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Abstract

Depression is a serious mental health problem. Recently, researchers have proposed novel 

approaches that use sensing data collected passively on smartphones for automatic depression 

screening. While these studies have explored several types of sensing data (e.g., location, activity, 

conversation), none of them has leveraged Internet traffic of smartphones, which can be collected 

with little energy consumption and the data is insensitive to phone hardware. In this paper, we 

explore using coarse-grained meta-data of Internet traffic on smartphones for depression 

screening. We develop techniques to identify Internet usage sessions (i.e., time periods when a 

user is online) and extract a novel set of features based on usage sessions from the Internet traffic 

meta-data. Our results demonstrate that Internet usage features can reflect the different behavioral 

characteristics between depressed and non-depressed participants, confirming findings in 

psychological sciences, which have relied on surveys or questionnaires instead of real Internet 

traffic as in our study. Furthermore, we develop machine learning based prediction models that use 

these features to predict depression. Our evaluation shows that Internet usage features can be used 

for effective depression prediction, leading to F1 score as high as 0.80.
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1. Introduction

Depression is a serious and widespread mental illness that affects 350 million people 

worldwide [46]. Current diagnosis has been based on clinical interviews or patient self-

reports [42]. Both are limited by recall bias. In addition, clinical interviews require direct 

attention of a skilled clinician, which is problematic due to the lack of trained professionals 

[5]. Furthermore, the interviews typically take place in clinics or treatment centers (instead 

of natural environment), leading to limited ecological validity [45]. Patient self-reports 

require that a patient fills in the reports consistently over time to monitor depression 

conditions, which is burdensome and hence difficult to execute on a continuous basis.

Recent studies have proposed novel approaches that use data passively collected on 

smartphones for automatic depression screening (e.g., [17, 36, 11, 41], see Section 2). These 

studies have found that sensing data collected on smartphones can be used to infer a user’s 

behavioral characteristics, which can then be fed to machine learning algorithms (with pre-

trained models) to detect depression. Specifically, they have explored using several types of 

sensing data, related to location, activity, phone usage, conversation, and sleep. In this paper, 

we leverage a new type of data, Internet traffic that destines to or originates from 

smartphones, for depression screening. Such data can be easily collected, incurring 

significantly lower energy consumption than collecting location and activity data [14, 56], 

and is not sensitive to phone hardware. Our approach is motivated by the studies in 

psychological sciences (e.g., [47, 10, 34, 29, 55]), which have demonstrated the relationships 

between a user’s Internet usage and mental health. These studies, however, rely on self-

report surveys or questionnaires to characterize a user’s Internet usage, which are subjective, 

and may suffer from recall and desirability biases. Our study, in contrast, uses real Internet 

traffic that is passively collected, which is objective, and the data can be mined to extract a 

wide range of user behavioral characteristics. To preserve user privacy, we only collect 

coarse-grained meta-data (the timing, source and destination IP addresses, and size) of the 

Internet packets; the payloads of the packets are discarded. In addition, such meta-data is 

accessible under most encryption techniques used in the Internet, and hence our approach is 

applicable to most Internet traffic.

Our goal is to explore the feasibility of using coarse-grained Internet usage meta-data for 

depression screening. Similar as other types of sensing data collected from phones, Internet 

usage data is subject to missing data and measurement noises (e.g., automatic traffic not 

generated by human activities). In addition, the Internet traffic meta-data in itself does not 

directly provide insights into human behaviors—meaningful features need to be extracted 

from the data that can differentiate the behavioral characteristics of depressed and non-

depressed populations. In this paper, we first develop data preprocessing techniques to 

identify Internet usage sessions and then explore three types of features: two based on usage 

sessions and the third based on traffic volume. After that, we develop machine learning 

based prediction models that use different types of features to predict Patient Health 

Questionnaire (PHQ-9) [28] scores and depression status (i.e., whether one is depressed or 

not). Our study makes the following three main contributions.
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• We develop techniques to identify Internet usage sessions (i.e., time periods 

when a user is online) from the coarse-grained Internet traffic meta-data. Based 

on the identified usage sessions, we extract a novel set of features, including (i) 

aggregate usage features that represent the overall Internet usage characteristics 

such as the amount of time a user is online and the number of usage sessions in a 

day, and over different periods of the day, and (ii) category-based usage features 
that represent the usage characteristics for a set of application categories (e.g., 

related to mail, social activities, watching video, playing game, shopping) such 

as the amount of time spent on each application and the number of sessions of 

each application. These features are insensitive to the volume of network traffic 

and robust to measurement noises.

• We investigate using three types of features extracted from Internet traffic meta-

data for predicting depression. The first two are usage based features, i.e., 

aggregate usage features and category-based usage features, as described above, 

and the third type is volume-based features as used in an existing study [27]. We 

find that (i) usage based features are more correlated with PHQ-9 scores than 

volume-based features, (ii) using usage based features generally leads to better 

prediction than using volume-based features, (iii) combining aggregate usage and 

category-based usage features leads to better prediction than using these two 

types of features in isolation, and leads to better prediction than combining 

aggregate usage and volume-based features, and (iv) adding volume-based 

features to aggregate usage and category-based usage features does not lead to 

further improvement in prediction accuracy. Overall, the usage based features 

that we propose are more effective in predicting depression than volume-based 

features. When combining the two types of usage based features, the resulting F1 

score can be as high as 0.80, comparable to that when using other types of 

sensing data (e.g., when using location data [17, 57]). Our results demonstrate 

that Internet usage data is a valuable source of data for depression screening.

• We explore the impact of the amount of historical Internet usage data that is 

being used on the accuracy of the prediction. Our results indicate that the 

prediction accuracy generally improves as more data is incorporated, consistent 

with the fact that depression is a chronic disease, and longer-term data collection 

provides more insights into a user’s behavior, and hence more accurate 

prediction.

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3 

outlines our high-level approach. Section 4 describes data collection. Section 5 presents our 

methodology for identifying usage sessions. Section 6 describes feature extraction. Section 7 

describes the prediction results and the impact of historical data. Last, Section 8 concludes 

the paper and presents future work.

2. Related Work

Existing studies that are related to our work are broadly in three categories: (i) studies that 

use subjectively collected Internet usage characteristics, (ii) studies that use objectively 
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collected Internet data from a campus network, and (ii) studies that use other types of data 

(location, phone usage, conversation, social interactions) on smartphones for depression 

screening. Our work differs from them in that we use coarse-grained Internet usage 

characteristics collected on smartphones for depression screening. We next describe the 

related work in more details.

Studies using subjective Internet usage characteristics.

In psychological sciences, the relationship between Internet usage and depression has been 

explored extensively. For instance, the studies in [47, 10, 34, 29, 55] found that people with 

depressive symptoms used the Internet much more than those without symptoms. The 

studies in [52] showed that excessive online video viewing was associated with symptoms of 

depression. Existing studies [37, 40] also showed that activities on Facebook can reveal the 

depressive states of users. In all the above studies, the Internet usage characteristics were 

gathered through self-report surveys or questionnaires, which are subjective, and have recall 

and desirability biases. Our study, in contrast, collects Internet meta-data continuously and 

passively on smartphones that requires no interaction from the users, and uses the objective 

data for depression prediction. While our approach differs from the above studies in 

psychological sciences, our study is inspired by the findings in those studies. Indeed, the 

features that we derive, including aggregate usage features (in terms of how often a user is 

online, the timing when they are online) and category-based usage features (that are related 

to the types of applications they prefer to run on their smartphones), are motivated from the 

findings in those studies.

Studies using objective data from a campus network.

