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Abstract

Image segmentation is a ubiquitous step in almost any medical image study. Deep learning-based 

approaches achieve state-of-the-art in the majority of image segmentation benchmarks. However, 

end-to-end training of such models requires sufficient annotation. In this paper, we propose a 

method based on conditional Generative Adversarial Network (cGAN) to address segmentation in 

semi-supervised setup and in a human-in-the-loop fashion. More specifically, we use the generator 

in the GAN to synthesize segmentations on unlabeled data and use the discriminator to identify 

unreliable slices for which expert annotation is required. The quantitative results on a conventional 

standard benchmark show that our method is comparable with the state-of-the-art fully supervised 

methods in slice-level evaluation, despite of requiring far less annotated data.

Index Terms—

GANs; Human-Machine Collaboration

1. INTRODUCTION

Image segmentation, notably semantic segmentation that aims at assigning a class label to 

each pixel in the image, is one of the main applications in medical image processing. In this 

regard, deep learning techniques lately have achieved exceptional results in this domain, 

while constantly pushing the limits of what is possible. The recent advances can be 

attributed to improvements to algorithms and model architectures along with ever increasing 

computational power, and availability of big data. However, the big data assumption, which 

is key for deep learning applications, is at the same time the limiting factor. For many 

supervised learning approaches, particular in the medical domain, it is often too expensive or 

even impossible to acquire large amounts of high quality annotations in order to learn a deep 

learning model at sufficient accuracy. In such cases, semi-supervised learning is a viable 
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solution. In this setting, a large dataset of images is available, however, pixel-level labels 

only for a fraction of the data. Therefore, semi-supervised and self-supervised learning can 

be very beneficial in cases where data annotation is immensely difficult and costly, which is 

often the case in the medical domain [1,2].

Among the semi-supervised learning approaches, one of the most prominent solutions 

proposed in literature is based on an iterative, Multiple Instance Learning (MIL) framework. 

In this context, an initial model is trained on the small supervised subset of the data. This 

model is then used to predict the segmentation for the large unsupervised subset, which is 

treated as pseudo ground truth in the next training iteration. However, the reliability of the 

predicted pseudo ground truth is subject to quality fluctuations, depending largely on the 

labeled subset. Therefore, one of the drawbacks of MIL frameworks is their proneness to 

process drift, which usually results in many false positives in the training dataset. 

Furthermore, it has been shown that the performance of simple baselines under semi-

supervised setup droops dramatically, when a large amount of unlabeled data contains 

examples with significant distribution mismatch [3]. To alleviate this problem, we propose a 

training protocol based on the human-machine collaborative learning paradigm [4,5]. The 

main idea is to automatically select a subset of more reliable predictions and actively collect 

annotations for the samples with associated unreliable pseudo ground truth (out-of-

distribution samples). This is conducted in a human-in-the-loop fashion, such that the model 

can be re-trained with more accurate examples, avoiding the risk of drift. The proposed 

approach involves estimating the uncertainty of the predictions, for which we propose the 

use of the adversarial discriminator in a GAN. Specifically, we use a cGAN to train G and D 
using supervised data. On the one hand, G learns how to generate segmentations by 

conditioning on images. On the other hand, the discriminator D is used for plausibility 

purposes, assessing the uncertainty of the segmentations with respect to the conditioned 

image. The intuition behind using GANs is their intrinsic potential to capture the data 

distribution and uncertainty estimation [6,7]. It has been shown that the discriminator is 

useful to measure the quality of cross-modal generation tasks [8–10] as well as detecting the 

outlier samples [11–13]. Since discriminator is tailored to detect out-of-distribution samples 

and therefore inherently associates uncertainty with the loss.

Related work:

There is a wealth of literature on semantic segmentation, but here we only discuss the most 

related ones to our work, and refer the reader to the recent surveys by [14]. Pathak et al. [15] 

propose a weakly supervised semantic segmentation algorithm subject to linear constraints 

on the output space. Pathak et al. [16] use multiple instance learning (MIL) to generate latent 

segmentation label maps for supervised training. Wang et al. [17] propose image-specific 

fine-tuning in order to make a deep neural net adaptive to each specific test image. Gorriz et 

al. [18] propose an active learning framework with Monte Carlo sampling to model the 

pixel-wise uncertainty. Ronneberger et al. [19] propose ”U-Net”, a network connecting 

opposed layers that in particular is used for semantic segmentation. Attracted by their 

success in the medical image domain, we also used this kind of generator in our GAN 

framework. Most related to our paper is the work by Luc et al. [20] and Souly et al. [21]. 

