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Abstract

The US electronics recycling industry has introduced a novel mobile electronic waste (e-waste)
shredding truck service to address increasing needs for secure data destruction of e-waste. These
trucks can shred small electronics with data security concerns at remote locations for a wide var-
iety of clients. Shredding jobs usually involve hand-feeding electronic waste (e-waste) for 4-10 h
day~', 1-5 days. Shredding of e-waste has been documented as a source of high metal exposures,
especially lead and cadmium. However, no studies have been done to assess exposures on mobile
e-waste shredding trucks. We conducted a pilot cross-sectional exposure assessment on a mobile
e-waste shredding truck performing a 65-min shredding job (truck back door open and no local ex-
haust ventilation) in the Greater Boston area in 2019. We collected area air and surface wipe sam-
ples for metals along with real-time particulate measurements from different locations. The highest
metal air concentrations (e.g. 2.9 ug-lead m-3) were found next and 1.8 m away from the shredder
operator inside the semi-trailer. Metal surface contamination was highest near the shredder (e.g.
1190 ug-lead 100 cm-2?) and extended to other parts of the truck. Near the shredder, the concentration
of ultrafine particles was up to 250 000 particles cm~ and particulate matter 2.5 mm or less in diam-
eter (PM,,) was up to 171 ng m=, and neither returned to background levels after 40 min of inactivity.
A diesel-electric generator was used to power the shredder and could have contributed to some of
the particulate emissions. We found that mobile e-waste shredding trucks are a source of metals
and particulates emissions. We recommend the industry adopts better controls for shredding inside
trucks, such as local exhaust ventilation with proper filtration and use of personal protective equip-
ment, to protect workers’ health and the environment.
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Introduction

Rapid technological innovation and market competition
have shortened electronic products’ life cycles (Aytac and
Wu, 2013). These shorter life cycles have inevitably led
to larger amounts of electronic waste (e-waste). Thus, the
US electronics recycling (e-recycling) industry has shown
tremendous growth. The industry workforce has grown
from 6000 fulltime employees in 2002 to 532 000 jobs
most recently (ISRIL, 2018, 2019). E-recycling processes
typically include sorting, testing, refurbishing, repairing,
or shredding (Ceballos and Dong, 2016; Li et al., 2017).

The increased need for more secure forms of data de-
struction (Terry, 2015; Ponemon Institute, 2018), has led
e-recycling facilities to introduce mobile e-waste shred-
ding trucks. This service provides onsite shredding of
hard drives, solid-state drives, cell phones, laptops, and
other media units containing confidential information.
Some US e-recycling facilities commonly deploy one or
more mobile e-waste shredding truck(s). Shredding jobs
vary depending on customer’s needs, but on average
small shredders have capacities of 600-800 drives per
day, and shredding jobs may span 1-5 days. The design
of these novel trucks varies, but the majority consist of
a combination of a tractor-unit, a diesel, or hybrid diesel
generator to power the shredder, and a semi-trailer with
a shredding device (Zeng et al., 2015).

Shredding of e-waste can be a potential source of
neurological and cardiovascular toxicants such as lead,
cadmium, and airborne particles (Julander et al., 2014;
Ceballos et al., 2017). The use of a diesel generator
may introduce more particulate emissions (Zhu et al.,
2002; Wichmann, 2007). Ultrafine (UFP) and particu-
late matter 2.5 mm or less in diameter (PM, ) are effi-
ciently deposited in all regions of the respiratory tract
and are associated with respiratory and cardiovascular
health outcomes (CONCAWE, 1999; Oberdorster,
2000). One study measured PM, | from an e-recycler fa-
cility shredder in California and documented an elicited
proinflammatory response in exposed mice (Kim et al.,
2015).

There are currently to our knowledge no exposure
assessments of these mobile e-waste shredding trucks.
The main objective of this pilot study was to charac-
terize metals and particulates exposure from a mobile
e-waste shredding truck.