To the best of our knowledge, the only study that uses objective Internet traffic data for 

mental health application is [27], which collected Internet traffic from a campus network, 

with the goal of associating Internet usage with depressive behaviors among college 

students. The data was collected using Cisco NetFlow, which provides flow-level 

information. The authors then extracted aggregate traffic features (e.g., total number of 

flows, bytes, packets, and durations of the flows), application-level features based on port 

numbers (e.g., peer-to-peer, HTTP, video/audio streaming, chat, email), and entropy based 

features (e.g., entropy of source or destination IP addresses or port numbers). Our study 

differs from [27] in several important aspects. Firstly, we develop a novel set of features that 

are based primarily on usage sessions, which, unlike the features used in [27], do not rely on 

destination port numbers and are not sensitive to the traffic volume. Our features are 

advantageous over the features in [27] for two reasons: (i) destination port numbers used in 

[27] do not provide reliable identification of application categories (e.g., due to limited set of 

well-known reserved port numbers, mis-use or abuse of such port numbers) [26], which is 

particularly true for smartphone traffic since it is predominantly HTTP-based (i.e., using the 

same HTTP or HTTPS port number), and hence not differentiable based on port numbers 

[13, 19], and (ii) features based on traffic volume as used in [27] are more vulnerable to 

measurement noises (e.g., automatically generated traffic not due to human activities). Our 

evaluation results in Section 7 confirm that our proposed features are indeed more effective 

in predicting depression than volume-based features. Secondly, we explore using different 

types of features, including both the usage based features that we propose as well as volume-
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based features used in [27]; our results in Section 7 demonstrate that our proposed features 

are more effective than volume-based features in predicting depression. Thirdly, our study 

develops machine learning based models (both regression and classification models) for 

predicting depression, while the study in [27] only investigated the features that were 

correlated with depressive symptoms and did not consider depression prediction.

Studies using other types of sensing data from smartphones.

Other studies related to our work include the studies that used data collected from 

smartphones or wearable devices for detecting depression or depressive mood (e.g., [18, 20, 

21, 8, 32, 58, 48, 36, 43, 15, 53]). These studies differ from ours in that they extracted 

various features from location, activity, phone usage, conversation, physiological 

information, or sleep data, instead of Internet usage characteristics on smartphone. As an 

example, Wang et al. [49] studied the impact of workload on stress and day-to-day activities 

of students. They found significant correlation between a number of behavioral traits (in 

terms of conversation duration, number of locations visited, sleep) and depressive mood. 

Saeb et al. [41] found significant correlation between the phone usage and mobility patterns 

with respect to the self-report PHQ-9 scores. Canzian and Musolesi [11] studied the 

relationship between the mobility patterns and depression, and developed individualized 

machine learning models for predicting depression. The study in [25] collected 

physiological signals, location, smartphone logs, and survey response, and applied machine 

learning models to predict happiness, with the ultimate goal of understanding the factors that 

contribute to resistance to depression. Farhan et al. [17] found that the features extracted 

from the location data are complementary to PHQ-9 scores and can predict depression with 

good accuracy. Yue et al. [57] investigated fusing two types of location data (GPS and WiFi 

association data) collected from smartphones for depression detection. Lu et al. [31] 

developed a heterogeneous multi-task learning approach for analyzing location data 

collected over multiple smartphone platforms. Ware et al. [50] explored predicting eight 

major categories of depressive symptoms (including both behavioral symptoms such as 

appetite, energy level, sleep and cognitive symptoms such as interests, mood, concentration) 

using smartphone data and found that a wide range of depressive symptoms can be predicted 

accurately. Xu et al. [53] proposed a new approach to capturing the co-occurrence 

relationships across multiple sensor channels by generating contextually filtered features. 

Another recent study [51] developed a novel approach that uses meta-data collected from an 

institution’s WiFi infrastructure for large-scale depression screening. These studies have not 

explored using Internet usage data to predict depression, which is the focus of this study. To 

the best of our knowledge, our study is the first that leverages Internet traffic on smartphones 

for depression screening.

3. High-level Approach

Our study is motivated by the findings in psychological sciences that Internet usage is 

correlated with mental health and status (see Section 2). Indeed, people spend a significant 

amount of time online, and the Internet traffic on smartphones represents an important 

aspect of their daily life, particularly because smartphones are personal devices and are 

being conveniently used by their owners anytime anywhere. As a result, intuitively, Internet 
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traffic on smartphones can be analyzed to understand the behavioral features of their owners. 

Our high-level approach is to collect Internet traffic data on a smartphone (i.e., the data 

packets going to or coming out of the smartphone), extract features that represent human 

behaviors, and then use the features to train machine learning models to predict depression.

Methodology.

We develop the following methodology and the associated techniques in this study.

• Preserving user privacy. The Internet traffic (e.g., which websites were 

accessed and the content of the websites) contains sensitive user information. To 

protect user privacy, we only collect coarse-grained meta-data, including source 

and destination IP addresses of the packets, the size of the payload, and the 

timing information (when a packet arrives or departs from a phone). Application-

level information (e.g., the URL of a website, the content) is never captured. The 

above coarse-grained meta-data is in plaintext for most encryption techniques 

used in the Internet, including application-level encryption, transport-layer 

encryption such as TLS and HTTPS, and IP-layer encryption such as IPsec. 

Therefore, our approach is applicable to most Internet traffic. One of the goals of 

our study is to investigate whether such coarse-grained information can still 

provide sufficient insights into one’s behavior to help detect depression.

• Extracting features that represent human behaviors. The Internet traffic 

collected on smartphones does not directly provide insights into human behavior. 

We design techniques to extract features from the Internet traffic. Considering 

that some traffic on smartphones may not be associated with human activities, 

e.g., those due to background services/apps [14, 24, 33] or advertisement [12], 

we focus particularly on extracting timing-based features that are less sensitive to 

such non-human activity related traffic. Specifically, we develop techniques to 

identify usage sessions, i.e., when a user is online, and extract two types of 

features based on the identified usage sessions. One type of features is based on 

the aggregate Internet usage, related to the overall timing and extent of the 

Internet usage, and the other is related to applications, including seven 

commonly used applications (mail, social, video, audio, game, shopping and 

study), representing the timing and extent of usage of each of these applications.

• Developing machine learning techniques. Using the extracted features, we 

develop regression based techniques to predict PHQ-9 scores and Support Vector 

Machine (SVM) based techniques to predict the depression status (i.e., whether 

one is depressed or not). For both types of prediction, we explore feature 

selection, and quantify the prediction accuracy when using the selected features. 

We further compare the effectiveness of the two types of usage based features 

that we propose with volume-based features as used in [27], and explore whether 

different types of features are complementary to each other in improving 

prediction accuracy.
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Missing data, measurement noises and inference errors.

Similar as other types of sensing data (e.g., location, activity), Internet usage data collected 

on smartphones is subject to missing data and measurement noises such as automatically 

generated Internet traffic that are not due to human activities. It is difficult to completely 

identify and eliminate such measurement noises solely based on the coarse-grained meta-

data that is used in this paper. Furthermore, we use heuristics to infer application categories 

(Section 6.1.2), which may lead to inference errors (in fact, identifying application 

categories based on coarse-grained meta-data is a challenging problem in itself [26]). The 

focus of this paper is to investigate the feasibility of depression prediction using coarse-

grained Internet usage data, despite missing data, measurement noises and inference errors, 

instead of completely eliminating measurement noises and inference errors. To handle 

missing data, we use data filtering to select time periods with sufficient amount of data (see 

Section 7.1); to reduce the impact of measurement noises and inference errors, we propose a 

novel set of features that are based on usage sessions (see Section 6.1), and hence are not 

sensitive to non-user generated traffic. Since depression is a chronic disease, providing us 

the opportunity of using data collected over a long time (several days or longer) for 

depression detection, we envision that occasional noises and errors will not affect the overall 

effectiveness of our approach.

Internet usage versus other sensing modalities.

Internet usage is one of the many types of sensing data that can be captured on smartphones. 

It is complementary to other sensing modalities such as GPS location and movement in that 

it represents an individual’s activities in the cyber world. Collecting Internet traffic on 

phones incurs significantly lower energy consumption [14, 56] than collecting location and 

movement data, and is not sensitive to phone hardware. In addition, as we shall show in 

Section 6, a rich set of features can be extracted from Internet usage data that reflect human 

behavior. As a result, we expect that Internet usage data can be used to complement other 

types of sensing data (e.g., it can be used when GPS sensors are turned off when the battery 

level is low), or be used together with other types of sensing data for more effective 

depression screening. Another advantage of using Internet usage data is that such data can 

be captured in an institution’s campus network, e.g., as that in [27]. Specifically, an 

institution may capture the meta-data of Internet traffic at its gateway router and then 

analyze the meta-data to detect depression. While many user privacy issues need to be 

carefully considered in the design and deployment of such a service, e.g., only coarse-

grained packet headers should be captured and only the data from the users who select to use 

the service should be analyzed, such a service has the potential of achieving large-scale 

depression screening using passively collected data with little cost. We leave the 

investigation of such scenarios as future work. Last, our approach is complementary the 

approaches that use screen time for mental health applications [30, 39]. Specifically, these 

approaches keep track of the amount of time spent on individual apps to provide insights 

into a user’s behavior. However, a user may use a generic app such as a web browser for a 

wide range of applications, e.g., games, videos, music, shopping, making it difficult to 

account for the amount of time spent on individual application categories. In contrast, our 

approach is based on destination IP addresses and can categorize such applications 
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accordingly. On the other hand, our approach only considers applications that incur network 

traffic.

