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In this paper, a stochastic and a deterministic SIS epidemic model with isolation and
varying total population size are proposed. For the deterministic model, we establish the
threshold Ry. When Ry is less than 1, the disease-free equilibrium is globally stable, which
means the disease will die out. While Ry is greater than 1, the endemic equilibrium is
globally stable, which implies that the disease will spread. Moreover, there is a critical iso-
lation rate &*, when the isolation rate is greater than it, the disease will be eliminated.
For the stochastic model, we also present its threshold Ryp;. When Ry is less than 1, the
disease will disappear with probability one. While Ry is greater than 1, the disease will
persist. We find that stochastic perturbation of the transmission rate (or the valid contact
coefficient) can help to reduce the spread of the disease. That is, compared with stochastic

Persistence model, the deterministic epidemic model overestimates the spread capacity of disease. We
further find that there exists a critical the stochastic perturbation intensity of the transmis-
sion rate o*, when the stochastic perturbation intensity of the transmission rate is bigger
than it, the disease will disappear. At last, we apply our theories to a realistic disease,
pneumococcus amongst homosexuals, carry out numerical simulations and obtain the em-
pirical probability density under different parameter values. The critical isolation rate §* is
presented. When the isolation rate § is greater than &*, the pneumococcus amongst will
be eliminated.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Isolation (quarantine) is one of the important intervention measures to control the spread of infectious diseases. Over the
decades, isolation has been used to reduce the transmission of numerous emerging and re-emerging human diseases such as
pandemic influenza, smallpox, leprosy, tuberculosis, plague, cholera, measles, typhus, yellow fever, ebola. More recently, by
virtue of effective isolation, the Chinese government had eliminated successfully SARS (Severe Acute Respiratory Syndrome)
which was reported firstly in late 2002 in Guangdong Province [1,2]. Since December 2019, an outbreak of pneumonia caused
by a novel coronavirus (COVID-19) has occurred in Wuhan, Hubei Province, China. Cases have been exported to other places
in China, as well as almost all countries around the world. By isolating the infected, close contacts, susceptibles at home
and other measures, the Chinese government has basically controlled the spread of COVID-19. As of March 23, 2020, the
National Health Commission (NHC) of China had confirmed a total of 81,093 cases of COVID-19 in mainland China, including
3,270 deaths, and 72,703 recoveries [3].
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Numerous mathematical models had been designed to study the effects of isolation (quarantine) on controlling the
spread of infectious disease in human and animal populations (see [4-11] and the references therein). Hsieh et al. [12] ana-
lyzed laboratory-verified SARS case data and the detailed quarantine data in Taiwan during the outbreak. Then, by dividing
the intensity of quarantine implemented in Taiwan into Level A (of potentially exposed contacts of suspected SARS patients)
and Level B (of travelers arriving at borders from SARS affected areas), they established the corresponding model. Their re-
search results showed that Level A quarantine prevented approximately 461 additional SARS cases and 62 additional deaths,
while the effect of Level B quarantine was comparatively minor. Hethcote et al. [11] proposed three SIS and SIR epidemic
models with isolation measures and three different incidence functions (standard incidence, mass action, and quarantine-
adjusted incidence), respectively. They found that for most of these models, the endemic equilibrium is asymptotically sta-
ble, but for the SIQR model with the quarantine-adjusted incidence, the endemic equilibrium is an unstable spiral for some
parameter values and periodic solutions arise by Hopf bifurcation.

Many studies showed that environmental fluctuations have a huge impact on the development of an epidemic. Due to
environmental fluctuations, the parameters involved in the system show stochastic perturbation [13-16]. Stochastic differen-
tial equation (SDE) models could be a more appropriate way of modeling epidemics in many circumstances [17-20]. There
are different possible approaches to include stochastic effects in the model, both from a biological and from a mathematical
perspective [21]. Mao et al. [22] assumed that the parameters involved in the model fluctuate around a mean value due to
continuous fluctuations of environment. This kind of modeling idea was adopted by many scholars [23-33]. In this paper,
we follow this idea and introduce environmental fluctuations to an SIQS epidemic model.

For epidemic models, the key parameter is the threshold which determine extinction or persistence of the disease. Natu-
rally, there comes an important question: How do environmental fluctuations affect the dynamics of the disease, especially
the threshold? Recently, there are already some literatures focusing on this question [34-36]. For example, Cai et al. [37] ex-
tended a classical SIRS epidemic model from a deterministic model to a stochastic model through introducing stochastic per-
turbations and established the sufficient conditions for the extintion and persistence of the disease. Moreover, they found
that the stochastic perturbation can suppress disease outbreak. Gray et al. [38] analyzed an SDE version of the classical SIS
epidemic model, with noise introduced in the disease transmission term. They found that the threshold of the SDE version
is less than the corresponding deterministic version. Dieu et al. [39] solved the threshold of a stochastic SIR model. However,
there existed few works on the thresholds of stochastic epidemic models, except [39,40]. That is, most studies just estab-
lished the sufficient conditions of the extinction and persistence of the disease, and did not give the sufficient and necessary
conditions.

The main goal of this article is to establish the thresholds of a stochastic and deterministic SIQS epidemic model and
investigate how the stochastic perturbation of the transmission rate of the disease affect disease’s dynamics, and further
analyze the global dynamics of the stochastic and deterministic SIQS epidemic model.

The organization is arranged as follows. In Section 2, the model is derived. In Section 3, we analyze the existence and
uniqueness of disease-free equilibrium and endemic equilibrium of deterministic model (2.4). Then, using Liapunov func-
tions, we investigate their global stability. In Section 4, first, we show the existence and uniqueness of a global positive
solution of the model (2.6). Next, we study the extinction of the model (2.6). Moreover, we discuss the persistence of the
system (2.6). In Section 5, we provide the application of the results to realistic pneumococcus amongst homosexuals to sup-
port our findings, by numerical simulations. In Section 6, we give the summary of the main results briefly. In Section 7, we
provide a brief discussion.