Methods

Study design
A cross-sectional exposure assessment pilot study was
conducted at a mobile e-waste shredding truck parked

at a Greater Boston e-recycling facility in 2019. The
shredder was powered by a new hybrid diesel generator.
The 65-min shredding job consisted of continuously
hand feeding 200 confidential hard drives and solid-
state drives for destruction inside the semi-trailer, with
worker not moving away from the job during the whole
task. There was no local exhaust ventilation and oper-
ation relied on natural ventilation with the back door
opened. The worker did not use any personal protective
equipment (PPE).

Sampling for metals on different locations of the
truck included area air sampling during the shred-
ding task and surface wipe sampling. We also collected
real-time UFP and PM, | at different locations before,
during, and after shredding. Samples near the shredder
were positioned as close as possible to the worker’s head
height. Sampling locations are described in Fig. 1.

Area air and surface wipe sampling and analysis
Active air samples were collected using pre- and
postcalibrated AirChek XR5000 air sampling pumps
(SKC Inc., Eighty-Four, PA, USA) at 4 | min~! connected
via Tygon tubing to 37-mm cassettes containing 37-mm
diameter mixed-cellulose-ester membrane SKC-Solu-
CAP filters cat. no. 225-8517—to account for wall de-
posits (Ceballos et al., 2015).

Surface wipe samples were collected by the same re-
searcher using one premoistened Ghost wipe towelette
(SKC Inc., Eighty-Four, PA, USA, cat. no. 225-2414) and
a 10 x 10-cm? disposable template per sample following
a standard wiping protocol (Brookhaven National
Laboratory, 2014).

Field and media blanks were collected for both area
air and surface wipe samples. No blank corrections
were necessary. Samples were shipped for analysis to the
South West Research Institute Laboratory (San Antonio,
TX, USA). Both air and wipe samples were analyzed
according to NIOSH Method 7300 (NIOSH, 2018).
Sample digestates were analyzed for a panel of 30 elem-
ents via Inductively Coupled Plasma Atomic Emission
Spectrometry and Mass Spectrometry. Details of the
quality assurance and quality control for the analysis
method are in Supplementary Information S1, available
at Annals of Work Exposures and Health online. A list
of elements and detection limits are in Supplementary
Table S1, available at Annals of Work Exposures and
Health online.

Real-time measurement of particulates
Total UFP (0.01-1 pm) particle number concentrations
were measured using a hand-held real-time condensation
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Figure 1. Layout of the mobile e-waste shredding truck and locations of the sampling.

particle counter (CPC) 3007 (TSI Incorporated, Shoreview,
MN, USA). PM, ; (<2.5 pm) concentrations were measured
using a real-time TSI SidePak AM510 PM, ; monitor. Both
devices measured at a time resolution of 1 min, were cali-
brated annually by TSI, and were blank and quality control
checked on the day of sampling.

Statistical analysis

Basic and descriptive statistics were performed using R
(3.5.1, R Core Team, Vienna, Austria) and Excel (3635,
Microsoft, Seattle, WA, USA). Most metals in the ana-
lysis were lognormal. Wilcoxon signed ranked test was
used to compare production and non-production areas
when possible (a = 0.05).

Results

Table 1 shows area air sample results for metals and sur-
face loading for a select group of elements. The highest
concentration in air was found next to the shredder or 1.8
m away from the shredder. Specifically, the concentration
for most metals next to the shredder was about 1-10 times
higher than the concentration of the other locations. The
highest level of surface contamination was found on top
of the shredder, which showed dust accumulation from old
shredding jobs. There were also detectable metals in the
non-production area (i.e. generator compartment).

Fig. 2 shows the UFP and PM, , during the shred-
ding job. Particulates increased rapidly, UFP >250 000

particles cm™ and PM, ; 2171 pg m~>, after the shred-
ding began. UFP near and 1.83 m away from the
shredder were similar throughout sampling. Unlike
UFP, PM, ; measured higher near the shredder and de-
creased further away from the shredder. After shredding
ended, particulates near the shredder did not return to

baseline levels.

Discussion

In this initial assessment of metals and particulates ex-
posure in a mobile e-waste shredding truck, both air and
surface samples suggest that shredding inside a truck is
an important source of exposure to toxic metals and
particulates in workers.