4. Data Collection

The data was collected from 79 participants during the months of October 2015 to May 

2016. All participants were full-time students of the University of Connecticut, aged 18-25. 

Of them, 73.9% were female and 26.1% were male; 62.3% were white, 24.6% were Asian, 

5.8% were African American, 5.8% had more than one race, and 1.5% with unknown 

ethnicity information. Each participant met with our study clinician for informed consent 

and initial screening before being enrolled in the study. The clinician also assessed the 

depression status of the participants, and classified 19 as depressed and 60 as non-depressed. 

Each participant used a smartphone (either Android or iOS phone) to participate in the study. 

To ensure the privacy of the participants, we assigned a random ID to each participant, 

which was used to identify the participants.

Four types of data were collected: network traffic data, PHQ-9 questionnaire responses, 

clinician assessment, and screen on-off events (only for Android phones). We next describe 

the methodologies used to collect these four types of data in more detail.

4.1. Network Traffic

Network traffic contains the packets coming to and going out of a user’s phone, which can 

be directly captured at the phone, e.g., using a local man-in-the-middle proxy, or a virtual 

private network (VPN) service [6]. We chose to use a third-party application, OpenVPN [3], 

to capture network traffic from all the participants at a central OpenVPN server that we set 

up. This data collection approach is flexible and platform independent (it can be easily used 

on both Android and iOS phones). Specifically, OpenVPN is an open-source software that 

implements VPN techniques for creating secure point-to-point or site-to-site connections 

between an OpenVPN client and a server. It uses a custom security protocol based on 

SSL/TLS for key exchange, and is able to traverse network address translators (NATs) and 

firewalls. Each participant was asked to run a OpenVPN client on her smartphone in the 

background, which accessed the Internet via the OpenVPN server that we set up. As a result, 

all Internet traffic (WiFi or cellular traffic) from/to a user passed through our OpenVPN 

server. At the OpenVPN server, we used a data capture tool, tcpdump [4], to capture the 

incoming and outgoing packets from individual phones. For user privacy, only packet 

headers were captured; see details below. To differentiate the network traffic data from 

different participants, the traffic flows pertaining to a participant were identified based on 

the source IP address. Specifically, we created a mapping file that associated each participant 

with a unique IP address. After that, we created an authentication certificate for each user, 

which contained a specific signature based on the mapping file. When the OpenVPN client 

on a user’s phone connected to the server, it sent the certificate to the server, and obtained 

the pre-assigned unique IP address.

To preserve user privacy, we only collected up to 40 bytes of the packet header (including 

the IP-layer and transport-layer headers) for each packet, not including any content of the 

packet. From the packet header, we obtained the source and destination IP addresses, and the 
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payload size (in bytes). In addition, we recorded the timestamp when the packet was being 

captured. The above four types of information were stored temporarily on the data collection 

server and the rest of the data was discarded. After that, we further aggregated the retained 

information to a coarser granularity (see Section 5) and only stored the coarser granularity 

data for data analysis, i.e., the packet-level meta-data were removed from the server, to 

further protect user privacy.

4.2. PHQ-9 Questionnaire Responses

PHQ-9 is a 9-item self-reported questionnaire that assists clinicians in diagnosing and 

monitoring depression. Each of the nine questions evaluates a person’s mental health on one 

aspect of depressive disorder. Participants were asked to fill in a PHQ-9 questionnaire during 

the initial assessment. After that, they filled in the questionnaire on their phones every 14 

days using an app that we developed. The app generated a notification when a PHQ-9 

questionnaire was due. When missing a report, we sent a reminder to a participant three days 

after her/his PHQ-9 filling due date.

4.3. Clinician Assessment

Using a Diagnostic Statistical Manual (DSM-V) based interview and PHQ-9 evaluation, a 

clinician associated with our study classified a participant as either depressed or not during 

the initial screening. A participant with depression must be in treatment to remain in the 

study. In addition, depressed participants had follow-up meetings with the clinician 

periodically (once or twice a month determined by the clinician). Each meeting lasted for 

10-20 minutes and only involved interviews to assess psychiatric symptoms. The purpose of 

the interviews was to correlate and confirm their self-reported PHQ-9 scores with their 

verbal report.

4.4. Screen On-off Events

On Android phones, it has been reported that a wide variety of applications/services can run 

in the background [14, 24, 33], when the screens are off and users are not actively 

interacting with their phones. Therefore, on Android phones, we log screen on-off events, 

and only consider the traffic when the screen is on. Specifically, let a screen-on interval be 

an interval that starts with a screen-on event and ends with a screen-off event. We observe 

that 80% of the screen-on intervals are less than 60 minutes. However, some screen-on 

intervals are as long as several hours, which are likely caused by missing events, e.g., a 

screen-off event is not captured between two screen-on events, causing an inflated screen-on 

interval. In the rest of the paper, we assume that the screen-on durations are no more than 60 

minutes. That is, if a screen-on interval is longer than 60 minutes, we assume that the screen 

is on only for the first 60 minutes, and the screen is off for the remaining time in the interval.

Unlike Android, iOS prevents applications from generating background traffic at will. 

Specifically, an application needs to use a mechanism called push notification [2], in which 

the iOS (not the application) decides when to send or receive data, and the iOS only sends/

receives data when the screen is on. As a result, we believe the amount of traffic on iOS 

phones when the scree is off is very low (if any). Therefore, we did not log screen on-off 

events on iOS phones and consider all the collected traffic in data analysis.

Yue et al. Page 9

Smart Health (Amst). Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Last, some traffic generated during screen-on intervals may not be due to user activities 

(e.g., they can be generated by some apps that automatically fetch updates, sync with the 

cloud server, or advertisements to the phone). We expect that the amount of such traffic is 

lower than the amount of traffic due to user activities. In addition, since such traffic is 

concurrent with user traffic, we propose features that are based on usage sessions (i.e., the 

period during which a user is online); see Section 6.1. Such features are not sensitive to the 

amount of traffic, and are less impacted by automatically generated traffic.

5. Identifying Usage Sessions

On the high level, a user’s Internet usage behavior can be described by an on-off process: the 

user accesses the Internet during the on period, and is disconnected from the Internet during 

the off period. In the rest of the paper, we also refer to an on-period as a usage session. Since 

we do not know the exact time periods when a user is using the Internet, we infer the on-off 

process using the information of the packets. In the following, we first describe a 

methodology for identifying keep-alive packets in long-lived TCP connections, which can 

lead to overestimation of on-periods. We then describe packet-level preprecessing and 

inference of on-off periods.

Keep-alive packets.

Keep-alive packets are packets sent during inactivity period of a TCP connection (i.e., there 

is no data or acknowledgement packet) to keep the connection alive so that it is not closed 

by the corresponding server or an intermediate middlebox device (e.g., firewall). While the 

original recommendation is to send a keep-alive packet after a long period of inactivity 

(every two hours [35]), we observed in our dataset that the period can be much shorter (in 

minutes). Fig. 1 shows an example, where each circle represents one TCP packet from a 

source to a destination. The burst of the packets at the beginning corresponds to data 

transfer; the periodic packets afterwards are the keep-alive packets. We identify keep-alive 

packets as periodic packets from a source to a destination with payload of 0 or 1 byte. Since 

keep-alive packets are not related to data transmission or user behaviors, and including them 

can lead to overestimation of an on-period (or usage session), we removed them before data 

analysis.

Packet-level preprocessing.