2. Background

Hethcote et al. [11] introduced the following SIQS model

%:K_%_MS+yI+SQ,
%=%—(u+a+8+y>’v -
dQ(t)

=8l—-(u+a+e)Q.

dt
The meanings of all variables and parameters in the above model are as follows:

S(t): the number of susceptible individuals in the population at time ¢,

I(t): the number of infectious individuals in the population at time ¢,

Q(t): the number of isolated (quarantined) individuals in the population at time ¢,

N(t): the number of total population at time t, namely N(t) = S(t) + I(t) + Q(¢t),

B: the transmission rate of the disease,

b: the natural birth rate,

w: the natural death rate,

48: the rate of individuals leaving the infective compartment I for the quarantined compartment Q,
o: the disease-related death rate,
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y and ¢: the rate of individuals recovering and returning to susceptible compartment S from compartments I and Q,
respectively.

In the model (2.1), Herbert et al. [11] assumed that the recruitment rate of susceptibles is constant. This assumption is
reasonable for diseases of short duration with limited effects on mortality. However, it clearly fails to hold for diseases which
result in a decrease in population or raise the mortality rate substantially (see [41-46]). Hence, in this paper, we supposed
that the recruitment rate of susceptibles of the model (2.1) is proportional to the total population as in [47]. Consequently,
we get the following model

ds(t) BIS
T_beW—MSerI%eQ,
dit)y  pIS

d%g” 81— (u+a+e)Q.

It is easy to see that % =((b-pu)N-ol—aQ. Let x= % y= ﬁ zZ= % denote the fractions of the classes S, I and Q
in the population, respectively. It is easy to identify that x, y and z satisfy the following equations system:

d);(tt) =b— Bxy+ yy+¢ez—bx+axy + axz,
%=,3xy—(b+a+5+)/)J’+ay2+ayz, (2.3)
dz(tt) =8y— (b+a+e)z+ayz+az’
Since x +y +z = 1, the first two equations of system (2.3) can be written as
KO _ hystax)d—x)— Bx—y +8),
dt
vt (2.4)
YO _ (p—amy—b+5+y)y.

Following the approach in Mao et al [22], we suppose that the transmission rate of the disease will fluctuate around some
average value due to continuous fluctuation in the environment as in [37,38]. In detail, 8dt in system (2.2) which represents
the number of potential infectious contacts that a single infected individual makes with another individual in the small time
range dt, is replaced by Bdt + odB(t). Here dB(t) = B(t + dt) — B(t) is the increment of a standard Brownian motion. This
means that the number of potential infectious contacts that a single infected individual makes with another individual in
the small time range dt obeys normal distribution with mean E(Bdt + o dB(t)) = Bdt and variance V[Bdt + o dB(t)] = o 2dt.
V[Bdt + odB(t)] — 0 as dt — 0, this is a biologically reasonable description (see [37] and the references therein).

Hence, we obtain the following stochastic SIQS epidemic model

ds(t) = (bN - % —uS+yl+ 8Q>dt - a%dB(t),

(2.5)
N

dQ(t) = (81 — (1 + a + £)Q)dt,

where o > 0 represents the intensity of the white noise.

Recently, some scholars have paid attention to stochastic SIQS epidemic models [48-52]. Cao and Zhou [50] discussed a
stochastic SIQR epidemic model with quarantine-adjusted incidence. It should be pointed out that our research is different
from Cao and Zhou [50]. First, we consider quarantine measures in the SIS epidemic model, while Cao and Zhou consider
quarantine measures in the SIR epidemic model. That is to say, our model is used for the nonpermanent immune diseases,
while their model is used for the permanent immune diseases. Second, some of our research methods is different from
Cao and Zhou. Our methods establish the threshold of disease without additianal conditions. However, they needed some
additional conditions besides a threhold to obtain the extinction and the permanence of the disease. Pang et al. [52] stud-
ied a model similar to (2.5), but they used the bilinear incidence SSI and we use the standard incidence % The bilinear

incidence BSI supposes that the adequate contacts is proportional to the total population, while the standard incidence %
supposes that the adequate contacts is constant. Since the patterns of daily encounters are largely independent of commu-
nity size within a given country, Data [53] suggested that the standard incidence is more realistic for human diseases than
the bilinear incidence. For more formation about the differences of using two forms of the incidence, reader see [11] and the
references therein. In addition, Pang et al. [52] presented sufficient conditions for extinction exponentially and persistence
in the mean while our condition is almost necessary and sufficient.

di(t) = (;315 —(L+a+d8+ y)I)dt +a%d3(t),
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Letting
S I Q

ENYTNATN
then the model (2.5) becomes
dx(t) = (b— Bxy + yy + €z — bx + axy + axz)dt — oxydB(t),
dy(t) = (Bxy — (b+a + 8+ y)y +ay® + ayz)dt + oxydB(t), (2.6)
dz(t) = (8y — (b+a + &)z + ayz + az®)dt.

Since x(t) +y(t) +z(t) = 1, system (2.6) is equivalent to

{dx(t) ={(b+e+ax)(1-x)— (Bx—y +¢e)y}dt —oxydB(t), 2.7)
dy(t) = {(B —a)xy — (b+8 + y)y}dt + oxydB(t),
and

X)) +yt)+z(t) =1 (2.8)

3. The asymptotic behaviors of the deterministic system (2.4)

In this section we will study the asymptotic behaviors of system (2.4).

It is easy to confirm that the domain D = {(x,y) | x> 0,y > 0, x +y < 1} is the positively invariant set of system (2.4).
Obviously, there is always the disease-free equilibrium Ey(1, 0) for system (2.4).