Like us, they propose to use GANs for semantic segmentation. The former propose to use 
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GANs for semantic segmentation through correcting higher-order inconsistencies, and the 

latter for improved semi-supervised semantic segmentation. Our efforts, however, differ in 

some substantial ways. First, we propose to directly use an adversarial discriminator for 

uncertainty modeling in an end-to-end fashion. Second, we augment samples by collecting 

annotations for low-quality predictions in interaction with a user.

Contributions:

The contributions of the proposed paper are two-fold: (i) We introduce an iterative human-

machine collaborative algorithm which uses a GAN framework to apply semi-supervised 

learning in a human in the loop fashion. (ii) To best of our knowledge, it is the first time that 

the adversarial discriminators are used to estimate the uncertainty of a prediction. Our study 

opens up avenues for exploiting new in-expensive interactive solutions to achieve a 

performance gain in medical image segmentation and other disciplines.

2. PROPOSED FRAMEWORK

Semi-Supervised Conditional GAN:

Recently, GANs were introduced as a method for training generative models [22]. It consists 

of two adversarial agents that compete with each other during a Minimax game until 

reaching a Nash equilibrium at convergence of the training phase. Specifically, it 

decomposes into two main components: a generative model G trying to produce fake data 

resembling real data and a second agent, a discriminative model D that learns whether a 

segmentation Sj is consistent with the training dataset.

cGANs [23] constitute an extension of the standard GAN, where the input of the generator 

as well as discriminator are further tied to a conditional variable. In the following, we 

assume the conditional variable to be an image Ij ∈ ℐ and the target variable a segmentation 

Sj ∈ S. Here ℐ and S denote the image space and segmentation space, respectively. Thus, G 

seeks to learn a mapping ℐ S. In contrast, D:(ℐ, S) [0, 1] tries to distinguish between 

original samples and those generated by G. In the following we denote the training set 

consisting of n labeled samples as Ilab, Slab = Ij, Sj j = 1
n . With slight abuse of the 

notation, the cGAN parameters are obtained by optimization of the loss function ℒ( . ),

ℒ D, G ∣ Ilab, Slab = ∑
(I, S) ∈ Ilab, Slab

[logD(I, S)] + ∑
I ∈ Ilab

Ez[log(1 − D(I, G

(z, I)))],
(1)

where Ilab and Slab denote the set of labeled images and segmentation maps, respectively.

In the semi-supervised setting, there exists an additional set of training data consisting of m 

samples for which no ground truth labels exist, which is denoted by Iunl = Ij j = n + 1
n + m . In 

order to obtain a fully labeled set, G can be employed to produce pseudo ground truth 

S = Sj = G Ij : ∀Ij ∈ Iunl , yielding   Iunl, S = Ij, Sj j = n + 1
n + m .
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Interactive Conditional GAN:

The prediction in the semi-supervised setting is not always reliable and subject to noise. 

Essentially, pseudo ground truth generated from images that are very different from the 

annotated data distribution, e.g. out-of-distribution samples, expectedly have high 

uncertainty. However, estimating to what degree a sample is in-distribution or out-of-

distribution is not straightforward.

Our method handles two issues simultaneously: (1) absence of annotation for the unlabeled 

data, (2) finding the optimal query to annotate. We view segmentation maps of the unlabeled 

data as latent variable and propose to integrate it out. For the optimal query given a budget 

