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Abstract

The International League Against Epilepsy (ILAE) groups seizures into “focal”, “generalized”

and “unknown” based on whether the seizure onset is confined to a brain region in one hemi-

sphere, arises in several brain region simultaneously, or is not known, respectively. This

separation fails to account for the rich diversity of clinically and experimentally observed

spatiotemporal patterns of seizure onset and even less so for the properties of the brain net-

works generating them. We consider three different patterns of domino-like seizure onset in

Idiopathic Generalized Epilepsy (IGE) and present a novel approach to classification of sei-

zures. To understand how these patterns are generated on networks requires understand-

ing of the relationship between intrinsic node dynamics and coupling between nodes in the

presence of noise, which currently is unknown. We investigate this interplay here in the

framework of domino-like recruitment across a network. In particular, we use a phenomeno-

logical model of seizure onset with heterogeneous coupling and node properties, and show

that in combination they generate a range of domino-like onset patterns observed in the IGE

seizures. We further explore the individual contribution of heterogeneous node dynamics

and coupling by interpreting in-vitro experimental data in which the speed of onset can be

chemically modulated. This work contributes to a better understanding of possible drivers

for the spatiotemporal patterns observed at seizure onset and may ultimately contribute to a

more personalized approach to classification of seizure types in clinical practice.
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Author summary

Epilepsy is a serious neurological condition encompassing a variety of syndromes that

affect around 65 million people worldwide. Seizure type in epilepsy is characterized by

onset pattern and brain network involved into three categories that do not fully capture

the complexity of observed onset patterns. Ambiguity of seizure onset observed in the

clinic could result in significant diagnostic delay and inappropriate treatment for an indi-

vidual. We show how a variety of recruitment patterns across a network arise as the result

of interplay between heterogeneous node dynamics and heterogeneous coupling among

nodes. Our results demonstrate the important role of brain network dynamics in driving

spatiotemporal patterns of seizure onset and provide a dynamic mechanism that could

inform novel classifications of seizure types in clinical practice.

Introduction

Recurrent spontaneous seizures, the hallmark of epilepsy, are characterized by behavioral

symptoms alongside abnormal patterns of electrical activity in the brain. These are believed to

be caused by an imbalance between excitation and inhibition within neural populations lead-

ing to hyper-excitability at the macro scale [1].

The International League Against Epilepsy classification of epilepsy 2017 classifies seizures

by type of onset and brain networks affected. A seizure initiated in a local brain region is classi-

fied as focal, while a seizure involving activation of brain regions on both sides of the brain is

classified as generalized. In the case when the above is not clear or known, a seizure is classified

as unknown [2, 3]. This division represents a practical separation made on clinical grounds

and (where possible) informed by electroencephalogram (EEG) recordings in order to guide

treatment. By lumping together a variety of seizure onset patterns into these three broad cate-

gories, the diversity of spatiotemporal patterns observed at seizure onset, for example, focal

onset of generalized seizures, are typically overlooked. Note that focal onset of a generalized

seizure is simply an EEG variation seen in idiopathic generalized epilepsy (IGE) but not an

indication of focal epilepsy [4]. However, ambiguity of seizure onset captured in the clinic

could result in significant diagnostic delay as well as unnecessary invasive investigations and

inappropriate anti-epileptic drug therapy in some cases.

Despite recent advances, there remains insufficient knowledge for a purely scientific classi-

fication of seizure types [2, 3, 5]. Current research identifies seizures as the initiation and

recruitment of neuronal populations in distinct but interconnected brain regions. Brain activ-

ity can thus be modeled by means of a dynamic network in which each node represents a

population of neurons in a specific region of the brain. Understanding the spatiotemporal

dynamics driving recruitment of nodes from background to seizure state across a given net-

work is crucial to inform and advance scientific taxonomy of seizure onsets. Local and global

changes in functional and structural network properties generate “hyper-excitable” networks,

characterized by high frequency switches from background to seizure states [6]. However, the

relative contribution to the network level activity from individual or populations of nodes is

not well understood.

In this paper, we identify and investigate a variety of domino-like onset patterns observed

in EEG recordings in IGE and characterize them by total recruitment time (i.e. the time it

takes for seizure activity detected in one electrode to spread to all electrodes) and the lag time

between recruitment of sequential electrodes. We show that different patterns of detected

activity are clinically observed in the same individual. We develop a framework for modeling
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seizure onset and use it to demonstrate how different onset patterns arise as a result of inter-

play between heterogeneous node dynamics and heterogeneous coupling between nodes. We

then explore the individual contribution of heterogeneity in node excitability and coupling

among nodes.

To this end, we use a phenomenological network model of seizure onset previously studied

by us and others [7–11]. Each node in the network has two stable states: background (steady)

and seizure (oscillatory). The transition between the two is driven by an external random

‘noisy’ input. The same model has been used to explore domino-like recruitment of nodes

across motif networks [7, 9]. Each node is set to the background state (domino standing

upright on a table) and transits to the oscillatory state (domino lying down on a table) due to

noisy perturbations and inputs from other nodes (the table is wobbled). Depending on how

likely it is to fall over (intrinsic property) or how close to other dominoes it is (coupling) you

get slow or fast toppling patterns. We show that the domino-like seizure onset patterns

observed in the EEG data have fast-domino and slow-domino cascades. Moreover we extend

this approach by introducing the novel multiple-domino onset where large lags (gaps) separate

groups of sequential electrodes for which the detected activity has similar transition times.

We build on previous work by considering larger networks and introduce heterogeneity to

the node excitability and coupling weights. We first apply the model to generalized seizures

observed in EEG recordings that exhibit fast-, slow- and multi-domino onset patterns. To illus-

trate our findings, we present in detail the analysis of a single individual with Juvenile Absence

Epilepsy, taken from the data set detailed in [4, 12]. Secondly, to unambiguously separate the

contribution of node excitability or coupling weight to the observed onset patterns requires a

tractable and controllable in-vitro model. To this end, we also apply our modeling framework

to the slow onset of seizure-like activity induced along slices of medial entorhinal cortex

(mEC) from mice, detailed in [13]. Our results highlight the complex interplay between net-

work properties and provide a compelling case for further investigation into their impact on

emergent dynamics in order to better categorize seizures and advance patient-specific diagno-

sis and treatment.

Materials and methods

Clinical EEG data

We use epileptiform events recorded using EEG from patients diagnosed with genetic general-

ized epilepsy (GGE). Full details of the database can be found in [4, 12]; for completeness we

summarize briefly. Ambulatory EEG (Compumedics Ltd, Melbourne, Australia) were

recorded from 107 patients for a period of 24-hours using 32 gold cup electrodes arranged

according to the international 10–20 system. Signals were recorded with a sampling rate of

256Hz. The ProFusion 4 software (Compumedics Ltd, Melbourne, Australia) was used by an

experienced EEG reader to review the recordings, identify and extract epileptiform events.