To get the endemic equilibrium for system (2.4), let the right side of system (2.4) be 0, we have

(b+e+ax)(1-x)—(Bx—y +&)y=0, 31)
(B-—a)x—(b+8+y)=0. '
Solving the first equation of (3.1), we get x* = bg‘%}’.
Let
B
Ry= —c———.
T b¥d+a+y
It is easy to see that if Ry > 1,
B-a=0and0<x = t0tY 4 (32)
B -«
From the first equation of (3.1), we obtain
. (b+e+oax)(1—x)
y = .
Bxx—y+e
Clearly, (b+ &+ ax*)(1 —x*) > 0. In addition, by (3.2) we have
b+§ b+§
ﬂx*—y+s=ﬂ7+ +y—y+e>ﬂ7+ +y—y+s>0. (3.3)
p—c B
Hence,
y>0. (3.4)
It follows from (3.2) and (3.4) that Eq(x*, y*) is unique endemic equilibrium in domain D.
Now, let us discuss the local stability of the disease-free equilibrium Ey and endemic equilibrium Ej.
3.1. The local stability of system (2.4)
At any point E(x, y), Jacobian matrix of system (2.4) is
a—(b+e+2ax)— By —(Bx—y +¢)
J(E) = ( . (3.5)
(B-a)y (B—a)x—(b+38+y)
Then, Jacobian matrix of system (2.4) at the disease-free equilibrium Ej is
—(b+e+a) —-B-y+e)
J(Eo) = .
0 Ro-1D(b+d+a+y)

The two eigenvalues of J(Ey) are —(b+e&+ @) and (Rg —1)(b+8+a +7y).
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Obviously, for system (2.4), the disease-free equilibrium Ej is stable if Ry < 1 and it is unstable if Ry > 1.
At the endemic equilibrium E;(x*, y*), Jacobian matrix of system (2.4) is

JE) = (Ot —(b+¢e+2ax*)— By —(Bx*—vy +s)>'
(B —a)By* 0

By calculating straightforwardly, we have det J(E{) = (B —a)(b+ & + ax*) x (1 —x*). It is clear that when Ry > 1, from
(3.2), det J(E1) > 0 holds. In addition,

trf(E1) = o — (b+ & + 2ax*) — By*
_ &B-a—y+b+2ax)+e*  ay —by +apfx? —2ax'y + pb

Bxx—y +e€ Bx—y +e
_ &(B-a—y+b+2ax)+e?
- Bx—y+e

_[ocy +b(B-M(B-a) + (oe,Bb2 +aBs? +2b8a,3) +2ay(ab+ad +ay)

(Bx =y +&)(B - ).
It follows from Ry > 1 that B —ao —y >0, B —y > 0 and Bx* —y + ¢ > 0 (from (3.3)) hold which lead to trj(E;) < 0.
Hence, when Ry > 1, det J(E{) > 0 and trJ(E;) < 0. This means that the two eigenvalues of the matrix J(E;) have negative
real parts. Hence, the endemic equilibrium E; is asymptotically stable if Ry > 1.
Summarizing the results above, we have the following.

Theorem 3.1. If Ry = % < 1, the disease-free equilibrium Eq(1, 0) is asymptotically stable. If Ry > 1, Eg is a saddle point
and unstable; the endemic equilibrium E{(x*, y*), is asymptotically stable.

3.2. The Global Stability of Equilibriums

Next, let us discuss the global stability of the disease-free equilibrium Ey and endemic equilibrium E; of system (2.4).
Theorem 3.2. The disease-free equilibrium Eq of system (2.4), is globally stable if Ry < 1.

Proof. Let V =y, then

dv(t

PO g b+5+y)
s[B-a—b+s+y)ly
=[f-b+d+a+y)ly
=b+d+a+y)Ro—-1)y
<0.

Obviously, {(x,y) | % =0, (x,y) eD} ={(x,y) |y=0, (x,y) € D} is the largest positively invariant subset of system
(24) in D. By the Lasalle invariant theorem, we have lim; _ y(t) = 0. Then, the limit system of system (2.4) is d’;(tt) =
(b+ €+ ax)(1 —x), and is globally asymptotically stable at x = 1. By the limiting systems theorem in [54], the disease-free
equilibrium Ey(1, 0) of system (2.4) is globally attractive. This combining with the local asymptotic stability of Ey leads to
Eq is globally asymptotic stable. O

Theorem 3.3. The endemic equilibrium Eq(x*, y*) of system (2.4) is globally stable if Ry = m > 1.

Proof. It is easy to see that system (2.4) has an endemic equilibrium E;(x*, y*), if and only if system (2.3) has an endemic
equilibrium Eq(x*,y*, 1 —x* —y*). The stability of E;(x*, y*) for system (2.4) is equivalent to that of E;(x*,y*, 1 —x* —y*)
for system (2.3). Hence, we need prove the global stability of E; (x*,y*, 1 —x* —y*) for system (2.3) on the invariant set
Dy ={(x,y,2) |x>0,y>0,z>0,x+y+z=1}. Since the solution of system (2.3) are bounded, and the equilibrium E;(x*,
y*) of system (2.4) is locally asymptotically stable, it is only necessary to prove that system (2.3) has no periodic solution in
the invariant domain D;.

It is easy to see that the boundary curve of the domain D; cannot form the periodic solution of system (2.3). Hence, we
only consider in the interior of D;.

Assuming that system (2.3) has a periodic solution ¥ (t) = {x(t),y(t), z(t)}, the trajectory I" of v(t) is the boundary of a
plane domain A which is in the interior of domain D;.

Let fi=b—Bxy+yy+ez—bx+axy+axz, fr=(B—-a)xy—(b+8+y)y. f3 =8y — (b+a+&)z+ayz+ az? which are
the formulas of the right-hand side in system (2.3), respectively. Let f = (f1, f2, f3)7 (1 denotes transpose), g(x,y,z) = x)l,—z .
rx f, where r = (x,y,2)7.