After removing keep-alive packets, we performed packet-level preprocessing that aggregate 

packets to further protect user privacy. Recall that we recorded a tuple, (timestamp, source 

IP address, destination IP address, payload size), for each packet going to or coming from a 

smartphone at our OpenVPN server. The packets going to an external IP address a and 

coming from the external IP address a in a short time interval, from t to t + δ, are likely to be 

in the same application session (they may represent the data packets and the corresponding 

acknowledgement packets). We therefore do not differentiate these packets and regard them 

as in the same application session. Specifically, we aggregate these packets together, and 

represent the resultant application session as (t, a, s), where t is the start time, a is the 

external IP address, and s is the sum of the payload sizes of all the packets (going to and 

coming from a) from t to t + δ. We choose δ to be 1 minute empirically, since it is unlikely 
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that the packets corresponding to one activity are separated by more than one minute. In 

other words, for each phone, we store per-minute traffic between the phone and an external 

IP address, which is of coarser granularity than per-packet information, and leads to better 

user privacy.

Inferring on-off periods.

After packet-level preprocessing, we infer on-off periods, i.e., the time periods when a user 

is online and offline. Specifically, we aggregate the traffic collected on the phone and 

identify the time periods with traffic as on-periods, and the interval between two on-periods 

as an off-period. The aggregation is first over each external IP address, and then across all 

the external IP addresses. Fig. 2 illustrates the process. It shows the traffic for three external 

IP addresses, a1, a2 and a3, over a time interval of 15 minutes. Fig. 2(a) shows per-minute 

traffic for each of the three external IP addresses, where an oval represents that there is 

traffic in that minute. We see that for IP address a1, there is traffic in the 3rd, 4th, and 6th 

minute; for IP address a2, there is traffic in the 8th and 9th minute; and for IP address a3, 

there is traffic in the 15th minute. Fig. 2(b) illustrates the aggregation for an individual IP 

address. Specifically, consider an IP address a. Suppose there is traffic for a in the i1, i2, … , 

in th minute. An interval with no traffic may be because the user had finished the current 

session and then started a new activity session at a later time, or may be because the user 

was “thinking” (e.g., the user was reading a webpage after it was downloaded). We 

differentiate the above two scenarios based on the duration of the intervals. Specifically, if 

ik+1 − ik ≤ 1 minute, then we assume the users was in the same session; otherwise, we 

assume the user started a new session in the ik+1 th minute. The threshold of 1 minute is 

chosen empirically, assuming that the “thinking” time tends to be less than 1 minute. In this 

way, the traffic for each IP address is aggregated into sessions. Following the above 

aggregation process, we identify one session associated with each of the three IP addresses, 

marked by the three rectangular bars in Fig. 2(b). Fig. 2(c) illustrates the aggregation across 

IP addresses. It considers the sessions of all the external IP addresses, and aggregate two 

sessions into one if the gap between the ending time of one session and the beginning time 

of another session is less than 1 minute apart. Applying the above process leads to two 

sessions in Fig. 2(c), one from the 3rd to the 9th minutes (aggregated over the sessions from 

IP addresses a1 and a2) and the other for the 15th minute (from IP address a3), which are 

referred to as two on-periods; the rest of the intervals are off-periods. In the rest of the paper, 

for convenience, we also refer to an on-period as a usage session since it marks a time period 

when a user uses the phone.

Applying the above aggregation procedures (within an IP address and across multiple IP 

addresses), we identify a set of on-periods and off-periods for each user during a day. Fig. 

3(a) shows an example for one Android user over 15 days, where the black bars represent 

the on-periods. We see that the on-periods are spread out during a day, with most of them 

between 7am to 10pm; there are also a small amount of on-periods during other time (e.g., 

early morning from 1 to 4am). For some days, we do not see any on-periods, which is likely 

due to issues in data collection (see more details in Section 7.1). Fig. 3(b) plots the 

distributions of the on-periods for the data collected on Android and iOS phones, 

respectively. For each of these two platforms, we plot the distributions of four time periods, 
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morning, afternoon, night and midnight, separately. We observe that the distributions are 

close to each other, and most of on-periods are within 10 minutes. The similar distributions 

for the same time periods on the two platforms are expected since the general user behaviors 

should not be much affected by the platform they use.

6. Feature Extraction

For each participant, we extracted features from the data collected in a PHQ-9 interval, 
which is a two-week time period, defined as the time when a PHQ-9 questionnaire was filled 

in and the two weeks before that (since PHQ-9 asks about the previous two weeks). To 

reduce the impact of non-user generated traffic, we propose a set of features that are based 

on usage sessions. For comparison, we further explore volume-based features that were 

proposed in [27], and use the prediction results based on such features as baseline in Section 

7.

6.1. Features based on Usage Sessions

We propose two types of features based on usage sessions, one being high-level aggregate 

usage features and the other being more detailed category based features that are related to 

applications, as detailed below. These features, being based on usage sessions (i.e., when a 

user is online), are less sensitive to non-user generated traffic (such as background apps or 

advertisements) since they are concurrent with user traffic.

6.1.1. Aggregate Usage Features—The aggregate usage features quantify the 

duration and the number of the usage sessions (i.e., on-periods, see Section 5) from a user 

during a PHQ-9 interval. Specifically, for a user, let si and ei represent the start and end time 

of the ith usage session in a PHQ-9 interval, respectively. Then {(si, ei)} represents the set of 

usage sessions. To differentiate user behaviors during different times of the day, we further 

divided a day into four time periods: morning (6am-12pm), afternoon (12pm-6pm), night 

(6pm-12am), and midnight (12am-6am). For time period i, i = 1, … , 4, representing 

morning, afternoon, night and midnight, respectively, let si,j and ei,j represent the start and 

end time of session j, respectively. Then {(si,j, ei,j)} represent the set of usage sessions for 

time period i. We define the following aggregate usage features.

Total duration.: This feature represents the total duration of the usage sessions, i.e., ∑i(ei − 

si). To take account of missing data, let D denote the number of days with data during a 

PHQ-9 interval. We then normalize the total duration by D, and the resultant feature is ∑i(ei 

− si)/D.

Total number of sessions.: Let N be the total number of usage sessions during a PHQ-9 

interval. This feature is defined as N/D, where D is the number of days with data. Again the 

normalization by D is to take account of missing data.

Total off-duration.: This feature represents the total duration of off-periods. It is defined is 

∑i(si − ei−1)/D, where si − ei−1 represent the duration of the off-period between the (i − 1)th 

and ith usage sessions, and D is the number of days with data.
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Internet usage in each time period.: We quantify the Internet usage of a time period 

(morning, afternoon, night or midnight) in terms of the duration and the number of usage 

sessions of a user during that time period. Specifically, we define ∑j(ei,j − si,j)/ ∑i ∑j(ei,j − 

si,j), which is the total duration of the usage sessions in time period i normalized by the total 

duration of the usage sessions over all the four time periods, leading to four features on 

duration, one for each time period. The normalization allows the quantities obtained from 

different PHQ-9 intervals to be comparable. Let Ni be the number of usage sessions in time 

period i. Then ∑iNi = N, where N is the total number of usage sessions across all individual 

time periods during a PHQ-9 interval. Similarly, we normalize Ni by N, i.e., define Ni/N, 

which lead to four features on the number of usage sessions, one for each time period.

6.1.2. Category-based Usage Features—The category-based features represent a 

user’s activities in multiple application categories and provide insights into a user’s interests. 

The categorization is based on the destination IP addresses. Specifically, we used a public 

online database, DBIP [1], to look up information about each destination IP address. We 

then used the information to determine the application category by matching the information 

with a set of keywords (see details below). Table 1 shows an example, where the destination 

IP address is 31.13.69.197. The response of the database query includes hostname, ASN 

(autonomous system number), ISP, organization and description. We found keyword 

“Facebook” in the response, and hence set the category as social. Table 2 lists the keywords 

for each application category. Specifically, we considered 7 common application categories, 

including mail, social, video, audio, game, shopping, and study, based on common Internet 

browsing activities for our participant population. The categories of mail and social 

correspond to online communication that a user has with others, motivated by the studies 

that show relationship between depression and social applications [37, 40]. The categories of 

video, audio and game correspond primarily to entertainment activities (while they may be 

used for other purposes, e.g., for learning, we speculated that the majority of the time they 

were used for entertainment), motivated by studies that relate excessive video-gaming 

applications and mental health [52]. The category of shopping is motivated by existing 

studies [23, 7] that relate shopping behavior with stress and anxiety. The last category (i.e., 

study related applications) is of interests since all of our participants are university students. 