Patients were categorized into five groups depending on syndrome: childhood absence epi-

lepsy (CAE); juvenile absence epilepsy (JAE); juvenile myoclonic epilepsy (LME); generalized

epilepsy with generalized tonic-clonic seizures only (GTCSO); and genetic generalized epilepsy

unspecified (GGEU). Data was manually annotated by the clinician based on the common

average reference [4, 12, 14]. The data set consists of 15 second long epochs each containing an

event positioned such that the clinician identified onset time is at 5 seconds. Events from

recordings were classified into three types: generalized paroxysms (events lasting longer than

2s), generalized fragments and focal discharges. The onset of generalized paroxysms was fur-

ther classified into generalized onset or focal onset by a trained EEG reader. Focal onset of a

generalized paroxysm is defined as lead-in focal discharges lasting at least 0.2s [12].
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In this paper, we consider epochs containing generalized paroxysms, that we will hence-

forth call seizures. We extract 1267 epochs from the database containing seizures from 59

patients, including 15 seizures classified as focal onset. Note that there are no epochs contain-

ing seizures in the GGEU group. We submit each 15s epoch to the seizure onset detection algo-

rithm, detailed below. We illustrate the application of the modeling framework using three

consecutive seizures from one person with JAE, which is the most common syndrome within

the data set [12].

Mouse mEC recording

Detailed description of the procedures used to collect recordings and analyze the data from the

mouse mEC are given in [13]. All procedures were carried out in accordance with the UK Ani-

mal (Scientific Procedures) Act 1986 and were approved by the University of Exeter Animal

Welfare and Ethical Review Body. Here we provide a brief summary for completeness. Parasa-

gittal brain slices (400 μm thick) containing mEC were collected from male C57/BL6 mice.

The slices were transferred to an interface-style recording chamber, and allowed to equilibrate

for 30 minutes before a bath application of 4-aminopyridine (4-AP; 100 μM concentration

equilibrated). A silicone probe consisting of 16 individual shanks (55 μm wide, 100 μm apart),

with a single electrode contact point at the end of each shank (Neuronexus, Ann Arbor, MI;

probe catalog number: A16x1-2mm-100-177), was positioned along the dorsal-ventral axis of

the mEC; see Fig 1. A 32-channel amplifier (RHD2132; Intan, Los Angeles, CA) coupled to an

open-source acquisition board (Open Ephys Inc, Cambridge, MA) was used to take recordings

and the data were subsequently band-pass filtered (1-500 Hz) and digitized at 2 kHz.

In this paper, we apply our modeling framework and analysis to six recordings of length

between 18 to 50 min, each containing several ‘seizure-like’ events. From each recording we

determine the first onset event in which all 16 channels transit to a seizure-like state; this

occurs 9-20 min from the start of the recordings using the same threshold detection algorithm

(detailed below) to determine onset in each channel.

In further experiments, the induction of epileptiform activity by bath application of 4-AP

was followed by co-application of GABAA receptor modulators as either positive modulation

via diazepam (30 μM) or negative with Ro19-4603 (10 nM) [15]. In a final set of experiments

considered here, a scalpel blade was used to make a cut in the intermediate mEC, thus anatom-

ically separating dorsal and ventral portions. In this case, data were recorded from two sites,

one in the dorsal and one in the ventral end of the slice; the 16 channel multielectrode array

was not used in this case [13].

Fig 1. Multi-electrode recording from mouse mEC. Panel a shows an illustration of the silicone probe positioned along the dorsal-ventral axis of the mEC. Panel b is

an example seizure-like onset from mEC data showing the slow domino effect, where sequential seizure-line onset starts in the ventral end and spreads to the dorsal.

Panel c is the scaled mean recruitment times t̂ n and standard error for each electrode n = 1, . . ., 16 from six seizure-like events.

https://doi.org/10.1371/journal.pcbi.1008206.g001
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Seizure onset detection

We refer to the moment of transition from background to seizure state as seizure onset time. It

is important to note that we detect this change in activity in the same way in both the EEG and

mEC data sets, using a threshold detection algorithm as in [13] implemented using custom

code in MATLAB (ver. R2018b).

The threshold detection algorithm is as follows:

1. The signal from a single channel or electrode is band pass filtered then z-normalized fol-

lowed by rectifying, giving the processed signal x(t) for each time point t.

2. An envelope u is determined using spline interpolation over local maxima separated by at

least np data points.

3. Seizure onset time τn for each electrode n is the first time over a threshold defined by s×stan-

dard deviation from the mean of the envelope,

tn ≔ minft : jxðtÞj > meanðuÞ þ s � stdðuÞg:

The choice of band-pass filter, np and s values is different in the two cases (human and ani-

mal) and depends on the sampling frequency and seizure duration time in each data case.

The values used in this paper are given in Table 1 and the algorithm procedure is illustrated in

S1 Fig.

For the EEG data, we submit 1267 epochs (described above) to the threshold detection algo-

rithm. We only consider epochs in which onset is detected in all electrodes for further analysis;

onset is detected in all electrodes in 1159 seizures out of the total 1267. From the detected

onset times for each seizure we calculate the recruitment time defined as tn = τn − min(τn) for

each electrode n. We order the electrodes for each seizure by recruitment time from min(tn) =

0 to max(tn). The total recruitment time is max(tn) and we calculate the maximum lag by taking

the largest difference between consecutive (ordered) recruitment times. Note here that we are

interested in the diverse range of patterns observed at seizure onset and that the seizures are

recorded using ambulatory EEG so may occur under different (unknown) conditions e.g.

sleep/wake. Therefore, we do not average recruitment times over seizures and instead submit

them to a linear discriminant analysis detailed in the next section.

In the case of mouse data we submit the six manually identified mEC epochs containing sei-

zure-like events to the threshold detection algorithm. Onset is detected in all channels of the

six events. The data and seizure onset times are shown in S2 Fig. Here, we average the recruit-

ment times tn in each channel over all six events to get the mean recruitment time ~tn ¼ htni
and cascade duration (the total mean recruitment time) maxð~tnÞ � minð~tnÞ. The averaging of

recruitment times is representative of the system’s dynamics as the in-vitro experimental set

up is well controlled compared to the EEG recordings. The cascade duration is consistent for

choices of s> 0.65 and np> 16000; see S3 Fig.

Table 1. The values used in the threshold detection algorithm for the two types of data used to obtain the results

presented in this paper.

EEG data mEC data

band pass filter 4-20Hz [16] 15-35Hz [13]

np 60 22000 [13]

s 0.6 1 [13]

https://doi.org/10.1371/journal.pcbi.1008206.t001
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Fig 1 summarizes the collection and analysis of mouse mEC data. This figure shows the

positioning of the silicone probe in the slice along the mEC, an example recording of an event,

and the scaled mean recruitment times t̂ n ¼ ~tn=maxð~tnÞ from all six events.

Seizure onset pattern grouping

We refer to the patterns of dynamic activity captured by the EEG electrodes and detected by

the threshold detection algorithm as onset patterns. We first consider a subset of 27 generalized

seizures: 12 seizures clinically classified as generalized onset from one individual and 15 sei-

zures clinically classified as focal onset from multiple individuals. The onset patterns for these

27 events are shown in S4 and S5 Figs; note one focal onset seizure was excluded from further

analysis as seizure onset was detected in only 18 out of 19 channels.