Obviously,

g f=0. (3.6)
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Calculating leads to

rotg- (1,1, D =

S(X%y +xy2 +xvz) + v (xyz + ¥’z + y22) + £ (x2? + y2* + 2°) + b(yz + 2%)
— 22 <0 (3.7)

in the interior of domain D;.
Let vector (1, 1, 1) be the normal vector of plane domain direction of plane domain A. Let the direction of the image I"
accord with the right-hand rule with the direction of plane domain A. By Stokers’ theorem, we get

%//Arotg(l,l,l)TdS:?grg"—flfds.

which leads to a contradiction between (3.6) and (3.7).
This completes the proof of Theorem 3.3. O

4. The asymptotic behaviors of the stochastic system (2.5)

Throughout this paper, let (SZ F AT )00 P) be a complete probability space with a filtration {#},., satisfying the usual
conditions (i.e. it is increasing and right continuous while .%, contains all P—null sets).
In general, the d-dimensional stochastic system:

dX (t) = f(X(t), t)dt + g(X(t). t)dB. (4.1)

where f{X, t) is a function in R? defined in R? x [tg. 00), and g(X, t) is a d x m matrix, f, g are locally Lipschitz functions in
X. B; is an m-dimensional standard Wiener process defined on the above probability space. Denote by C%! (]Rd x [to, 00); R+)

the family of all nonnegative functions V(X, t) defined on R? x [tg, oc) such that they are continuously twice differentiable
in X and once in t. The differential operator L of Eq. (4.1) is defined [55] by

L—3+if-(x r>i+1i[T(X (X, t)] - (42)
~ar T D T 2 18 DR D5y, '

i,j=1

If L acts on a function V ¢ C”(IR{d x [tg, 00); ]R+), then
WX ) =Vi(X. t) + (X, D F (X, t) + %trace[gT X, HVxxg(X. )].

where Vi(X, t) = 2, VX(X,t):(%,---,%),VXX:(%L - By Io's formula, if X() RS, then dV(X.t)=
LV (X, £)dt + Vi (X, £)g(X, t)dB:.

4.1. Existence and uniqueness of the positive solution

In this section, we show there is a unique global and positive solution of model (2.6). That is, the region
A={(%y,2):x>0,y>0,z>0,x+y+z=1}
is the positively invariant set of the system (2.6) with probability 1. Some researchers have given the similar result [34,37].

Theorem 4.1. For any given initial value (x(0), y(0), z(0)) € A, there is a unique positive solution (x(t), y(t), z(t)) of model (2.6) on
t > 0 and the solution will remain in < A with probability 1, namely (x(t), y(t), z(t)) € A for t > O almost surely.

Proof. Since the coefficients of model are locally Lipschitz continuous, for any given initial value (x(0),y(0),z(0)) € R2
there is a unique local solution on t € [0, T.) where 7, is the explosion time. To show that this solution is global, we need
to have 7. = oo almost surely (briefly a.s.). Let k; > 1 be sufficiently large so that (x(t), y(t), z(t)) all lie within the interval

[é 1]. For each integer k > kg, define the stopping time 7 by

T = inf{t € [0, 7o) : min (x(t), y(t), z(t)) < ll—(}

where throughout this paper we set inf¢ = oo (as usual ¢ denotes the empty set). According to the definition, T, is
increasing as k — oo. Denote 7, =limy_, . 7, hence 7+ < 7. as. If we can show that 7, = oo a.s., then 7. = oo and
(x(t),y(t).z(t)) e R3 as. for all ¢t > 0. In other words, to complete the proof all we need to show is 7o = co a.s. For if
this statement is false, then there exists a pair of constants T > 0 and € € (0, 1) such that

P{t, <T} > €.
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Hence there is an integer k; > kg such that
P{t, < T} > € for all k > k.

Define a C2-function V : Ri — R by V(x,y,2) = Inxyz. Applying It6’s formula to system (2.6), for w € {7+ < T} and t € [0,
T+), we obtain
dV(x,y,z) = LVdt + oydB(t) — oxdB(t),

where
LV=é—ﬁy+ﬂ+g—z—b+ay+az—la2y2
X X X 2

1 1)
+ ,3x—(b+a+8+y)+ay+oez—502x2+ 7y —(b+a+e)+ay+oz

1 1 1)
—,8y—b+oty+ozz—§62y2+ ﬁx—(b+ot+8+y)+oty+otz—§02x2+ 7y—(b+a+8)+ay+ozz

%

£ F(x,¥,2).

By virtue of x +y +z =1 and continuity of F(x, y, z), there exists a constant M < 0 such that F(x, y, z) > M for (x, y, z) € A.
Hence, for any k > k;, we have

E[VX(T A7), y(T A7), 2(T A i) =V (x(0), ¥(0), 2(0)) (4.3)
> IE[TW LV (x(u),y(u), z(u))du > MT > —cc.
0

Set @ = {r, < T} for k > k;. Let o be the indicator of €2}, we have P(£2;) > €.
On the other hand, noting that x +y +z = 1, we have

E[V&(T A1), y(T A1), 2(T A Ty.))] < E[lnx(T A Tp.)] (4.4)
< E[lg, Inx(t, )]
<e€ln 1
- k

Letting k — oo, (4.3) and (4.4) yield the contradiction —oco > MT > —oco. Therefore we obtain 7, = co a.s. This completes the
proof of Theorem 3.1. O

4.2. Extinction

For a infectious disease, we are concerned about the threshold of the spread and disappearance for the infectious disease.

In this section, we will establish the threshold of stochastic system (2.7) denoted as Rys and prove that when Ry < 1,
the disease will be extinct. In the next section, we will investigate that when Ry; > 1 the disease will be persistent.

Before proof, we give a remark.

Remark 1. Theorem 4.1 shows that A= {(x,y,z) : x>0,y > 0,z> 0,x+y +2z= 1} is the positively invariant set of system
(2.6). Moreover, from x(t) +y(t) +z(t) =1, we have that D= {(x,y) | x> 0,y > 0, x+y < 1} is the positively invariant set
of system (2.7).

Theorem 4.2. Let (x(t), y(t)) be any solution of model (2.7) with initial value (x(0), y(0)) € D. If Ros = BrstaTy 2(b+§+8+y) =
Ro — 2(b+37j5+y) < 1 where Ry is the threshold of the deterministic system (2.4),then (x(t), y(t)) — (1, 0) a.s. (almost surely) as
t — oo. Namely, the disease will be extinct. Moreover,
. Inx(t
P{tllm “’;( ) _(b+a+8+7)Ros— 1)} —1, for X, € D. (4.5)

That is, I(t) tends to zero exponentially almost surely.