K, we propose to solve the following optimization:

max
G, α

min
D

ℒ D, G ∣ Ilab , Slab  + ∑
I ∈ Iunl 

αIES q(S)[logD(I, S)],
(2)

subject to: 0 ≤ αI ≤ 1, ∑I ∈ Iunl αI ≤ K, where ℒ D, G ∣ Ilab, Slab  is the cGAN over labeled 

data as in Eq. 1. q(S) is the approximate posterior for the latent segmentation mask, and αI is 

a soft selector for the unlabeled image I in the set of unlabeled images (i.e., I ∈ Iunl). Since 

each αI is a selector for the unlabeled data to be annotated, K specifies the budget. Note that 

the second term in Eq. 1 is not a function of S, hence it does not show up in the Eq. 2. Also, 

we provided the set of selectors to the generator meaning that G can select images to be 

labeled. Furthermore, if we assume q(S) = δ(S*), where S* is the Maximum A Posterior for 

S, one can easily find a closed form solution for αI selectors. Specifically, the generator 

finds the instances with maximum values of D up to K (top K easy cases), whereas the 

difficult cases are requested to be annotated by the expert.

Human-Machine Collaborative Learning with GAN:

The proposed approach leverages conditional GAN (cGAN) for facilitating the human-

machine collaboration for segmentation. To that end, the generator G is trained to produce 

accurate label maps corresponding to the conditioned image, while the discriminator D 
attempts to recognize whether a given segmentation is in accordance with the input image. 

What is more, D can be used to estimate model uncertainty for unseen images. Specifically, 

D is used for ranking the predicted segmentations referred to as pseudo ground truth, such 

that annotations querying is restricted to low-confidence (difficult cases) items. Thus expert 

annotations are obtained in an active learning fashion for high uncertainty samples only, 

therefore incurring minimal cost.

3. EXPERIMENTS

Experimental setup and dataset:

For the evaluation, we used the data of the HVSMR 2016 challenge [24]. The dataset 

consists of 10 3D volumes of cardiovascular magnetic resonance images along with 

annotations of the ventricular Myocardium and blood pool. To simplify the experiments, the 

ground truth segmentations are used to simulate the user interaction. In our experiments we 
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employed a GAN implementation as proposed in [25]. The generator network is a “U-Net” 

with skip connections, and for the discriminator a PatchGAN [26] network is utilized.

Discriminator scores analysis:

As discussed in Sec. 2, the discriminator scores are used to rank the segments predicted by 

G. In order to study the importance of discriminator scores, we designed a set of 

experiments. First, an initial model (base) is trained using only a single volume (single 

patient) of supervised data. Next, this model is used to predict the labels of the semi-

supervised set (the excluded volumes from the training). Then the predicted segments are 

ranked based on the obtained score of D. This is followed by incremental addition of 

samples from the ranked list to the portion of data, and the calculation of an accumulated 

average dice score for each portion. The result is presented in Fig. 2, which clearly suggests 

a correlation between the quality of the predictions (represented by dice score values) and 

the obtained scores of D. In other words, this observation shows that the high-ranked 

predicted segmentations contain information that can be used for training a new adversarial 

net. To ensure consistency between the scores of D and dice scores, we conducted an 

agreement study, finding that the Pearson correlation is strong and significant (r = 0.98, p-

value < 0.001) as shown in figure 2.

Analysis of cGAN performance:

In this experiments we show the effect of varying amounts of supervised data on the 

behavior of different cGANs, with results presented in Fig. 3. Specifically, we compare the 

performance of a ranked semi-supervised cGAN, random semi-supervised cGAN and 

interactive cGAN with respect to increasing the used percentage of data for training. The 

upper bound, shown by the dashed line, is the maximum accuracy (dice scores) obtained 

from a supervised cGAN model trained on the entire training set.

The ranked/random semi-supervised cGAN, and interactive cGAN are trained using only a 

single volume of supervised data for learning the base model. However, in case of two semi-

supervised cGAN models, the rest of training data is collected from predictions, and 

incrementally added to the training set for fine-tuning the base model. The only difference 

between the ranked semi-supervised cGAN, and random semi-supervised cGAN is that the 

latter model randomly selects the samples to increase the training data, while the ranked 

model adds data based on the ranked list obtained from D scores. The predictions are added 

to the training set in descending order (from the easy cases to the difficult ones), which 

suggests enhanced stability in comparison with the chaotic behavior of the random model. 

For fine-tuning the interactive cGAN, not only the predictions for easy samples are used, but 

also a set of ground truth annotations is collected for difficult cases through user interaction. 