Based on initial visual inspection of the detected onset patterns we propose three groups:

1. Fast domino: short total recruitment time and no large lags between detected activity in

consecutive electrodes;

2. Slow domino: long total recruitment time and no large lags between detected activity in

consecutive electrodes;

3. Multiple domino: long total recruitment time and one or more large lags that separate elec-

trodes into subgroups for which the detected activity has similar recruitment times.

This grouping is inspired by the slow and fast domino effect detailed in [7, 9]. Both papers

consider the escape of nodes from quiescent to oscillatory states in small motif networks. The

fast domino effect is where all nodes escape in quick succession, almost simultaneously: this is

our fast domino onset where electrodes are recruited in quick succession and the total recruit-

ment time of all nodes is small. The slow domino effect is seen when all nodes on a network

escape but it takes longer between consecutive nodes to escape giving a longer total escape

time: this is our slow domino effect in which there are small lags between recruitment of elec-

trodes but the total recruitment time for all electrodes is longer than the fast domino onset.

The multiple-domino group is a novel class identified in this paper where subsets of electrodes

escape in either a fast or slow domino effect, and there is one or more large lag in time between

subsets. This gives the effect of multiple domino cascades that could only be observed in larger

networks (> 3 nodes).

To quantitatively delineate between the groups we chose an initial threshold between fast

and slow total recruitment time to be 0.5s and the threshold between long and short lags to be

0.4s. We then compute linear discriminants based on this data set using MATLAB. We use

these delineations to assign each seizure, including the original 26, to one of the groups listed

above.

We test how changing the parameters np and s of the seizure detection algorithm affects the

group assignment of the 26 onset patterns from patient 1 and all focal events, described above.

S6–S9 Figs show the recruitment and lag times for the three example seizure onset patterns

detected using np = 60 fixed and s 2 [0.4, 0.8] and using s = 0.60 and np 2 [40, 80]. We com-

pute the median recruitment and lag times for each event for both fixed values of np and s.
Overall, the median time values for the three examples, namely fast, slow and multi-domino

onset patterns, correspond to the same group assignment as the times computed for np = 60,

s = 0.6 when varying either np or s. S9 Fig show the recruitment and lag times for all 26 events

computed using np = 60, s = 0.6 (shown in Fig 2) and the median times for varying both np
and s. Specifically, for fixed s = 0.6 the median times computed for np 2 [40, 80] give the same

group assignment as the times for np = 60, s = 0.6 in 81% of the 26 events. For fixed np = 60
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the median times computed for s 2 [0.4, 0.8] give the same group assignment as the times for

np = 60, s = 0.6 in 96% of the events. The group assignment is robust to the choice of threshold

modified by s in the detection algorithm, but is more sensitive to the envelope modified by np.

Mathematical model

Coexistence of stable (attracting) background and seizure states has been implied to underlie

mechanisms of transition to epileptic seizures in the context of both generalized and focal sei-

zures [17, 18]. Bistability has been used effectively in phenomenological models of seizures

driven by a desire to understand the underlying fundamental mechanisms of seizure transi-

tions [8, 11].

We consider a network of coupled bistable nodes where each node represents one electrode

on either the EEG placed on the scalp or the silicone probe array used in the mEC. The

Fig 2. Total recruitment and maximum lag times in seconds (s) indicate a variety of seizure onset patterns. Panel a

shows seizures from one individual, 12 clinically classified as generalized onset (•) and 3 classified as having focal onset

(^); with an additional 11 seizures from multiple subjects classified as having focal onset (^), with the lines L1 and L2.

One example seizure from each group, marked by dark blue, dark purple and dark orange in panel a are shown in c1–c3

with the seizure onset time marked in each channel (�). Panel b shows the remaining 1145 seizures from 59 individuals

with the lines L1 and L2 as in panel a.

https://doi.org/10.1371/journal.pcbi.1008206.g002
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network of nodes is given by a system of stochastic differential equations

dznðtÞ≔ ½ f ðzn; nnÞ þ b
X

m

An;mðzm � znÞ� þ adWn ð1Þ

for z 2 C with n = 1, . . ., N [7, 9]. For the EEG data N = 19, the number of electrodes placed

on the scalp, and for the mouse mEC data N = 16, the number of electrodes on the silicone

probe.

The intrinsic bistable dynamics of each node is given by the following function,

f ðz; nÞ≔ ð� nþ ioÞz þ 2zjzj2 � zjzj4: ð2Þ

This is a truncated form of a Hopf normal form (or Bautin bifurcation) analyzed in [8, 9]

based on [10]. Note here that we substitute ν = 1 − λ in the equation from [8]. We choose the

parameter 0< ν< 1 so that f admits two stable states; the seizure state represented by a peri-

odic orbit with phase ω and the background state represented by a fixed point. The bifurcation

diagram for (2) is shown in S10 Fig.

Each node starts in the background state (z = 0) and transitions to the seizure state are

driven by noise when there is no coupling. Specifically, an independent identically distributed

noise process Wn representing input from other neural or external stimuli is added to each

node. The noise amplitude α is fixed throughout at α = 0.05 as in [7, 9]. Moreover, we assume

that the time taken to transit back from seizure to background state is large enough to be

ignored. When coupling is applied to the nodes, transitions to the seizure state are driven by

both the noise and inputs from other nodes. S10 Fig illustrates the behavior of this model by

showing a simulation of the network with N = 16 nodes.

The parameter ν controls how easily each node can be destabilized by noise; hence ν repre-

sents the node excitability. When ν is close to 0 small noise perturbations is sufficient to push

the node into the seizure state; the node is excitable. Whereas when ν is close to 1 much larger

noise perturbations are necessary for the node to transition; the node is more robust, i.e. less

excitable. Each node is assigned a value of ν, these values are chosen as described in the Excit-

ability section below. For simulations in which we fix excitability equal for all nodes we use ν =

0.15 in line with [7, 9] unless otherwise stated. Note that the transitions do not depend on the

phase and so we fix ω = 0 for the simulations throughout unless otherwise stated. In this way

we assume synchronization of nodes in the network and the model captures the observed phe-

nomenon of phase locking at seizure onset.

The coupling between nodes is linear diffusive coupling, chosen in line with previous stud-

ies [7–9, 19, 20]. Such coupling could be seen as representative of local field potential mediated

coupling via e. g. synaptic mechanisms at the level of the recordings obtained in the mouse

mEC slice preparation and brain surface electrical potential coupling at the level of the EEG

recordings. Nodes are coupled according to a weighted adjacency matrix A where entry

An,m 6¼ 0 if there is a connection from node m to node n and An,n = 0. The overall intensity of

the coupling is governed by the scaling factor β; if β = 0 the nodes are disconnected. We fix the

scaling factor β = 1 when modeling the mouse mEC data. When modeling the EEG data we

vary β according to functional connectivity networks reconstruction based on individual sei-

zure events and specify the values in the text. In the case of EEG modeling An,m is given by the

association matrix computed for each seizure event as explained below.