Proof. For simplicity, let

o2x?
Px)=(B-a)x—(b+5+y)— 5 (4.6)
Since Rys < 1, we choose sufficiently small ¢ > 0 such that Rgs — 1 + 7b+sfa+y < 0. Hence,
= I S
<I>(l)+§—(b+8+a+7/)<R05 1+b+5+a+y><0' 4.7)

Consider the Lyapunov function ¥ (x,y) = %(1 —x)2 +y?, where 0 < (0, 1) is a constant to be determined.
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Applying It6’s formula, we have
LWxy)=-1-x){(b+e+ax)(1-x)— (Bx—y +e)y}+ %szzyz +0y"{(B—a)xy — (b+8+y)y}
+ %0(0 — 1)y 202x%y?
=—(1=x){b+e+ax)(1-=x)— (Bx—y + &)y} + %azxzy2
+ 0y {(B-—a)x—(b+8+y)} + %sz"azx2 - %Gyeazxz

—(b+e+ax)(1-x)°"+ (1 =x)(Bx—y + &)y + %szzyz + 0y’ D (x) + %Gzy%zxz

—(b+e+ax)(1—x)>+ (1 —x)(Bx+e)y+ %crzxzy2 + 0y d(x) + %szeozxz. (4.8)

IA

For a constant w € (0, 1), denote Dy, = {(x.¥) | 1-w <x<1,0<y < w}.
By the continuity of ®(x), we can choose w € (0, 1) sufficiently small such that for any x € (1 — w, 1]

D(x) < D(1) + %
In addition, we let 8 € (0, 1) sufficiently small such that for any x € (1 — w, 1]
%90’2)(2 < %
Thus, when 6 and w are small enough, for (x, y) € D, we have
0y° ®d(x) + %Gzygazxz <0y (®(1)+¢).
In addition, when 6 is sufficiently small, we can get
2 1 200
—(b+e+ax)(1—-x)"+ 1 -x)(Bx+e)y+ 507Xy
<01 -x)*(®1)+¢).
Consequently,
LY (x,y) <O(@(1) +¢)¥(xy) for (x,¥) € D,
By [55], Theorem 3.3 (Chapter 4) and (4.7) for any £ > 0, there is 0 < w; < w such that
]P’[tlim X)) = (1,0)} >1-¢ for Xo € Da,. (4.9)
where Dy, = {(x,y) | 1-w1 <x<1,0<y < w}.
Next, we further prove that any solution starting in D will eventually enter D,,. Define 7, = inf{t > 0: x(t) > 1 — w}.
Consider the function ®(x) = —(x+2)°, where s is a sufficiently large number such that %(s— 1)o2x2y%+ (x+2)x
{b+e+ax)(1—-x)— (Bx—y +e)y} > %(b+e)a)1, for (x, y) € D and xe€(0,1—wq]. In fact, since (b+ &+ ax)

(1-x)(x+2)> (b+¢)w;, for any x € (0,1 — wq], we can find such a s.
Moreover, we have

LO®x) = —s(x+2) H{(b+e+ax)(1—-x)— (Bx—y + &)y} — %s(s —1)(x+2) 20 2x%y?
_ s2| {(b+e+ax)(1—x)(x+2)— (Bx—y +&)y}(x+2)
= —S(x+2) 2[ +1(s— o 2x2y? :|
< —%(b—ke)a)]s for (x,y)eDand x € (0,1 — w4].

By Dynkin’s formula, we have

Tow

EOX(Tw,)) = O(X0) + E /0 LOX())d < OX0) — 5 (b +E)iSE(Ta,).

Since ©(x) is bounded on D, we have E(z, ) < co. Thanks to the strong markov property, E(7s, ) < oo and (4.9) leads to
for any & > 0,

]P’[tlim X)) = (1, 0)} >1-&, for Xy eD.
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Therefore,
IP{tlim X)) = (1, 0)} —1, for X e D.

Applying 1td’s formula, we have

Iny(t) Iny(0)
t ot

t t
+%/0 D (x(s))ds + %/o oxdB(t) (4.10)

By virtue of the large number theorem for martingales and ergodic Markov processes, we have lim;_, % fot DX (u))du =

®(1) and lim_, %fé oxdB(t) =0 a.s. This and (4.10) means (4.5).
This completes the proof of Theorem 4.2. O

4.3. Persistence

In this section, we study the persistence of the model (2.6).

Theorem 4.3. Let (x(t), y(t), z(t)) be any solution of the model (2.6) with initial value (x(0), y(0), z(0)) € A. If Ros > 1 then
lim¢_, o infx(t) < x, < lim;_, o SUPX(t) as.,
where x, = ﬁ((ﬂ —a) — \/(/3 —a)? —202(b+68+ y)) which is unique root in (0, 1) of (B —a)x— (b+8+y)— ‘722"2 =

0. That is, x(t) will rise to or above the level x- infinitely often with probability one.

Remark 2. Since x(t) +y(t) +z(t) = 1, it follows from lim;_, o infx(t) < x, < lim;_, o supx(t) a.s. that y(t) +z(t) is always
oscillating between 0 and 1 a.s. This means that the disease is persistent.

Proof. Recall the definition of function ®(x) = (8 —a)x—(b+5+y) — "22"2, it is easy to see ®(0)=—-(b+5+y) <0

and (1) =(b+a+38+y)(Rys — 1) > 0. Hence, the equation ®(x) =0 has unique positive root in (0, 1) which is x, =

L(B-a)- V-0 2020 +5+7)).

dd(x)
dx

Since

= [(B-a)-o0%] |X:x* =V(B-a)*-202(b+8+y) >0, d(x) is monotonically increasing at x-.
First, we prove that lim;_,», supx(t) > x.. If it is not true, then there exists a sufficiently small €; € (0, 1) such that
P(21) > €,
where € = {lim;_,» supx(t) < x. — 2€;}. Hence, for every w € 1, there is a Ty = T (@) such that
X(t,w) <x.—€1, t > T (w). (4.11)
Since ®(x) is monotonically increasing at x«, we have
PRt w) < PR, —€1) <0, t>T(w) (4.12)

On the other hand, by the large number theorem for martingales, there is an €2, c  with P(£2,) = 1 such that for every
w € 2o,

t
lim % ox(s, w)dB(s,w) = 0. (4.13)
0

t—o00

Now, fix any w € 1N Q5. From (4.12), for t > T;(w), we get

T (w

Iny(t, w) = Iny(0) +/0 )CD(x(s, w))ds + /T[( : D (x(s, w))ds + /Ot oX(s, w)dB(s, w)

T (w

) t t
< lny(O)—i—/0 D (x(s, a)))ds+/”w)d>(x*—e1)ds+ /O o x(s, w)dB(s, w)

T (w

) t
= Iny(0) + /0 P, w))ds+ (t —TH () P(x,. — €1) + /0 o x(s, w)dB(s, w).

