
increase expression in response to SARS-CoV-2 infection (Bojkova proteome36; Supplementary Table S6).
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In situ hybridization of ACE2 in control and diabetic kidney
biopsies
In situ detection of ACE2 mRNA transcripts was performed with the
use of RNAscope Probe Hs-ACE2 (Advanced Cell Diagnostics, cat-
alog no. 848151) according to the manufacturer’s protocol by kidney
pathologists able to identify cell types in kidney tissue. Housekeeping
gene ubiquitin C (RNAscope Positive Control Probe Hs-UBC;
Advanced Cell Diagnostics, catalog no. 310041) was used as an in-
ternal mRNA control and the bacteria DapB (RNAscope Negative
1514
Control Probe DapB, Advanced Cell Diagnostics, catalog no. 310043)
as a negative control gene.

Identification of differentially expressed ACE2D coregulated
gene signatures
Differentially expressed genes were identified between ACE2þ and
ACE2� PTECs in DKD and COV samples with the use of the Fin-
dAllMarkers Seurat function. For LD, DKD, and DKD-induced
signatures, all genes with Bonferroni-adjusted P < 0.05, positive
Kidney International (2020) 98, 1502–1518
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log fold change, and found in $10% of DKD ACE2þ PTEC cells
were selected. For the COVACE2þ signature, all genes with nominal
unadjusted P< 0.05, positive log fold change, and found in$10% of
ACE2þ PTEC cells were selected. (Supplementary Tables S1–S3 and
S10).

Overlap of differentially expressed ACE2D coregulated gene
signatures with SARS-CoV-2 relevant gene sets
SARS-CoV-2–relevant gene sets were compiled from multiple pub-
lished sources: (i) Bojkova_proteome is a list of differentially
expressed proteins in the Caco-2 cell line after SARS-Cov-2 infection
(P< 0.05 at any time point)36; (ii) Gordon_interactome is a set of host
proteins identified as physically interacting with SARS-CoV-2 viral
proteins in HEK-293T cells39; (iii) Zhou_interactome is a literature-
curated list of genes related to diverse coronaviruses20; and (iv)
Blanco-Melo_NHBE is a list of differentially regulated genes in response
to SARS-CoV-2 infection in normal human bronchial epithelial cells.40

ACE2 was removed from ACE2þ coexpressed gene sets before
computing overlaps. P values were computed with the use of the hy-
pergeometric test with a count of 20,000 genes used as background.
Specifically, P values were computed with the R function 1 �
phyper(s � 1, g1, N � g1, g2), where s is the number of genes shared
between the 2 gene sets, N is the number of background genes, g1 is the
number of genes in gene set 1, and g2 is the number of genes in the
second gene set. Fold enrichment was computed as (s/g1)/(g2/N).

Functional network analysis
To determine the biological processes and pathways in the ACE2þ
differentially expressed gene sets, we performed functional network
clustering in the PTEC gene functional network derived from GI-
ANT 2.0.34,35 Community clustering in the network was performed
to identify tightly connected sets of genes with the use of Human-
Base.io module detection function68 (https://hb.flatironinstitute.org/
covid-kidney). The network was clustered with each set of differ-
entially expressed genes constituting each ACE2þ signature: LD,
DKD, DKD-induced, and COV (Supplementary Tables S1–S3 and
S10). See the Supplementary Methods for details. The Gene
Ontology enrichment outputs are provided in Supplementary
Tables S4, S5, S11, S13, S15, and S16 and can be interactively
explored at https://hb.flatironinstitute.org/covid-kidney.

Statistical analysis of clinical associations
Spearman correlation was used to evaluate the association of the
steady-state average PTEC-specific gene expression levels of ACE2
and age at time of biopsy for the 44 DKD samples. The Mann-
Whitney nonparametric test was applied to evaluate sex and treat-
ment difference of ACE2 expression in the DKD cohort.

Data access
LD single-cell data sets are searchable at http://nephrocell.miktmc.
org. A dynamic user-friendly interface at HumanBase (https://hb.
flatironinstitute.org/covid-kidney) is available for researchers to
explore the functional networks of gene expression signatures.
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