Network structure. A plausible network structure between electrodes is required to apply

the model to the EEG and mEC data. Linking mechanisms for neurons in a cohesive cortical

network spanning the brain are not yet known [21].
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For the EEG data, we use a standard measure of functional connectivity, namely a nonlinear

regression method to compute the association index denoted An;m 2 ð0; 1Þ that assigns a func-

tional connection strength from node m to node n [22, 23]. This association index represents a

correlation ratio, i.e. the fraction of the variance of the time series xn from node n that can be

“explained” by the input time series xm from node m. This method has been shown to be

robust and applied to human intracerebral EEG data for characterizing seizure patterns [24–

26]. Larger values of An;m indicate a stronger functional connection between electrode activity

and therefore between network nodes. We compute An;m using the equation from [23];

detailed in S1 Text. The computations are implemented using a custom EEG-analysis tool-

box [27] in MATLAB and the association indexes for the three example seizures are shown in

S11 Fig. We use each association matrix as the weighted adjacency matrix A in the model.

To test the dependence of An;m on the time interval used, we first compute An;m for 5s inter-

vals, 0-5s, 5-10s and 10-15s. Next, we compute the Pearson dissimilarity as defined in [28]

between pairs of functional connectivity (or association) matrices. We apply this by comparing

the matrices computed for 5s intervals, 0-5s, 5-10s and 10-15s with An;m computed using the

whole interval; see S12 Fig. The functional connectivity matrix characterized by the smallest

Pearson dissimilarity is found to be the 5-10s. Note that this is the interval that contains the sei-

zure. Finally, the onset patterns detected using the threshold detection algorithm show that

onset ranges from 4-6 s from the start of the epoch. Therefore, to ensure all onset information

is captured for each seizure we use An;m computed based on the whole 15s epoch.

For the mouse mEC data, we choose a network topology based on the geometry of the

recording positions of the silicone probe in a comb-like structure (see Fig 1) that we represent

mathematically by a one-dimensional chain of nearest neighbor coupled nodes. Due to the fact

that the slice is thin, only 400 μm, we ignore long range connections as they would be present

(if any) with a low probability. Therefore, we assume a bidirectionally coupled chain where

each node receives input from its neighbors An,n−1 6¼ 0, An,n+1 6¼ 0 and An,m = 0, if m 6¼ n − 1,

m 6¼ n + 1. We also assume that the coupling weight between two consecutive nodes is the

same in each direction, so An,n+1 = An+1,n.

Excitability estimation from EEG data. We estimate the value for the excitability param-

eter for each node in the model from EEG data by means of a measure of energy from the sig-

nal from each electrode as in [29]. The time-dependent energy is computed using a 1s sliding

window with 50% overlap as

Et
n ¼

Xðtþ1Þ=d

k¼t=d

x2

nðkdÞ: ð3Þ

Here xn(kδ) is the time series of node n at time kδ with δ as sampling time step. The sum is

taken over the time interval [t, t + 1]. We then compute the total energy as

En ¼ Et1
n þ Et1þ0:5

n þ � � � þ Et2
n ð4Þ

In particular for the two chosen seizures in the EEG data, we use t1 = 0s and t2 = 14s, consistent

with whole interval used for the association index calculation. To ensure reasonable comput-

ing time for model simulations and to normalize the energy profile range for all events, we

scale this energy profile En to [0.1, 0.2]. The scaled energy profile is denoted by En and these

values are used to compute the node excitability as nn ¼ 0:3 � En for each n which ranges

between 0.1 and 0.2 unless otherwise stated. The energy profiles for the three examples are

shown in S13 Fig.
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Numerical simulations and comparison with data. We simulate the system given by Eqs

(1) and (2) using a stochastic Heun method with time step h = 10−3 implemented in a custom

code written in C++. We compute K� 1000 realizations for each set of parameters. The initial

condition is zn = 0 for each node n = 1, . . ., N, where N is the total number of nodes in the net-

work. Each realization has a different seed for the added noise processes. We detect the simu-

lated seizure onset time τn for each node n as the first time a realization crosses the threshold

ξ as

tn ≔ minft : jznðtÞj > xg

where the threshold is fixed throughout at ξ = 0.5. We then compute the recruitment time tn =

τn − min(τn) for each node. We average recruitment time over realizations Tn≔ htni. Note

that the node with the lowest recruitment time min(tn) is not necessarily the same in each

simulation and so Ts1
¼ hts1

i > 0, where σ1 denotes the node with the lowest simulated mean

recruitment time.

To compare the simulation results and the data we scale the simulated times by their maxi-

mum mean time tn/max(Tn) and denote the scaled mean recruitment time as T̂ n ¼ Tn=maxðTnÞ

so the largest simulated scaled mean recruitment time maxðT̂ nÞ ¼ 1. We scale the EEG and

mEC data in the same way, by taking tn/max(tn) and t̂n=maxð~tnÞ respectively.

To quantify the model fit to the EEG data and compare between model simulations we

compute the distance d between the simulations and the data. To this end, we split the 1000

simulation into 20 groups, order the nodes according to the mean recruitment time and aver-

age over all 50 realizations in each group. We then compute the least square distance between

each group and the data. We calculate the median distance d and 95% confidence intervals

using a standard method from [30]. We use the Mann Whitney U test [31] with the null

hypothesis that d values are samples from continuous distributions with equal medians.

For the mEC data, we average over all realizations and calculate the least square distance d
between the scaled mean times from the data and model. For the mouse mEC data we also

compare the proportion of seizures where seizure-like onset starts in the ventral nodes 1–8 or

in the dorsal nodes 9–16. Note, the proportion PV of activity starting in the ventral end has

been already estimated in [13] for a larger number of samples (43) as PV� 0.86.

Results

Seizure onset patterns in human EEG

The results of the linear discriminant analysis outlined in Material and Methods identify the

following boundaries between the three groups, fast-domino, slow-domino and multi-domino

onset. The slow-fast dividing line is given by L1 = 2.9644 − 1.5236r − 16.5419l and the fast-

multi dividing line is given by L2 = 31.0766 + 2.301r − 97.5312l where r is the recruitment time

and l is the maximum lag time.

Fig 2 shows the total recruitment times and maximum lag times for all seizures with the lin-

ear boundaries L1,2. Panel a shows the subset of 26 data sets consisting of all focal events and

all events from a single chosen individual with JAE. The division between the multi and fast-

domino onset delineated by L2 is much clearer than between the slow and fast-domino onset

groups given by L1. Panel b shows all remaining generalized seizures. These seizures have been

assigned to each group using the delineating lines. This shows a continuum of points over the

three groups, and the spread of recruitment and lag times in the multi domino group is much

larger than for the fast-domino onset group. The example onset patterns shown in Fig 2c are

three consecutive events from the chosen individual.
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Each of the three groups, fast-domino, slow-domino and multi-domino onset, contain gen-

eralized seizures that are clinically classified as focal onset and generalized onset. This group-

ing goes beyond this clinical classification and so we wish to understand in more detail how

these onset patterns arise. To this end, we apply our modeling framework to these three

events.