This leads to

tlim supw <P(x,—€1)<0.
Therefore,
tlim y(t, w)=0. (4.14)

According to (4.14), the last equation of the system (2.6) is differential system with limit system

dz(t, w) = (—(b+a + &)z + az®)dt.
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So we get

1
4+ (s L) exp (—(u +a+e)r)

nto+e z(0) ~ proate

This together with the relation x(t) +y(t) +z(t) = 1 leads to x(t, w) = 1. However, this contradicts (4.11).
Therefore we must have the desired assertion lim¢_, o, SUPX(L) > X,.
Next, let us prove assertion lim;_, « infx(t) < x,. If it is not true, then there is a sufficiently small €, € (0, 1) such that

P(£23) > €2,
where Q3 = {lim;_, » infx(t) > x. + 2¢;,}. Hence, for every w € Q3, there is a T, = T, (w) > 0 such that
X(t) =X, + €, t > Th(w). (4.15)
Since ®(x) is monotonically increasing at x«, we obtain
O x(t,w)) > P(x. +€) >0, t > Th(w). (4.16)
Now, fix w € Q2, N3, from (4.16), we get

L(w

Z(t,w) = — 0, ast —- o

Iny(t, w) = Iny(0) +/0 )<I>(x(s, w))ds + /T[( : D (x(s, w))ds + /Ot oXx(s, w)dB(s, w)

L(w

) t t
> lny(0)+/0 D (x(s, w))ds+/T(w)CI>(x*+62)ds+ fo o x(s, w)dB(s, w)

T (w) t
= Iny(0) +/ ' P, w))ds+ (t - L (w))P(x. +€) + / ox(s, w)dB(s, w).
0 0
This yields
tlim infw > P(x, +€)>0.

Hence, lim;_, » ¥(t, ®) = oo, that contradicts y(t, @) < 1. This completes the proof of assertion lim;_, », infx(t) < x,.
This completes the proof of Theorem 4.3. O

Next, when Rg; > 1, we estimate the lower bound of the solution for model (2.6) in mean time.

Theorem 4.4. Let (x(t), y(t), z(t)) be any solution of model (2.6) with initial value (x(0), y(0), z(0)) € A. If Ros > 1, then
. . S . . $ $ . .

lim¢_ o inf (y(t)) > %(ROS —1), lim;_ o inf (z(t)) > %(Rm —1), lim¢_ o inf (x(t)) > ﬁ as.

Proof. From (2.6)

Iny(t) —Iny(0)

t (417)
1/t 02x2 1t
=—/ (,Bx—(b+a+8+y)+ay+az— )ds+/ode(s)
t Jo 2 t Jo
1t 0 2x? 1/t
= ?/ <,B(1 yz)(b+a+8+y)+ozy+ozz2)ds+t/ oxdB(s)
0 0
o2x? 1/t
=ﬂ—(b+a+8+y)—T—ﬂ(y)—,B(z)+oe<y)+a(z)+?/0 oxdB(s)
2 1 t
z,3—(b+a+6+y)—07—,B(y)—ﬁ(z)—s—?/ oxdB(s)
0
-l t
=b+a+5+y)Rs—1)-By) - B(z) + ?/0 o xdB(s).
Noting that x +y +z =1, From the third equation of the system (2.6), we have
_ t
2(t) —2(0) tz(O) = %/ (8y — (b+a + &)z + ayz + az?)ds (4.18)
0

1 t
:7/ by—-(b+a+e)z+az(y+z))ds
tJo

IA

t
%/ By — (b+a+e)z+az)ds
0

t
%/0 8y — (b+¢&)z)ds
8(y) — (b+¢)(2).
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Rewriting (4.18), we get

) z(t) —z(0)
@<= G5ra5% " "orer (419)
Similarly, we obtain
_ t
20)=2(0) _ 1/ (8y = (b+a + &)z + ayz + az®)ds
t t Jo
t
= %/ by — (b+a+e)z+az(y+2))ds
0
t
=1 [ oy-0+arems
0
-l t
= ?/ by — (b+a+e)z)ds
0
=8(y)— (b+a+¢)z).
That is,
Sy)  z(t) —z(0)
) = b+a+e) tb+a+e) (4.20)
Substituting (4.19) into (4.17) leads to
Iny(t) —Iny(0)
t
N z(t)-z(0) B3 1 /f
>b+a+5+yY)Ros—1)—By) + b1y B+o) )+ T )y oxdB(s)
_ z(t)—z(0) B +b+e) 1/t
=b+a+8+y)Re—1)+ brex (o) ) + ?fo oxdB(s)
which deduces
b+e)yb+a+8+y)
Wz giprey R DO,
where f(t) = gt | 2972 + 1 Jj oxaB(e) - MO 4 O]
By (4.13) and y < 1, we have lim;_,», f(t) =0 a.s. Therefore,
. (b+e)yb+a+d+y)
}LHOIOIHf(y) > BG+bT o) (Ros — 1). (4.21)
Combining (4.21) with (4.20), we have
o ) o _db+e)yb+ra+d+y)
Aminf(z) = g Hminf{y) = BB +b+e)b+a+e) (Ros = 1. (4.22)
From the first equation of the system (2.6), we obtain
X(t) —x(0)

t t
= %/ (b—Bxy —bx+ yy + ez +axy + axz)ds — %/ oxydB(s)
0 0
1
t
1
t

1t 1/t
= ?/0 (b— (B +b)x)ds — ?/O oxydB(s)

t
/t (b — Bxy — bx)ds — 1 /[ o xydB(s)
0 tJo

/0 (b— Bx — bx)ds — %/0 oxydB(s)

t
b (B +b)) — ¢ [ oxvabs).
which leads to
b 1 ¢ 1 x(t) —x(0)
b G O

x) =
Hence,
lim inf (x) > b
t—o0 - ‘B =+ b’
This completes the proof of Theorem 4.4. O
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Fig. 1. Time series of the solution x(t) and y(t) of the deterministic system (2.4) with § =0, o = 0.1, Ry = 2.1917.
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Fig. 2. Sample paths of the solution x(t) and y(t) of the stochastic system (2.7) with § =0, o = 0.1 and Rys = 1.9178.