The keywords in Table 2 were built on the keywords used in [44] by adding new keywords 

based on manual inspection of our dataset and avoiding keywords that may correspond to a 

large number of services (e.g., google, yahoo). When matching keywords, we followed the 

order of the keywords in Table 2; a destination IP address was associated with one category, 

i.e., the first match in the table.

We now describe the category-based features, which were obtained from the usage sessions 

in a PHQ-9 interval. Specifically, for category i, we considered all the usage sessions with 

the destination IP addresses belonging to that category, and merged these sessions together, 

i.e., if two sessions overlaped in time, then they were merged into a longer session. For 

category i, let Ni denote the number of sessions belonging to category i in a PHQ-9 interval, 

and si,j and ei,j denote the start and end time of session j in a PHQ-9 interval. Then the set of 

usage sessions associated with category i is {(si,j, ei,j)}. For each category, we extract two 
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types of features, one on duration and the other on the number of sessions in a PHQ-9 

interval.

Duration of each application category.: This set of features represents the total duration of 

the usage sessions for each application category. In total, we have 7 such features, one for 

each category. The feature for category i is defined as ∑j(ei,j − si,j)/ ∑i ∑j(ei,j − si,j), i.e., the 

total duration of the usage sessions in this category normalized by the total duration of the 

usage sessions over all categories.

Number of sessions of each application category.: This set of features represents the 

number of sessions for each application category. Again, we have 7 such features, one for 

each category. The feature for category i is Ni/ ∑i Ni, i.e., the number of usage sessions in 

this category normalized by the total number of sessions over all categories.

6.2. Volume-based Features

We further explore volume-based features that were used in an existing study [27]. As 

mentioned earlier, such features may be biased by traffic that are not generated by user 

activities. On the other hand, since applications differ in the amount of traffic that they 

generate (e.g., video applications tend to lead to significantly more traffic than other 

applications), traffic volume can shed light on the applications used by a user, and hence 

provide insights into user activities. Specifically, we consider the following five volume-

based features.

Total volume.—Let B be the total amount of Internet traffic in bytes during a PHQ-9 

interval. This feature is defined as B/D, where D is the number of days with data. Again the 

normalization by D is to take account of missing data.

Volume in each time period.—Let Bi be the total amount of Internet traffic in bytes in 

time period i, where i = 1, … , 4, corresponding to morning, afternoon, night, and midnight, 

respectively. Then the volume feature for period i is Bi/∑i Bi, where the normalization allows 

the quantities obtained from different PHQ-9 intervals to be comparable.

7. Depression Prediction

In this section, we use the features described in Section 6 to predict PHQ-9 scores and 

depression status. In the following, we first describe data filtering, and then describe the 

prediction results. We present the prediction results for the iOS and Android datasets 

separately because these two platforms differ in handling background traffic (see Section 

4.4).

7.1. Data Filtering

Our prediction below uses the Internet traffic meta-data collected over individual PHQ-9 

intervals (i.e., a two-week time period, including the day when a PHQ-9 questionnaire was 

filled in and the previous two weeks, see Section 6). We observed missing data in data 

collection, which may be due to multiple reasons, e.g., failed data capture at our OpenVPN 

server, mis-configuration of a phone, or lack of Internet activity on the phone. To deal with 
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such missing data, we removed the PHQ-9 intervals that do not have sufficient amount of 

data. Specifically, we removed a PHQ-9 interval if less than half of the days in the interval 

had data, or the average duration of Internet usage was less than 20 minutes per day for the 

days that had data. We further removed a PHQ-9 interval if there was Internet usage only for 

one time period (e.g., morning) throughout the interval or none of the traffic in the interval 

can be categorized, since such cases were unlikely under normal circumstances.

After the above data filtering, we identified 150 valid PHQ-9 intervals from 40 iOS users (of 

them 10 depressed and 30 non-depressed), with 44 PHQ-9 intervals from depressed users 

and 106 intervals from non-depressed users. For the Android dataset, we identified 38 valid 

PHQ-9 intervals from 13 Android users (of them 4 depressed and 9 non-depressed), with 14 

PHQ-9 intervals from depressed users and 24 intervals from non-depressed users.

7.2. Correlation Analysis

In the following, we first present the correlation between the aggregate usage features and 

PHQ-9 scores, and then present the correlation between category-based usage features and 

PHQ-9 scores. At the end, we present the results for volume-based features.

Correlation results for aggregate usage features.—Table 3 presents Pearson’s 

correlation coefficients between various aggregate Internet usage features and PHQ-9 scores 

along with p-values (obtained using significance level α = 0.05) for the Android and iOS 

datasets. The results are in three cases: the first is for all participants, the second is for 

depressed participants, and the third is for non-depressed participants. The top half of Table 

3 shows the results for the iOS dataset. We see that the total amount of time online is 

positively correlated with PHQ-9 scores. This is consistent with studies in psychological 

sciences [47, 10, 34, 29, 55], which show that people with depressive symptoms spend more 

time online than non-depressed people. We also find that the amount of time online in 

individual time period (morning, afternoon, night and midnight) is correlated with PHQ-9 

scores. The durations online in morning and afternoon both have significant negative 

correlation with PHQ-9 scores, indicating that the participants with higher PHQ-9 scores 

tend to spend less time online during the day; instead, they tend to spend more time online 

during night and midnight, as shown in the significant positive correlation between the 

corresponding features (i.e., the durations online during night and midnight) and PHQ-9 

scores. In addition, the number of sessions online in each time periods (especially during 

night and midnight) has significant positive correlation with PHQ-9 scores, indicating that 

the participants with higher PHQ-9 scores tend to use phone more frequently. The lower half 

of Table 3 shows the results for the Android dataset. We see that the p-values for all the 

features are high, indicating no significant correlation between the features and the PHQ-9 

scores. The significantly different p-values for the iOS and the Android datasets might be 

because the number of samples in the Android dataset is much lower than that in the iOS 

dataset (44 versus 150 samples). On the other hand, as we shall see later, even for the 

Android dataset, when combining multiple features, we can predict PHQ-9 scores and 

depression status accurately.
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To provide further insights, we divided the samples of PHQ-9 intervals (each associated with 

a PHQ-9 score and the features) into four groups, with PHQ-9 scores in the ranges of [0, 5), 

[5, 10), [10, 15), and [15, 20), respectively (for the Android dataset, the maximum PHQ-9 

score is 15 and hence the PHQ-9 scores are in the first three ranges). For each group, we 

obtained the duration of the usage sessions in each time period (morning, afternoon, night 

and midnight). Figures 4(a) and (b) plot the results for iOS and Android users separately (the 

duration for each time period was normalized so that the sum of the four time periods is 1, 

see Section 6.1.1). We observe that, for the iOS dataset, compared to the two groups with 

lower PHQ-9 scores, the two groups with higher PHQ-9 scores are indeed associated with a 

larger amount of time online during night and midnight, and a lower amount of time online 

during morning and afternoon, consistent with the correlation results described earlier. For 

the Android dataset, we also observe that the group with PHQ-9 scores above 10 spent more 

time online during midnight and less time online during morning than the other two groups 

with lower PHQ-9 scores.

Correlation results for category-based features.—Table 4 presents Pearson’s 

correlation coefficients between category-based features and PHQ-9 scores. The top half of 

Table 4 shows the results for the iOS dataset. We see that the amount of time spent on social 

apps shows significant positive correlation, indicating that the participants with higher 

PHQ-9 scores tend to spend more time on social apps. The amount of time spent on mail 

related apps, on the other hand, has significant negative correlation with PHQ-9 scores for 

depressed participants. We further see that the numbers of sessions that are on social, game 

and shopping categories have significant positive correlation with PHQ-9 scores, indicating 

that the participants with higher PHQ-9 scores tend to access those types of contents more 

frequently, which is consistent with studies in psychological sciences [52, 23, 7]. The lower 

half of Table 4 shows the correlation results for the Android dataset. We again see that the p-

values for most of the features are high, which might be due to limited number of samples in 

the Android dataset.

To gain more insights, Figures 5(a) and (b) plot the amount of time spent on each of the 

seven application categories versus PHQ-9 score range for iOS and Android datasets, 

respectively. Again, we divided the samples of PHQ-9 intervals into four groups, based on 

their associated PHQ-9 scores, and the amount of time spent on each application category 

was normalized as described in Section 6.1.2. For the iOS dataset, we see that the users with 

PHQ-9 scores above 10 spent more time on game and social apps, while spent less time on 

mail than those with lower PHQ-9 scores, consistent with the correlation results in Table 4. 