Heterogeneous connectivity and excitability contribute differentially to different onset

patterns. We build a network model for each seizure by constructing an all-to-all directed

network of 19 nodes (one for each electrode) and explore the effect of changing the weighted

adjacency matrix that defines the coupling, in our case the association matrix, and the intrinsic

node excitability defined by the energy profile; see Materials and methods section for details.

We use the modeling framework to test the effect of different coupling and excitability in

the model. Specifically, we perform three numerical experiments using: (Ex.1) homogeneous

coupling strength given by the average of the association matrix elements An,m with heteroge-

neous excitability given by the energy profile En (shown in S13 Fig); (Ex.2) homogeneous

excitability ν = 0.15 and heterogeneous coupling given by An,m (shown in S11 Fig); (Ex.3) het-

erogeneous excitability and coupling. We simulate the model informed by the three seizures

shown in Fig 2c for β = {0.0, 0.005, 0.015}. We compare the model output to the data using a

least squares distance d, as described in Material and Methods.

Fig 3 shows the best (lowest d) model output for each experiment for each seizure. We note

that the electrodes are not labelled here as here the focus is on recruitment and lag time prop-

erties, i.e. the dynamics of the system. All model simulations from the three numerical experi-

ments for each pattern for β = [0.0, 0.005, 0.015] are shown in S14–S16 Figs.

In each set of simulations for (Ex.2) escapes happen almost simultaneously, as shown in Fig

3 column 3; see also S15 Fig. The large d values for this experiment for each seizure indicate

that heterogeneous coupling alone cannot reproduce the variety of patterns observed.

For the multi-domino onset pattern the lowest d-values for Ex.1 and Ex.3 are for β = 0.005.

The error for Ex.3 d = 0.29 is significantly smaller (p< 0.0001) than the error for Ex.1 d = 0.48.

So we conclude that incorporating heterogeneous coupling and excitability in the model best

captures the multi-domino onset pattern.

For the slow and fast domino the lowest d values for Ex.1 and Ex. 3 are for β = 0; d = 0.61

(Ex. 1) and d = 0.64 (Ex. 2) for slow domino, and d = 0.31 (Ex. 1) and d = 0.32 (Ex. 2) for fast

domino. There is no significant difference between the d-values for Ex. 1 and Ex. 3 for either

the slow domino onset (p = 0.78), or for the fast domino onset (p = 0.62). In this case the cou-

pling weights are zero and the nodes escape independently governed by the excitability profile.

This indicates that the excitability of nodes rather than the coupling is key to generating the

fast and slow onset patterns.

To explore further the interactions observed in the in vivo data, we next apply our modeling

framework to recordings of seizure-like neuronal activity from an in vitro experiment on

mouse mEC.

Seizure-like onset in mouse mEC

In this section, we demonstrate the applicability of our modeling framework to an experimen-

tal system at a different spatial and temporal scale. We consider the recruitment of seizure-like

events in six experimental recordings from slices of mouse medial entorhinal cortex (mEC)

that has been previously reported in [13] and is summarized in Fig 1. Panels b and c in Fig 1

clearly show a domino effect of the recruitment of nodes to the seizure-like state that takes

around 20s to spread across all nodes over a distance around 1500μm. We call this a slow-

domino effect as it is much slower than the short interictal-like events propagated across the
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electrodes in the order of ms; see [13] Fig 3. We note that this domino recruitment is much

slower than the total recruitment times for the seizures in the EEG recordings.

This in vitro system allows for some simplifying assumptions with regard to the network

connectivity and excitability to be made. This in turn enables a more detailed exploration of

the relative contributions of excitability and coupling weights in seizure onset patterns. To this

Fig 3. Simulated total mean recruitment times for the multi (a), slow (b) and fast-domino (c) onset patterns. The scaled recruitment times from the data are shown

in column 1 for each of the three events; these are the same as in Fig 2c. These events are plotted as gray lines in the remaining panels, The scaled simulated total mean

recruitment time Tn/max(Tn) and standard error bars for the numerical experiment with homogeneous coupling (Ex. 1, column 2), with homogeneous excitability (Ex.

2, column 3), and with heterogeneous coupling and excitability (Ex. 3, column 4). The simulations with lowest d value are shown with the corresponding β value and

confidence intervals for d given in each panel.

https://doi.org/10.1371/journal.pcbi.1008206.g003
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end, we apply our network modeling framework to the mEC data and assess the contribution

of excitability and coupling to the domino-like onset patterns, specifically the recruitment

times and the proportion of ventral initiation.

To model the onset of seizure-like events in mEC, we build a network consisting of 16

nodes where each node represents one electrode of the silicon probe array; see Materials and

methods section. We start with a simple case where coupling weights and excitability are

homogeneous and fixed among the nodes; in particular we fix νn = 0.2, (n = 1, � � �, 16). In this

case, we find that the simulated mean recruitment times exhibit symmetry; see S17 Fig. There-

fore, in the homogeneous system there is no discernible dorsoventral gradient due to network

symmetry and the proportion of simulations with ventral initiation is PV = 0.5. This indicates

that homogeneous coupling weights and excitability cannot explain the sequential recruitment

of seizure-like initiation along dorsoventral axis observed in the mouse mEC data. Thus, in the

following subsections, we systematically explore how heterogeneous coupling or node excit-

ability affect the domino-like recruitment along the chain.

Linear gradient in excitability facilitates slow-domino like sequential recruitment.

Here we explore the effect of heterogeneous node excitability and constant coupling weight on

recruitment times in the model. Experimental results have revealed the presence of functional

dorsoventral gradients in a variety of excitability properties in neurons of the mEC [32]. In our

modeling framework such experimental observations could be accounted for by changing the

excitability parameter ν for each node linearly (in its simplest form). We note that this is the

only parameter in the model that represents intrinsic properties of a node (in this case repre-

senting a small group of neurons in the mouse slice located in the vicinity of each of the silicon

probes in the array). Accordingly, we define a linear gradient in ν given by

nn ¼ n
0 þ ðn � 1Þdn ð5Þ

with ν0, δν> 0 for n = 1, � � �, 16. Here we fix the coupling weights as follows, An,n+1 = An,n−1 =

A = 0.1.

Fig 4 shows the scaled mean recruitment times from the data t̂ n and the scaled mean simu-

lation of the model T̂ n with the measure of difference d between the model simulations and

the data and the proportion of ventral initiation PV for different gradient values. In panels b

and c the red stars indicate the parameter values used in the simulation of the model shown in

panel a. Note that the electrode order in panel Fig 4a is the same as in Fig 1a.