5. Numerical simulations

In this section, using the EM method mentioned [56], we will carry out numerical simulations to apply our results.

This example is motivated by realistic pneumococcus amongst homosexuals [57], with time unit of one day. The exit rate
n= W/day = 6.849315 x 107> /day (average sexually active lifetime), y = 0.018182/day [58], B = 0.04 (based on Gray
et. al. [38]). Assumption that b= = ‘ij/day =6.849315 x 10~°/day and the disease-related death rate a = 0. To see
the effect of isolation (quarantine) measure § and stochastic disturbance intensity o, in the next numerical simulations, we
only change their values, and do not change other values.

Example 1. Let the disturbance intensity o = 0.1, and the isolation rate § = 0.

In this case, Ry =2.1917 > 1, so the endemic equilibrium E;(x*,y*) = (0.4563,0.5437) of the deterministic system
(2.4) is globally asymptotically stable (Theorem 3.3). Fig. 1 confirm these. Meanwhile, Ry = 1.9178 > 1, the solutions of
the stochastic system (2.7) satisfy lim;_, o infx(t) < x, = 0.4858 < lim;_, o Supx(t) a.s. (Theorem 4.3) and lim;_,  inf (y(t)) >
%W(Rm —1) = 0.4187, lim;_, o inf (z(t)) > %(m — 1) =0.0018, lim¢—.o inf (x(6)) = 725 = 0.0017 ass.
(Theorem 4.4). This implied that the stochastic system (2.7) is persistent. Fig. 2 confirm these.

In addition, by 100000 time numerical simulation, we collect the values of x(t) and y(t) of the stochastic system (2.7) at
t = 3000, and give their empirical probability density which are exhibited in Figs. 3 and 4.

760



X.-B. Zhang and X.-H. Zhang Applied Mathematical Modelling 91 (2021) 749-767

4 , , , 5 , ,

w B>

Empirical density of y
N

Empirical density of x

—_
T

0 0.2 0.4 0.6 0.8
X y

(a) (b)

Fig. 3. Empirical density of x(t) and y(t) of stochastic system (2.7) with § =0, 0 = 0.1, Ry =2.1917 and Rys = 1.9178.
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Fig. 4. Empirical density of (x, y) of the stochastic system (2.7) with § =0 and o = 0.1, Ry = 2.1917 and Ry = 1.9178.

Example 2. Now, we choose the same parameters as in Example 1 except § =0.01 which means one percent of
the infective are isolated. In this situation, Ry = 1.4159 > 1, then the endemic equilibrium E;(x*,y*) = (0.7063, 0.1898)
of the deterministic system (2.4) is globally asymptotically stable (Theorem 3.3). Fig. 5 confirm these. Meanwhile,
Ros = 1.2389 > 1, the solutions of the stochastic system (2.7) satisfy lim;_ o infx(t) <x, = 0.7829 < lim;_, o, Supx(t)

: : b b ) : : S(b b 5
as. (Theorem 4.3) and lim_ o inf (y(t)) > me_ 1) =0.1090, lim_ o inf(z(t)) > W(&)S— 1) =

0.0017, lim¢_  inf(x(t)) > ﬁ = 0.0016 a.s. (Theorem 4.4). This implied that the stochastic system (2.7) is persistent.
Fig. 6 confirm these.

Comparing Fig. 1 (b) with Fig. 5 (b), we find that isolation measure can reduce the number of the infective.

In addition, in the same way as Example 1, we give the empirical probability density of x(t) and y(t) of the stochastic
system (2.7) which are exhibited in Figs. 7 and 8. Comparing Figs. 3(b) and 7(b), we see that isolation measure increases
the probability of few people getting sick and change the shape of empirical probability density.

Example 3. Next, we illustrate that the sufficiently large isolation rate § can eliminate the disease. Let the isolation rate
6 = 0.03, namely, three percent of the infective are isolated while the other parameter are the same as Example 1.

In this case, Ry = 0.8290 < 1, so the disease-free equilibrium Ey(1, 0) of the deterministic system (2.4) is globally stable
(Theorem 3.2). Fig. 9 confirm these.
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Fig. 5. Time series of x(t) and y(t) of the deterministic system (2.4) with § =0.01, o = 0.1, Ry = 1.4159.

0.4

0.4 : :
0 1000 2000 3000
t
(a)
Fig. 6. Sample paths of x(t) and y(t) of the stochastic system (2.7)
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Fig. 7. Empirical density of (x, y) of the stochastic system (2.7) with 6 =
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with 6 = 0.01, o = 0.1 and Rys = 1.2389.
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Fig. 8. Empirical density of (x, y) of the stochastic system (2.7) with § =0.01, 0 = 0.1, Ry = 1.4159 and Ry; = 1.2389.
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Fig. 9. Time series of x(t) and y(t) of the deterministic system (2.4) with § = 0.02, o = 0.1 and Ry = 0.829.

In addtion, Ros = 0.7254, the solutions of the stochastic system (2.7) satisfy IP’{ 11m l“"(t) =b+a+85+y)Rys—1) =
—0.0133} =1 and (x(t), y(t)) — (1, 0) a.s. as t — oo (Theorem 4.2). Fig. 10 confirm these

Example 4. Now, we illustrate that the large stochastic disturbance intensity o can eliminate the disease. To this end,
Let 0 = 0.22 and the other parameters as in Example 1, then Ry = 2.1917. Hence, the endemic equilibrium E;(x*,y*) =
(0.4563, 0.5437) of the deterministic system (2.4) is globally asymptotically stable (Theorem 3.3). which has been confirmed
by Fig. 1.