For the Android dataset, we see the users with PHQ-9 scores above 10 spent more time on 

game and video apps, while spent less time on shopping apps than those with lower PHQ-9 

scores.

Correlation results for volume-based features.—Table 5 presents the correlation 

results for volume-based features. We see that even for the iOS dataset, the p-values for most 

of the features are high, indicating no significant correlation between the features and 

PHQ-9 scores; the only exception is the total volume, which shows positive correlation with 

PHQ-9 scores. The weaker correlation between volume-based features with PHQ-9 scores 
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compared to that achieved by usage based features (i.e., aggregate usage and category-based 

usage features) is consistent with our intuition that volume-based features may be noisier 

(they are more affected by non-user generated traffic) and less descriptive than features 

based on usage sessions.

7.3. Multi-feature Regression

We developed both linear and non-linear multi-feature regression models to predict PHQ-9 

scores. Specifically, we applied ℓ2-regularized ϵ-SV (support vector) multivariate regression 

[16] and radial basis function (RBF) ϵ-SV multivariate regression. For both models, we used 

leave-one-user-out (i.e., we used the data from all the users except one user for training, and 

used the data for the user that is not used in training for testing) cross validation to optimize 

model parameters. The reason for using leave-one-user-out cross validation is to ensure that 

the data of one user was either used for training or testing, but never for both, so as to avoid 

overfitting the models since the data of a user over different PHQ-9 intervals may be 

correlated. For ℓ2-regularized ϵ-SV regression, we optimized the cost parameter C and the 

margin ϵ by choosing log(C) from −13 to 13 with the step size of 0.1, and selecting ϵ from 

[0, 1] with the step size of 0.01. For RBF ϵ-SV regression, we optimized the cost parameter 

C, the margin ϵ, and the parameter γ of the radial basis functions by selecting log(C) from 

−13 to 13 with the step size of 0.1, selecting ϵ from [0, 5] with the step size of 0.01, and 

selecting log(γ) from −15 to 15 with the step size of 1. To assess the performance of a 

model, we calculated Pearson’s correlation of the predicted values from the model with the 

PHQ-9 scores.

Our results below are for six settings. The first three settings each uses a single type of 

features, i.e., volume-based features (5 features), aggregate usage features (11 features), and 

category-based features (14 features), where the results using volume-based features serve as 

the baseline. The last three settings each uses multiple types of features, including volume-

based combined with aggregate usage features, aggregate usage features combined with 

category-based features, and all three types of features. For each of the six settings, we used 

Joint Mutual Information (JMI) [54] for feature selection, which has been shown to provide 

the best tradeoff in terms of accuracy, stability, and flexibility with small data samples 

among all information theoretic feature selection criteria [9]. Let k be the number of features 

selected. We varied k from 1 to the number of features in each setting. For a given k, the 

features were selected using JMI and the parameters of the regression models were chosen 

as described above. Fig. 6(a) shows an example. It plots the Pearson’s correlation of the 

predicted values with the PHQ-9 scores when increasing the number of features, k, under the 

linear model for the iOS dataset. The results for three settings, i.e., only using the aggregate 

usage features, only using the category-based usage features and using both types of 

features, are plotted in the figure; the results for the other three settings show similar trend 

and are omitted for clarity. We observe that indeed the number of features being selected 

affected the correlation results significantly, confirming the importance of feature selection. 

The same observation holds in Fig. 6(b), which shows the correlation results when 

increasing the number of features under the non-linear model.
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The top and bottom halves of Table 6 list the best correlation results (i.e., by choosing the 

best set of features) for the iOS and Android datasets, respectively. For both datasets, the 

results for all the six settings with linear and non-linear models are shown in the table. When 

using a single type of features, we see that aggregate usage features in general lead to better 

prediction than the other two types of features. In addition, while category-based usage 

features and volume-based features both reflect application related patterns, the former in 

general leads to better prediction than the latter, which is perhaps not surprising since the 

former is less affected by measurement noises (non-user generated traffic) and provides 

substantially more detailed information on application usage than the latter. We also see the 

benefits of combining aggregate usage features and category-based usage features, which in 

general leads to better prediction than using them in isolation, confirming that these two 

types of features are complementary to each other. Combining aggregate usage features and 

volume-based features can also lead to benefits (e.g., for the non-linear model, Android 

dataset), but the benefits are not as significant as those when combining aggregate usage 

features and category-based usage features. In addition, adding volume-based features to the 

combination of aggregate usage features and category-based features does not lead to further 

improvement in prediction results. The best correlation results are 0.54 and 0.39 for the iOS 

and Android datasets, respectively, which are comparable to the results when using location 

data collected on the phones [17, 57].

Table 7 lists the selected features corresponding to the best non-linear model (listed in Table 

6) when combining both aggregate and category-based usage features for the iOS and 

Android datasets; in the interest of space, the selected features for the best models for other 

settings are not presented. For the iOS dataset, 12 features were selected, including the 

aggregate usage features over a day (total duration), aggregate usage features for individual 

time periods (morning, afternoon, night and midnight), and features related to game, video, 

audio, and social applications. For the Android dataset, 6 features were selected, including 

the aggregate usage features over a day (total number of sessions), aggregate usage features 

for individual time periods (night and midnight), and the features related to video and 

shopping applications.

7.4. Classification Results

We next present the results on predicting clinical depression (i.e., classify whether one is 

depressed or not). The machine learning techniques we used were Support Vector Machine 

(SVM) models with an RBF kernel. The assessment from the study clinician was used as the 

ground truth. The SVM models have two hyper-parameters, the cost parameter C and the 

parameter γ of the radial basis functions. We again used a leave-one-user-out cross 

validation procedure to choose the optimal values of the hyper-parameters. Specifically, we 

varied both C and γ as 2−15, 2−14, … , 215, and chose the values that gave the best cross 

validation F1 score. The F1 score, defined as 2(precision × recall)/(precision + recall), can be 

interpreted as a weighted average of the precision and recall, ranges from 0 to 1. The higher 

the F1 score, the better the result is.

We repeated the above SVM training and testing procedures in three settings: 1) only using 

aggregate features, 2) only using category-based features, 3) using both aggregate and 
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category-based features. For each setting, we first used SVM recursive feature elimination 

(SVM-RFE) [22] to select a subset of k features, where k is varied from 1 to the number of 

features, and then trained and tested the models. We chose to use SVM-RFE since it is a 

wrapper-based feature selection algorithm that was designed for SVM, and has been 

developed for both linear and non-linear kernels [22, 38]. Specifically, we used SVM-RFE to 

select features as follows. For each C and γ pair, SVM-RFE provided a ranking of the 

features, from the most important to the least important. We considered all the combinations 

of C and γ values, and obtained the average ranking for each feature across all the 

combinations. For n features, let f(1), … , f(n) represent the complete order of the features in 

descending order of importance. That is, on average, f(1) is the most important feature, f(2) is 

the second most important feature, and f(n) is the least important feature. For a given k, the 

features f(1), … , f(k) were used to choose the parameters (i.e., C and γ) to maximize F1 

score based on the above leave-one-user-out cross validation procedure.

We again consider six settings: three settings use a single type of features and the other three 

settings use multiple types of features. For each setting, we observe significantly varying F1 

score when varying the number of features as described above (figures omitted), confirming 

the importance of feature selection. Table 8 presents the best F1 scores (i.e., when using the 

best set of features) for the six settings. For each setting, the optimal values of the 

parameters are also shown in the table. When using a single type of features, consistent with 

the regression results in Section 7.3, we see that usage based features (i.e., aggregate usage 

features or category-based usage features) are more effective in classifying depression than 

the volume-based features. Furthermore, combining these two types of usage based features 

leads to better classification results than using each in isolation, and the results are better 

than those when combining the aggregate usage features and volume-based features. Last, 

adding volume-based features does not further improve the classification results obtained by 

using aggregate and category-based usage features, which, as explained earlier, might be 

because volume-based features provide insights in application usage, which are already 

covered by category-based usage features. The highest F1 scores are 0.71 and 0.80 for the 

iOS and Android datasets, respectively, comparable to the classification results when using 

location data collected on the phones [17, 57]. The above results need to be further verified 

using larger datasets (particularly for the Android platform). Nonetheless, they demonstrate 

that Internet usage data can provide important insights into one’s behavior that can be used 

for effective depression screening.