For most metals, the area air concentrations were
low during shredding with the highest levels found near
and 1.8 m away from the shredder, confirming poor
ventilation conditions. Lead air concentrations during
shredding were similar to area air samples in other fa-
cilities from other studies that performed shredding in
warehouses (NIOSH, 2014, 2015). If air concentra-
tions were maintained for the whole work shift (e.g.
2.9 pg-lead m~3), the lead concentration would not be
likely higher than current occupational exposure limits
(50 pg-lead m=3) (OSHA, 2020a) but would be higher
to the proposed permissible exposure limit (2.1 pg-lead
m) (CalOSHA, 2020). Although, if we sampled the
breathing zone of the worker, lead concentrations would
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Figure 2. Ultrafine (UFP) particulate count concentration (# cm=) and PM, ; (ng m-3) concentration during a shredding task in a
mobile e-waste shredding truck.

likely be higher than the measured area samples as is  (NIOSH, 2014, 2015). Surface sampling can provide
typical in the e-recycling industry (Ceballos et al., 2017).  information about the potential for exposure by other

Surface contamination measured in our study was than the inhalation route such as the skin or mouth.
highest on top of the shredder and was comparable The recommended criteria in work surfaces for arsenic,
to those found in shredders inside e-recycling facilities chromium, and lead [100, 50, and 500 pg 100 cm™2,
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respectively (Brookhaven National Laboratory, 2014)]
were all exceeded on the shredder surface (125, 271,
and 1190 pg 100 cm™2, respectively). Lastly, although we
found low levels of contaminants in the cabin, this sug-
gests some migration to unsuspected areas.

During shredding, particulates reached their peak
within minutes with the highest concentrations near
the worker. Particulate data suggest that more than nat-
ural ventilation is needed to effectively remove or dis-
sipate particulates that are generated from a shredding
job. Similar UFP at different locations is likely due to
the much lower settling velocity and longer settling time
compared with PM, | (Tsuda et al., 2013). We would ex-
pect particulate concentrations even higher, along other
toxic exposures such as carbon monoxide, if the diesel
generator was older and not hybrid.

The main limitation of this study is the limited
sampling time in only one facility that makes results
not generalizable. Due to privacy and data security
concerns typical of outside clients, we were unable to
travel with employees to a remote location to sample
a longer session. However, these preliminary data are
important to create awareness of potential health and
safety issues with the use of this novel technology. In
future studies, it would be interesting to measure air
and surface levels of other metals such as mercury.
Besides, since shredding can generate particles with
diameters in the range of 100 pm, a comprehensive as-
sessment of the size distribution of the airborne par-
ticle personal exposures (including inhalable and total)
dust exposures should be conducted. Our preliminary
findings show that personal exposure assessments of
the inhalation and dermal exposures of the operators,
and other workers involved in the mobile shredding
processes are needed.

Mobile e-waste shredding truck services are rela-
tively new in the e-recycling industry, and many of these
trucks have not been retrofitted with ventilation to ac-
commodate a shredder in the semi-trailer. Our find-
ings suggest that an e-recycling facility with shredding
operations inside a truck(s) should develop health and
safety procedures striving, as a minimum, to use the
same controls typically recommended for shredding in-
side e-recycling facilities (e.g. local exhaust ventilation,
PPE, and housekeeping). Other safety and health con-
siderations should also be in mind with shredding op-
erations inside a truck. Rotating parts could create an
injury or a spark in an area that could be inadvertently
closed (back door could close with a worker inside)
and generate a hazardous temporary confined space—
confined space is defined as a space large enough for

an employee to enter and perform work; with limited
or restricted means for entry or exit; and not designed
for continuous occupancy (OSHA, 2020b). Dangerous
conditions can be further exacerbated if the truck was
parked for long periods exposed to extreme weather
conditions at a client’s remote location. There are also
potentials for noise and non-ergonomic workstations,
among other hazards typical of the industry (Ceballos
et al.,2014; OSHA, 2020c). Future research is necessary
to further characterize exposures and other health and
safety issues in these trucks to assure the health of both
workers and the environment.

Supplementary Data

Supplementary data are available at Annals of Work Exposures
and Health online.
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