Fig 4. Modeling linear gradient in excitability with constant coupling A = 0.1. Panel a shows the scaled mean recruitment times from data, as in Fig 1c, and

simulation results with gradient in node excitability given by (ν0, δν) = (0.14, 0.002) indicated by the red stars in panels b–c. Panel b shows the least squares distance d
between the model and experimental data for different values of ν0 and δν; solid lines indicate d = 0.2. Panel c shows the proportion of ventral initiation PV; solid line is

PV = 0.86 and the dashed lines are the 95% confidence interval. The red star lies in the region of (ν0, δν) parameter space that both minimizes d and satisfies PV� 0.86.

https://doi.org/10.1371/journal.pcbi.1008206.g004
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When there is no gradient (δν = 0), the simulated results are in line with the findings using

homogeneous excitability, d� 2.5 and the proportion PV = 0.5. The solid lines delineating

d = 0.2 show a band 0.001< δν< 0.003 across a range of ν0 where the difference between the

model and the data is small. There is a region of overlap between this band and the region of

(ν0, δν) contained within the dashed lines for PV. Fig 4b also shows that the gradient in excit-

ability δν has a more significant effect compared to the initial level of excitability ν0 in captur-

ing the observed sequential recruitment. Note that the value of coupling chosen here is

important for recruitment speed. When using a lower value of the coupling weight A = 0.03,

there is no overlap in the regions of ν0 and δν where d< 0.2 and within the confidence interval

for PV (see S18 Fig).

Modulation of excitability gradient controls recruitment speed. Ridler et al. pharmaco-

logically modulated the excitability levels in the slice [13] once the seizure-like activity was

established with 4-aminopyridine (4-AP) by additional bath application of diazepam or Ro19-

4603 (both GABA action modulators). It was reported that Diazepam decreased the speed of

recruitment whereas Ro19-4603 increased the recruitment speed when compared to baseline

(4-AP only). Using our modeling framework we are able to account for these experimental

observations as shown in Fig 5a and 5b. Specifically in order to reproduce the chemically

induced changes in recruitment speed it is sufficient to vary the excitability gradient δν in the

model. For positive modulation we find that increase in δν suffice, resulting in a shallow excit-

ability gradient and large difference in excitability between neighboring nodes; hence slowing

down the domino effect. For negative modulation we find that decrease in δν is enough to pro-

duce a steep excitability gradient and small difference in excitability between neighboring

nodes; hence speeding up the domino effect.

Fig 5. Modulating the excitability gradient changes domino speed. Example traces of seizure-like events induced with application of 4-AP in panels a1 and b1, and

with subsequent application of diazepam a2 or Ro19-4603 b2 [13]. Scale bar: 500 μV, 5s. Panel c shows the mean recruitment time of model simulations of the network

with different values of excitability gradient δν. Here we fix the coupling weight A = 0.1 and ν0 = 0.14 in line with the red star values in Fig 4. Increasing the gradient δν
gives a slower-domino effect, so slow that the realization is terminated before all nodes escape, whereas decreasing the gradient gives as faster-domino effect.

https://doi.org/10.1371/journal.pcbi.1008206.g005
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Fig 5c shows the mean recruitment time (not scaled) of the model simulations for different

values of δν. Note that the electrode order in panel c is the same as in Fig 1a. As above we fix

the coupling weight A = 0.1; we note qualitatively similar results were found for lower values

of A. We take δν = 0.002 as the pre-modulation (4-AP only) value, as in Fig 4. When the gradi-

ent is much larger, δν = 0.025, the onset pattern has a very slow-domino effect and the total

recruitment time is very large; here, due to the large recruitment times the realization is termi-

nated before all nodes escape. This pattern of recruitment captures the very slow-domino

onset pattern in panel a2 modulated by 4-AP + diazepam. When the gradient is decreased,

δν = 0.001 the total recruitment time is small and the domino-effect is much faster, suggesting

more synchronized recruitment. This captures the fast-domino onset shown in panel b2 mod-

ulated by 4-AP + Ro 19-4603. For δν = 0.001 the mean recruitment time for node 1 is larger

than that for other values of δν and is far from 0 because when simulated node 1 is not always

the first node to initiate the recruitment.

Linear gradient in coupling delineates regimes of slow and fast-domino recruitment.

Next we proceed to explore the effect on recruitment times using heterogeneous coupling and

constant excitability ν = 0.2 for all nodes in the model. It has been experimentally suggested

that the dorsal mEC receives a greater number of inhibitory inputs than the ventral mEC [13,

33] and is hence more resistant to transitions between different dynamic states. As above we

look for the simplest possible way to account for these observations in our modeling frame-

work. One way to do this is by assuming heterogeneous dorsoventral coupling weights. To this

end, we incorporate a simple but general linear gradient in coupling weights along the chain-

like network structure. Specifically, we use the weighted adjacency matrix

An;nþ1 ¼ Anþ1;n ¼ A0 þ ðn � 1ÞdA ð6Þ

where δA, A0 > 0 for n = 1, . . ., 16. We note that in this case the coupling weights increase

from the weakest between nodes 1 and 2 (ventral—fewer inhibitory connections) to the stron-

gest between nodes 15 and 16 (dorsal—more inhibitory connections).

Fig 6a depicts the scaled mean recruitment times T̂ n from the data and the model simula-

tions for parameter values (A0, δA) = (0.08, 0.005). Note that the electrode order here is the

same as in Fig 1a. The difference d between the model and the data, and the proportion PV of

realizations initiated in the ventral end of the network are also shown for a range of coupling

gradient values; compare to Fig 4. When there is no gradient, δA = 0, d� 1 and the proportion

Fig 6. Modeling linear gradient in coupling with constant excitability νn = 0.2 for all nodes. Panel a shows the scaled mean recruitment times t̂ n extracted from the

experimental data, with the simulation results with gradient in coupling weights (A0, δA) = (0.08, 0.005) indicated by the red stars in b and c; compare to Fig 4. The red

stars lie in the region of (A0, δA) parameter space that both minimizes d and satisfies PV� 0.86.

https://doi.org/10.1371/journal.pcbi.1008206.g006
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PV = 0.5 is in line with simulated results using homogeneous coupling. In panel b, the lines at

d = 0.2 delineate the different coupling regimes identified in [9]. If A0 small (A0 < 0.02) then

the coupling is weak and the network recruits as if uncoupled. For strong coupling A0 is large,

the recruitment of nodes becomes more synchronized (fast domino effect) and d is large

(d> 0.2). The region with lowest difference to the data (d< 0.2) is within the intermediate

coupling regime, between the solid lines, in which the slow domino effect can be seen. Panel c

shows that for δA 6¼ 0 the proportion PV� 1. We find values (e.g. indicated by the red star) of

A0 and δA where d< 0.2 and PV� 0.86 in line with [13].

This shows that the network model with a linear gradient in coupling weights delineates

regions of slow and fast domino-like recruitment. Moreover, this model captures the behavior

of recruitment times seen in the experimental data which is well explained by the slow-domino

effect.