Table 9 lists the selected features that lead to the best F1 score for the setting of combining 

aggregate and category-based usage features; the selected features for the other five settings 

are omitted in the interest of space. For the iOS dataset, 10 features were selected, including 

the aggregate usage features over a day (e.g., total off-duration), aggregate usage features for 

particular time periods, and category-based features (related to mail, shopping, and game). 

For the Android dataset, 10 features were selected, again including the aggregate usage 

features over a day (e.g., total duration, total off-duration), aggregate usage features for 

particular time periods, and category-based usage features (related to social, mail, shopping, 

and game).
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7.5. Impact of Historical Data

So far, we have considered Internet traffic data collected in PHQ-9 intervals of 14 days, 

including the day when a PHQ-9 questionnaire was filled in and the previous two weeks. 

Intuitively, even though PHQ-9 asked about the depression symptoms in the past two weeks, 

the experience of a user during the days right before the PHQ-9 fill-in date may have a 

higher impact on how they fill in the questionnaire (and hence the corresponding PHQ-9 

scores). In the following, we consider the Internet traffic data collected in m days, i.e., 

including the day when a PHQ-9 questionnaire was filled in and the previous m days, where 

m is varied from 1 to 14. Our goal is to investigate how the prediction accuracy changes with 

m so as to select the optimal m for prediction accuracy. For each interval of m days, we used 

the same two conditions as described in Section 7.1 to determine whether the corresponding 

Internet traffic data is valid or not (the only exception is when m = 1, where we only used 

the second condition, i.e., it is regarded as invalid if it only has data for one time interval). 

Since our goal is to evaluate the impact of m, we only consider a PHQ-9 score if it has valid 

Internet traffic data for each possible value of m (i.e., m = 1, … , 14). A subset of iOS and 

Android datasets satisfied the above filtering criteria and were used in the data analysis 

below. Specifically, for the data analysis, the iOS dataset contained 58 samples (each with a 

PHQ-9 score and the corresponding Internet traffic data for m days, m = 1, … , 14) from 23 

iOS users (7 depressed and 16 non-depressed users), including 19 samples from depressed 

users and 39 sample from non-depressed users. For the Android dataset, the intersection 

contained 21 samples from 11 Android users (3 depressed and 8 non-depressed users), 

including 6 samples from depressed users and 15 samples from non-depressed users.

We next present the impact of m on both the multi-feature regression results and the 

classification results. For both tasks, the prediction results were obtained by combining the 

aggregate and category-based usage features, which, as shown earlier (Section 7.3 and 7.4), 

led to better prediction than other types of features. Figures 7(a) and (b) show the impact of 

m on the multi-feature regression results for the iOS and Android datasets, respectively, 

where m is varied from 1 to 14. For each m, we used the same procedure as described in 

Section 7.3 to select a subset of features that provided the best prediction result. Both the 

results from the linear and non-linear regression models are shown in the figures. Figures 

8(a) and (b) show the impact of m on the classification results for the iOS and Android 

datasets, respectively. For each m, we used SVM-RFE to select a subset of features that 

provided the best cross validation F1 score. We observe that both the regression and 

classification results tend to improve with m, indicating that a PHQ-9 score is not only 

affected by the several days right before the PHQ-9 fill-in date, but also affected by the days 

that are further away in the past. Using the past 14 days, which corresponds to the time 

interval that PHQ-9 questionnaire asks about, leads to good regression and classification 

results.

8. Conclusions, Limitations, and Future Work

In this study, we have investigated using coarse-grained meta-data of Internet traffic on 

smartphones for depression screening. We have developed techniques to identify usage 

sessions and defined a novel set of Internet usage features based on usage sessions, including 
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both aggregate and category-based usage features. We further developed machine learning 

algorithms that used these features for depression screening. Using a dataset of Internet 

traffic meta-data collected from 79 college students over several months, our results 

demonstrate that users’ Internet usage characteristics are correlated with their PHQ-9 scores, 

and using these features provides a promising direction in predicting PHQ-9 scores and 

depression status. Our evaluation also demonstrates that the usage-based features that we 

proposed are more effective for depression prediction than volume-based features used in 

[27]. We further explored the impact of the amount of historical data on depression 

prediction.

Limitations and future work.

Our study has several limitations, which will be addressed in future work. Firstly, the 

datasets used in this study are relatively small, particularly for the Android platform. The 

numbers of users for both platforms need to be expanded in future work to further validate 

the results in this study. In addition, a significantly higher percentage of the participants in 

our study are female students; recruitment of more balanced female and male participants is 

left as future work. Secondly, the participants in our study are all college students. While our 

results show that the usage features that we proposed are effective for this population, 

different types of features may need to be developed for other populations. For example, for 

senior citizens, features related to certain applications (e.g., social, gaming, study) may not 

be effective and features on other types of applications may be needed. Investigating the 

feasibility of using Internet traffic for depression screening for other populations is left as 

future work. Another future direction is handling missing data, which significantly reduced 

our sample size after data preprocessing and filtering. We will develop effective techniques 

to handle missing human activity data, which is a challenging task [57]. Last, we will 

investigate other machine learning models for more accurate prediction in future work.
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Fig. 1: 
An example that illustrates keep-alive packets.
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Fig. 2: 
Illustration of identifying on-off periods. (a) Per-minute traffic for each of the three external 

IP addresses (an oval marks the presence of traffic in that minute). (b) Aggregation for each 

IP address. (c) Aggregation over the IP addresses.
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Fig. 3: 
On-periods after data pre-processing. (a) Illustration of the on-off periods for one Android 

user in a PHQ-9 interval; the black bars represent on-periods. (b) The distributions of the on-

periods during four time periods, morning (6am-12pm), afternoon (12pm-6pm), night 

(6pm-12am) and midnight (12am-6am), for the Android and iOS datasets.

Yue et al. Page 27

Smart Health (Amst). Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4: 
The amount of time online in each of the four time periods (normalized value) versus PHQ-9 

score range.
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Fig. 5: 
The amount of time spent on each application category (normalized value) versus PHQ-9 

score range.
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Fig. 6: 
Correlation of the values predicted by the models with the PHQ-9 scores when increasing 

the number of the selected features for the iOS dataset.
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Fig. 7: 
Impact of m on multi-feature regression results: correlation of the predicted PHQ-9 score 

and the ground-truth PHQ-9 score versus m, i.e., when considering m days of Internet traffic 

data.
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Fig. 8: 
Impact of m on classification results: predicted F1 score versus m, i.e., when considering m 
days of Internet traffic data.
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Table 1:

An example output when looking up an IP address from DBIP.

Address type IPv4

Hostname edge-star-shv-01-iad3.facebook.com

ASN 32934 - FACEBOOK - Facebook, Inc.

ISP Facebook

Description IPv4 address owned by Facebook and located in Washington D.C., District of Columbia, United States

Smart Health (Amst). Author manuscript; available in PMC 2021 November 01.
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Table 2:

Keywords used to classify Internet visits into application categories.

Category Keywords

mail mail, aol, zumbox

social twitter, linkedin, snapchat, instagram, wechat, whatsapp, vlingo, snapch, tencent, myspace, blog, LivePerson

video video, youtube, brightcov, freeWheel, cedato, youtube, conviva

audio audio, music, pandora, spotify, rhapsody, radio, song, mp3, tone

game game, midasplayer, neogaf, machine zone, poker, blackjack, casino

shop shop, paypal, trade, tapa, gwallet, taobao, ebay, nobis, l brand, road runner, netbank, aciworldwide, fujitsu, digital insight, mart, 
gigy, hasbro, market, craigslist

study cerfnet, intuit inc, shuyuan, blackboard
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Table 3:

Correlation between aggregate usage features and PHQ-9 scores.