Meanwhile, Rg; = 0.8657 <1, then the solutions of the stochastic system (2.7) satisfy ]P’{ 11m =b+a+d5+

¥)(Ros — 1) = ~0.0233} = 1 and (x(t), ¥(t)) — (1, 0) as. as t — oo and P{lim X — (b4 a+8+ y)(ROS —1) =-0.0233} =
1 (Theorem 4.2). Fig. 11 confirm these.

lnx(t)

Example 5. In this example, we illustrate how the isolation rate § and the stochastic disturbance intensity o affect the
threshold Ry and Rg;.

Fig. 12 shows that as the isolation rate § increases, Ry decreases. We can find that there exists a critical isolation rate
6*=0.0217. If § > &%, then Ry < 1. This means that if more than 2.17% of the infective are isolated, the pneumococcus
amongst will be eliminated.
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Fig. 10. Sample paths of x(t) and y(t) of the stochastic system (2.7) with § = 0.02, o = 0.1 and Rys = 0.7254.
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Fig. 11. Sample paths of x(t) and y(t) of the stochastic system (2.7) with § =0, o = 0.22 and Rys = 0.8657.
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Fig. 12. The relationship between § and Ry for the deterministic system (2.4).
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Fig. 13. The relationship of Ry, § and o for the stochastic system (2.7).

Fig. 13 describes that as the isolation rate § or the stochastic disturbance intensity o increase, Rys decreases. We can see
there is a critical stochastic disturbance intensity o*, when ¢ > o*, Rys < 1. This tell us that sufficiently large stochastic
disturbance of the transmission rate can eliminate the disease.

6. Conclusion

In this paper, we propose a deterministic and stochastic SIS epidemic model with varying population and isolation. For
the deterministic model (2.4), we prove that its threshold is Ry = bSaTy If Ry < 1, the disease-free equilibrium Egy(1, 0)
of the deterministic model (2.4) is globally stable which means the disease will die out Theorem 3.2). If Ry > 1, the en-
demic equilibrium Eq(x*, y*) of the deterministic model (2.4) is globally stable which implies that the disease will spread
(Theorem 3.3). For the stochastic model (2.7), we also present its threshold Ry = Ry — WM. When Ry; < 1, the so-

lution of model (2.7) satisfies P{lim;_, 1“"# =(b+a+8§+y)(Ros— 1)} =1 which shows that the disease will be extinct
almost surely (see Theorem 4.2). When Rys > 1, the solution of model (2.7) obeys lim;_, «, infx(t) < x, < lim;_, o, supx(t) and
lim;_ oo inf[x(t) + z(t)] < 1 — x, lim;_  sup[x(t) + z(t)] almost surely with x« € (0, 1) which means that x(t), y(t) and z(t) of
(2.7) are always oscillating between 0 and 1 with probability 1 (see Theorem 4.3). Namely, the disease is persistent in prob-

ability. In addition, we prove that when Ry > 1, for the solution (x(t), y(t), z(t)) of model (2.7), lim;_ inf% fé x(u)du > ﬁ,
. . b+e) (b+a+8 : . 8(b+e)(b+a+s
lime o inf 1 f3 y(u)du > %(RoS —1) and lime_ o inf ! 5 z(u)du > % x (Ros — 1) hold (see Theorem

3.3.2). These results illustrate that the solution of model (2.7) is persistent in mean. It follows from Rys < Rg that the stochas-
tic perturbation of the transmission rate (or the valid contact coefficient) can help to reduce the spread of the disease. In
other words, the deterministic epidemic model overestimates the spread capacity of disease. In addition, there is a critical
stochastic disturbance intensity o*, when o > o*, Rg; < 1. This tells us that sufficiently large stochastic disturbance of the
transmission rate can eliminate the disease (see Fig. 13). At last, we apply our theories to a realistic disease, pneumococ-
cus amongst homosexuals, and carry out numerical simulations and obtain the empirical probability density under different
parameter values. We find that there exists a critical isolation rate §* = 0.0217, when § > &* the pneumococcus amongst
homosexuals will be eliminated. This has the important instructional significance to control pneumococcus amongst.

7. Discussion

Environmental noise has an important impact on the development of epidemics. In this paper, we analyze the dynamics
of a stochastic SIQS model. We suppose that the stochastic perturbation is a white noise type which disturbs the transmis-
sion coefficient of the disease. This is an accepted method of introducing stochastic environmental noise into the dynamic
model of biological population that have been used in [21,38].

In this paper, our contributions is that epidemiologically, we partially answer this question proposed in the introduction:
How does environment fluctuations affect the threshold of a SIQS epidemic model? We find that environment fluctuations
reduce threshold of a SIQS epidemic model. In other words, the threshold of the stochastic SIQS epidemic model is less
than the threshold of the corresponding deterministic version. This means the stochastic perturbation of the transmission
rate can suppress the spread of the disease. This is consistent with some existing studies [37]. In addition, in this paper,
we establish the almost sufficient and necessary condition of the extinction and the permanence of the disease. Only the
critical case when Rys = 1 is not studied yet. In contrast, most existing results just are necessary conditions of the extinction
and the permanence of the disease. Furthermore, our approach can improve the results of some literatures (e.g. [37,50,52]).
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The outbreak of infectious diseases will hinder the normal operation of human society and cause serious economic losses.
As a result, quarantine is one of the most popular classification tools to control and eliminate epidemic, especially for new
and unknown infections diseases. From the view of application, by the threshold of the SIQS epidemic model, we can get
the critical isolation rate §*. When the isolation rate ¢ is greater than &*, the disease will be controlled and eliminated.

It should be noted that in the present paper we consider continuous stochastic perturbations described by white noises.
In fact, there are some discontinuous stochastic perturbations which can not be modeled by white noises, but can be done
by the telephone and Lévy jumps noises. Recently, stochastic models with these noises have been studied by many au-
thors, and many interesting results have been obtained, for example, see [59-63] and the references therein. These studies
motivate us to further analyze system (2.7) including the telephone and Lévy noises. In addition, for stochastic model we
establish the threshold condition of persistence and extinction, but do not prove the existence of stationary probability
distribution which is similar to the equilibrium state for the deterministic model. We leave these investigations for future
work.
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