Severed coupling facilitates time lag in recruitment. Finally we test how modulation in

coupling affects recruitment patterns. To this end, we consider the anatomical separation of

the dorsal and ventral portions of the mEC slice via an incision in the intermediate mEC with

a scalpel blade, as reported in [13]. Seizure-like activity was found to initiate in the ventral

mEC before the dorsal mEC, but transitions in the dorsal mEC took longer to initiate com-

pared to intact slices. This suggests that the dorsal mEC is less likely to produce seizure-like

activity in the absence of the ventral mEC. We model this scenario and predict the mean

recruitment times along the 16 nodes in the chain. Specifically, we model the anatomical sepa-

ration by setting A8,9 = A9,8 = 0. Moreover, we fix the coupling weights

An;nþ1 ¼ Anþ1;n ¼ A > 0

for n 6¼ 8 and fix the gradient in excitability (ν0, δν) = (0.14, 0.002) as in Fig 4.

Fig 7 shows the mean recruitment times from model simulations for intact and separated

coupling structures with either weak coupling A = 0.03 or intermediate coupling A = 0.1.

When the chain is severed, recruitment is disrupted. The recruitment times form two clusters

(the ventral cluster with nodes 1-8 and the dorsal cluster with nodes 9-16) separated by a lag in

recruitment time. When the coupling is weak A = 0.03 the lag is larger than the intact but

could still be considered as a slow-domino effect. However, the size of the lag is more pro-

nounced when the coupling weight is intermediate A = 0.1 and the onset pattern is clearly

multi-domino with two cascades. This result is in line with experimental findings where the

dorsal mEC takes a long time to transit to seizure-like state in the absence of influence from

Fig 7. Separation of dorsal and ventral nodes produces a multi-domino effect. Panels a and b show simulated mean recruitment times for both intact (green) and

separated (blue) chain structures with indicated coupling weights A. In both cases the separated chain structure shows a lag between nodes 8 and 9. Panel a shows that

when the coupling strength is weak the separated simulation has a slow-domino or multi-domino onset with one larger lag than the intact onset, whereas in panel (b),

A = 0.1, the lag is larger and two domino cascades clearly form.

https://doi.org/10.1371/journal.pcbi.1008206.g007
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the ventral mEC. This adds further support for the use of intermediate coupling weights in the

model.

Discussion

The variety of generalized seizure onset patterns observed in clinical EEG recordings have not

been fully explored. EEG is the dominant tool used by clinicians and neurologists to diagnose

epilepsy therefore analysis and modeling of the complex patterns observed may provide crucial

insight for diagnosis and treatment of this complex disorder [34].

Using an exemplary data set of recordings from individuals with idiopathic generalized epi-

lepsy (IGE) [4, 12] we show a variety of spatiotemporal onset patterns for seizure in the data

that can be characterized by the total onset (recruitment) time and the lags in onset time

between electrodes. Here we use these two features to suggest a novel taxonomy consisting

of three types of patterns: fast-domino onset where activity is detected almost simultaneously

by all electrodes; slow-domino onset where the onset of activity takes longer to be detected in

all electrodes; and multi-domino onset where several domino-like cascades of activity are

observed across groups of electrodes. These novel categories transcend the existing classifica-

tion of generalized or focal onset of a generalized seizure.

We develop and apply a network modeling framework of seizure onset to capture different

seizure onset patterns characterized by the total recruitment time and lags between electrodes.

We demonstrate, as a proof of concept, that this novel framework can be applied at different

scales and used to explore the contribution of node level properties on emergent network

behavior.

To this end, we apply this network model to qualitatively capture three seizure onset pat-

terns, one from each onset pattern category. The illustrative examples used here are taken

from one individual diagnosed with Juvenile Absence Epilepsy (JAE, the most common syn-

drome within the data) [4, 12]. The precision approach taken here by modeling individual sei-

zures is in line with contemporary approaches to epilepsy modeling based on inference of the

network structure and node excitability (propensity to transition) from the data for each sei-

zure [19, 20]. Our modeling results show that heterogeneous node properties and heteroge-

neous coupling weights play non-trivial roles in the formation of the different onset patterns.

We show that, of the two heterogeneities, heterogeneous excitability plays a more dominant

role in shaping the emergent behavior for all the three onset patterns. Indeed, heterogeneous

excitability alone is sufficient to reproduce the fast and slow-domino onset patterns. The

multi-domino onset pattern is best captured by incorporating both heterogeneous coupling

and excitability, where the heterogeneous coupling provides a refinement to the multi-domino

onset pattern.

In order to further investigate the contribution from node excitability heterogeneity or cou-

pling heterogeneity separately, and to demonstrate that the framework can be used at the

micro scale, we apply the network model to multi-electrode array recordings from mouse

mEC [13]. The mEC data shows an induced domino-like seizure recruitment from the ventral

to dorsal mEC. To model this, a chain network structure is assumed based on experimental set

up. The effects of gradients in node excitability or coupling weights are explored based on

model simulations. We capture experimental findings by showing that steeper gradient in

excitability leads to fast-domino onset patterns where nodes are recruited in quick succession.

Moreover, we show that shallower gradient in excitability leads to slow-domino onset patterns

where for very steep gradients, long recruitment times are found and can cause the propaga-

tion to effectively stop. We also show that a discontinuity in the coupling leads to a time lag in
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recruitment in the chain, creating a multi-domino onset effect; these predicted recruitment

patterns could be experimentally tested in the future.

The idea of groups of electrodes which detect similar changes in activity at seizure onset or

termination was explored by Proix et al. for focal seizures [35]. The authors considered the

spatiotemporal patterns of seizure recruitment and termination detected by stereotactic EEG.

They identified that although some seizures begin and terminate synchronously across elec-

trodes, others form distinct clusters where nodes within each cluster are recruited or terminate

(almost) simultaneously, with a significant time lag between each cluster. They focused on ter-

mination patterns and use a neural field model based on an extension to the so-called “Epilep-

tor” model [36] to show that recruitment correlates to weak (structural) connections. This

paper extends the concept to the onset of generalized seizures and our finding that coupling

plays an important role in the multi-domino onset pattern is in line with their findings.

Network topology alone is a necessary but not sufficient condition for generalized seizures

to emerge. For example, Chowdhury et al. demonstrated that alterations in brain network

topology were present in both people with idiopathic generalized epilepsy, as well as the unaf-

fected first-degree relatives in comparison to healthy controls [37]. Moreover, Petkov et al.
demonstrate increased mean degree is related to seizure onset in generalized seizures [38].

Consequently, Terry et al. studied a phenomenological model of seizure onset in which each

node could transition between background and seizure states [11]. They found that increasing

the excitability of a single node in a motif (four-node) network could produce dynamics con-

sistent with either focal, generalized or focal to bilateral ictal activity. In that model, the long

term behavior of the system (how many nodes are in the ictal state) was considered. Building

on these initial mathematical descriptions, Schmidt et al. extended this framework to consider

a modular network of tightly coupled Kuramoto type oscillators representing activity within

each node, and a functional network between nodes informed by clinical EEG [39]. Therein,

onset patterns either defined by cycles within the functional network or synchronous behavior

within specific nodes were described. In the context of generalized epilepsy, this approach was

shown by Schmidt et al. to have predictive value for revealing epilepsy from epochs of EEG

data that would be considered clinically negative (e.g. free from discharges or other abnormali-

ties) [40]. Very recently, this approach has been further extended by Woldman et al. to account

for different network properties characterizing both focal and generalized seizures [41].