All Depressed Non-depressed

Feature r-value p-value r-value p-value r-value p-value

iOS

Total duration 0.25 10−3 0.26 0.006 0.28 0.05

Total number of sessions 0.27 10−4 0.28 0.003 0.31 0.03

Total off-duration −0.11 0.16 −0.06 0.49 −0.19 0.17

Duration (morning) −0.40 10−8 −0.27 0.004 −0.49 10−4

Duration (afternoon) −0.27 10−4 −0.35 10−4 −0.16 0.27

Duration (night) 0.39 10−7 0.34 10−4 0.48 10−4

Duration (midnight) 0.28 10−3 0.16 0.09 0.33 0.02

Number of sessions (morning) 0.11 0.16 0.17 0.07 0.14 0.31

Number of sessions (afternoon) 0.17 0.03 0.18 0.05 0.25 0.08

Number of sessions (night) 0.36 10−6 0.36 10−5 0.37 0.007

Number of sessions (midnight) 0.36 10−6 0.35 10−4 0.35 0.01

Android

Total duration 0.28 0.12 −0.47 0.03 0.62 0.06

Total number of sessions −0.04 0.84 −0.32 0.14 0.32 0.37

Total off-duration 0.10 0.60 0.34 0.13 −0.21 0.56

Duration (morning) −0.11 0.56 0.01 0.95 −0.36 0.31

Duration (afternoon) −0.08 0.68 0.01 0.95 −0.38 0.28

Duration (night) −0.06 0.73 −0.19 0.40 0.31 0.39

Duration (midnight) 0.32 0.08 0.23 0.31 0.56 0.09

Number of sessions (morning) −0.19 0.31 −0.32 0.14 −0.19 0.61

Number of sessions (afternoon) −0.21 0.26 −0.27 0.22 −0.28 0.44

Number of sessions (night) 0.02 0.93 −0.33 0.14 0.43 0.21

Number of sessions (midnight) 0.28 0.12 −0.13 0.56 0.50 0.14
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Table 4:

Correlation between category-based features and PHQ-9 scores.

All Depressed Non-depressed

Feature r-value p-value r-value p-value r-value p-value

iOS

Duration (social) 0.28 10−4 0.21 0.02 0.26 0.07

Duration (mail) −0.24 10−3 −0.29 10−3 −0.02 0.90

Duration (video) 0.01 0.85 0.02 0.79 10−3 0.97

Duration (audio) −0.17 0.04 −0.12 0.23 −0.24 0.09

Duration (gaming) 0.27 10−4 0.10 0.25 0.37 10−3

Duration (shopping) 0.06 0.41 0.11 0.21 −0.03 0.85

Duration (study) −0.13 0.11 −0.08 0.42 −0.05 0.76

Number of sessions (social) 0.25 10−3 0.34 10−4 0.12 0.37

Number of sessions (mail) −0.06 0.49 −0.11 0.28 0.13 0.33

Number of sessions (video) 0.12 0.12 0.04 0.60 0.16 0.24

Number of sessions (audio) −0.06 0.49 0.04 0.65 −0.16 0.28

Number of sessions (game) 0.33 10−6 0.37 10−5 0.27 0.04

Number of sessions (shopping) 0.30 10−5 0.42 10−6 0.25 0.06

Number of sessions (study) 0.10 0.19 0.17 0.05 0.10 0.47

Android

Duration (social) 0.20 0.27 0.13 0.56 0.26 0.47

Duration (mail) −0.09 0.62 −0.07 0.77 −0.2 0.58

Duration (video) 0.44 0.01 0.28 0.20 0.74 0.01

Duration (audio) 0.17 0.34 0.38 0.08 −0.31 0.38

Duration (gaming) 0.52 10−3 0.17 0.44 0.65 0.04

Duration (shopping) −0.47 0.01 −0.49 0.02 −0.51 0.14

Duration (study) −0.27 0.12 −0.30 0.18 −0.16 0.67

Number of sessions (social) 0.40 0.02 0.04 0.86 0.50 0.14

Number of sessions (mail) 0.12 0.50 −0.22 0.33 0.42 0.22

Number of sessions (video) 0.46 0.01 −0.49 0.02 0.64 0.05

Number of sessions (audio) −0.04 0.84 0.05 0.82 0.01 0.90

Number of sessions (game) 0.65 10−5 0.02 0.91 0.86 10−3

Number of sessions (shopping) −0.24 0.18 −0.40 0.06 0.43 0.22

Number of sessions (study) −0.18 0.31 −0.40 0.06 0.42 0.22
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Table 5:

Correlation between volume-based features and PHQ-9 scores.

All Depressed Non-depressed

Feature r-value p-value r-value p-value r-value p-value

iOS

Total volume 0.16 0.02 0.22 0.01 0.18 0.08

Volume (morning) −0.09 0.13 −0.09 0.24 −0.14 0.13

Volume (afternoon) −0.05 0.37 0.01 0.99 −0.10 0.28

Volume (night) 0.06 0.34 0.04 0.67 0.17 0.09

Volume (midnight) 0.17 0.01 0.12 0.15 0.22 0.03

Android

Total volume 0.16 0.35 0.35 0.23 −0.27 0.20

Volume (morning) 0.07 0.71 0.11 0.73 −0.08 0.68

Volume (afternoon) −0.09 0.56 −0.01 0.97 −0.10 0.62

Volume (night) −0.10 0.55 −0.17 0.53 −0.02 0.91

Volume (midnight) 0.24 0.15 0.10 0.75 0.50 0.01
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Table 6:

Prediction results using multi-feature regression.

Linear model Non-linear model

Features r-value p-value r-value p-value

iOS

Volume-based features 0.29 10−4 0.33 10−5

Aggregate usage features 0.49 10−14 0.48 10−10

Category-based usage features 0.42 10−8 0.35 10−6

Aggregate usage + volume-based features 0.46 10−9 0.48 10−10

Aggregate usage + category-based usage features 0.54 10−14 0.48 10−11

Aggregate usage + category-based usage + volume-based features 0.48 10−11 0.48 10−11

Android

Volume-based features 0.33 0.05 0.29 0.08

Aggregate usage features 0.33 0.05 0.35 0.04

Category-based usage features 0.29 0.08 0.31 0.07

Aggregate usage + volume-based features 0.33 0.05 0.37 0.03

Aggregate usage + category-based usage features 0.33 0.05 0.38 0.02

Aggregate usage + category-based usage + volume-based features 0.33 0.05 0.39 0.02
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Table 7:

Selected features for multi-feature regression for the non-linear model when combining aggregate usage and 

category-based usage features.

Selected features

iOS Number of sessions (gaming), Number of sessions (morning), Number of sessions (social), Total duration, Duration (game), 
Number of sessions (video), Number of sessions (midnight), Duration (midnight), Number of sessions (night), Duration 
(afternoon), Duration (social), Number of sessions (audio)

Android Duration (video), Number of sessions (video), Number of sessions (night), Total number of sessions, Duration (midnight), Duration 
(shopping)
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Table 8:

Classification results when using various features.

F1 Score Precision Recall Specificity log(C) log(γ)

iOS

Volume-based features 0.60 0.61 0.59 0.62 −2 4

Aggregate usage features 0.63 0.67 0.60 0.59 8 5

Category-based usage features 0.65 0.62 0.68 0.61 −1 5

Aggregate usage + volume-based features 0.69 0.62 0.78 0.62 −3 4

Aggregate usage + category-based usage features 0.71 0.71 0.71 0.63 −2 4

Aggregate usage + category-based usage + volume-based 
features 0.71 0.67 0.76 0.63 −2 4

Android

Volume-based features 0.56 0.50 0.64 0.45 3 1

Aggregate usage features 0.62 0.7 0.57 0.51 0 1

Category-based usage features 0.66 0.77 0.59 0.44 2 5

Aggregate usage + volume-based features 0.71 0.71 0.71 0.69 5 2

Aggregate usage + category-based usge features 0.80 0.75 0.86 0.77 8 −5

Aggregate usage + category-based usage + volume-based 
features 0.80 0.75 0.86 0.77 8 −5
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Table 9:

The features that were selected to achieve the highest F1 score when combining both aggregate and category-

based features.

Selected features

iOS Total off-duration, Duration (morning), Duration (night), Number of sessions (night), Number of sessions (afternoon), Number of 
sessions (midnight), Duration (mail), Number of sessions (mail), Number of sessions (game), Number of sessions (shopping)

Android Total duration, Total off-duration, Duration (midnight), Number of sessions (morning), Number of sessions (night), Number of 
sessions (midnight), Duration (social), Duration (mail), Duration (shopping), Number of sessions (game)
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