This model outperforms the preceding variants. As shown in Fig. 3 and Tab. 1, increasing 

the amount of supervised data (user annotation) leads to a constant improvement, until the 

model reaches the upper bound. In our studies the interactive cGAN achieved almost the 

upper bound using only 80% of supervised data.
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Quantitative results:

In Tab. 2 a comparative result of dice scores for Myocardium and Blood pool is reported. In 

case of semi-supervised cGAN models (ranked and random) the average accuracy is 

reported, while for interactive cGANs different levels of supervisions are reported: low 

(30%), medium (60%) and high-percentage (80%).

Qualitative results:

Slices from HVSMR dataset are shown in Fig. 4. The figure shows the pixel-level 

uncertainty modeling using the D score maps in PatchGAN fashion. The first and second 

columns show the original input ℐ, and original segments S, respectively. The last two 

columns illustrate the predicted segments S and corresponding D score maps D(ℐ, S), 
respectively. The figure shows the low-quality areas of predicted segments obtaining lower 

score in the D(ℐ, S) (red). This indicates, in the heat-maps the patch with theIlowest value of 

D, correspond to the patch with maximum uncertainty or wrong segmentation, while the 

high-scored patches (blue) represent the high quality segments. The figure further shows that 

the score of D can successfully detect wrong segments predicted by G.

4. CONCLUSION

The proposed approach shows that combining the notions of human machine collaborative 

learning with GANs is viable, and D can be used as a measure of uncertainty. Altogether, 

this allows for obtaining high accuracy segmentations under much more restricted data 

assumptions. This is achieved by an iterative and selective update of pseudo ground truth 

data, keeping the human in the loop, where it promises to be most useful, simultaneously 

keeping interaction at a minimum.

Future work will entail performing the uncertainty computation at finer granularity, e.g. 

patch-wise, which promises to boost the performance of the approach. Furthermore, future 

research will also deal with more in-depth study of D as a measure of uncertainty, to 

consider diversity into ranking. Selection of more diverse samples incorporate in the patch-

wise uncertainty measurement comes with potential further boosting in the performance.
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Fig. 1: 
Learning interactive cGAN in a loop: (a) training a base model to generate segments from a 

small set of annotated data, (b) G generates segment predictions from input images, which 

are sequentially ranked by D. In (c), stacking the easy predictions with the annotation 

collected from user on the difficult cases and utilize it to continue the training procedure.
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Fig. 2: 
The average dice score of the different partitions: Samples are first sorted by the scores of D 
in ascending order. The average dice score is then computed for each partition.
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Fig. 3: 
Dice scores for different amounts of supervised data.

Ravanbakhsh et al. Page 11

Proc IEEE Int Conf Acoust Speech Signal Process. Author manuscript; available in PMC 2020 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4: 
Qualitative results: Original image ℐ, ground truth segmentation S, predicted segmentation 

S and discriminator score for predicted segmentation D(ℐ, S).
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Table 1:

Dice scores for different amounts of supervised data

10% 20% 30% 40% 50% 60% 70% 80% 90%

Myocardium 0.41 0.45 0.53 0.57 0.62 0.67 0.71 0.75 0.73

Blood Pool 0.86 0.88 0.89 0.90 0.91 0.92 0.92 0.94 0.95

Average 0.64 0.66 0.71 0.74 0.77 0.80 0.82 0.85 0.84
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Table 2:

Comparing with state-of-the-art methods. For I-cGAN the percentages of supervised data is indicated

Dices

Model Myocardium Blood pool Mean

Mukhopadhyay [27] 0.495 0.794 0.645

Tziritas [28] 0.612 0.867 0.740

Shahzad et al. [29] 0.747 0.885 0.816

DenseVoxNet [30] 0.821 0.931 0.876

Fully-Supervised cGAN 0.770 0.943 0.856

Semi-Supervised (Ranked) 0.688 0.887 0.689

Semi-Supervised (Random ) 0.456 0.871 0.663

I-cGAN by ranking (30%) 0.528 0.888 0.708

I-cGAN by ranking (60%) 0.674 0.918 0.796

I-cGAN by ranking (80%) 0.750 0.941 0.846
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