Martinet et al. show that network characteristics can influence recruitment dynamics of the

neocortex in focal to bilateral tonic-clonic seizures [42]. In particular, recruitment times and

the degree of spatial organization during onset have been shown to be patient specific and

large variations exist between patients. More recently a cascading failure model was used to

simulate the neural networks underlying generalized tonic-clonic seizure [43]. They use func-

tional networks derived from graph theory and initiated seizures via stimulation of the node

with the largest number of connections. They do not explore the effect of inherent excitability

of the nodes to seizure initiation.

In this framework we use a standard measure of functional connectivity from the EEG to

inform our coupling structure and weights. Due to the ambulatory nature of the EEG record-

ings we chose an all to all connected network structure. For each of the two seizure events stud-

ied in detail here we computed and compared the functional connectivity matrices obtained

from different sections of the event epoch as well as by using the entire epoch. The differences

between matrices computed from within one epoch were found to be smaller than the differ-

ence between the two epochs. Therefore we chose to use the matrix computed from the entire

epoch in each case. There is evidence that functional connectivity changes with time, particu-

larly before and during epileptic seizure [44–46]. A future development of the model could be

to include a dynamic coupling structure to explore the role of evolving connectivity in
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conjunction with excitability on seizure onset patterns including multiple seizure events and

on a longer time scale. Furthermore, cortical excitability is known to change before, during

and after a seizure [1]. A further development of the model could be to include a dynamic

excitability on the nodes. This could be incorporated by making ν a slow variable on the order

of minutes or hours compared to the total recruitment time of the seizure onset on the order

of milliseconds.

A number of computational and mathematical models have explored the influence of

intrinsic node properties on the dynamics of recruitment to a pathological state; see for exam-

ple [47–49]. Notably, Goodfellow et al. showed that spatial heterogeneity is involved in the

onset of absence seizures [50]. Building on the computation models of spike-wave discharges

observed in EEG during absence seizures by [51] and further extended by [52, 53], Goodfellow

et al. develop a spatial extended Jansen-Rit model and show that seizure onset may relate to

the influence of local heterogeneous excitability. However, they do not explore how the inter-

play between connectivity and heterogeneous excitability produce different seizure onset

patterns.

There are multitude approaches to elucidating brain region excitability measures from neu-

roimaging data. Most are applied in the problem of epilepsy surgery for Focal epilepsies (rather

than generalized epilepsies considered here). The first and second generation Epileptor models

have been used to model and predict seizure recruitment of local and distant brain regions in

focal epilepsy [20, 36, 54, 55]. The authors characterized regimes of recruitment behavior for

different coupling weights [55] but do not consider excitability gradients or recruitment tim-

ings. Jirsa et al. take two approaches to identify a brain excitability map for their Virtual Epi-

leptic Patient described in [20]. Having constructed a personalized Epileptor network model

using structural connectivity measures from diffusor tensor imaging (DTI), they apply hetero-

geneous excitability to the nodes first as prescribed by an expert clinician then using excitabil-

ity elucidated form functional stereotactic EEG data using Bayesian inference methods. Using

the first they are able to simulate seizure patterns observed from the patient. With the second

they use the excitability measure itself to identify the seizure onset zone to inform surgery for

resection. Another approach to approximate excitability was taken by Hutchings et al [56].

The authors elucidate heterogeneous measures of excitability and connectivity using DTI data

from individual patients with temporal lobe epilepsy. They then apply a Bautin bifurcation

model based on [8] to simulate surgery (resection of nodes) and predict outcome success.

Although our model contains oscillatory (seizure) states it does not take into consideration,

for example, the frequency of oscillations as all nodes are synchronized by design. The results

presented here do not depend on the choice of node model given by (2). We note that we

repeated the model simulations in the mouse mEC section using a simple bistable model with

two steady states (rather than one oscillatory) on each node and the results are consistent. Sev-

eral other mathematical models have been designed to reproduce the activity and transitions

between resting and seizure states, including neural mass models [19, 48, 54]. These could be

used to incorporate different levels of biophysical reality. Moreover, a generalized Hopf model

that incorporates additional phase terms with phase dependent coupling could be used to

explore the effect of synchronization on onset patterns. We consider these beyond the scope of

this paper.

A future application of this framework would be to model the non-seizure events that have

been observed in resting state EEG recordings and are also generated in mouse mEC experi-

ments [13]. Expanding the framework to investigate the initiation, recruitment and recurrence

of inter-ictal spikes may provide further insight into the structural and functional alterations

indicative of different types of seizure and inter-seizure events. This expansion would rely on

using suitable intrinsic node dynamics in place of Eq (2). The question of which node dynamics
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to impose relies on making assumptions regarding the mechanism that defines the transition

from background activity to a seizure or inter-ictal spikes; see for example the comparison of

the choice of node dynamic models on outcome in the context of epilepsy surgery [49].

To assign seizure onset patterns to the fast, slow, and multi-domino onset groups we use

linear discriminant analysis. We show that this assignment is robust to choices of the parame-

ters of the seizure onset detection algorithm in S6–S9 Figs and note that the median over a

range of parameters could be used as an alternative to the fixed choice of parameters used

here. The lines delineating the groups are based on an initial assignment of points by visual

inspection (see Materials and methods). The onset patterns could instead be submitted to a

machine learning algorithm to formulate a classification. In this study, for consistency with

the other measures, we use the entire EEG epoch of the data provided to extract seizure onset

pattern. A smaller interval around the seizure onset as identified by the clinician could be used

to give a clearer grouping; for example S19 Fig shows the results of submitting the first 8 sec-

onds of each EEG epoch to the seizure detection and linear discriminant analysis. Whilst for

the chosen subset of events the groups are somewhat more clearly distinguished, S19 Fig also

shows the spread of the generalized onset patterns over all three groups is maintained. The

focus of this paper is to highlight the various clinically observed onset patterns and apply a

modeling framework to identify key components to how they are generated. An important

step towards implementation of this classification in clinical practice would require verifica-

tion by future studies and identifying connections between the groups and, for example, treat-

ment outcome.

S9 Fig shows that the multi-domino class is actually the most robust, as the median lies in

the same classification as the point for np = 60, s = 0.6 for all multi-domino onset events. This

may be due to the fact that the multi-domino onset region is the largest of the three in the

recruitment/lag plane. We show that the exact order of electrodes (based on detected activity)

varies with the parameters of our detection algorithm, but our novel assignment of domino-

onset pattern is robust to these perturbations; see S6–S8 Figs.

We are using 19 electrode EEG, which is unsuitable for source localization techniques and

so we cannot make conclusions about the excitability of underlying brain regions nor place

significance on the precise order of electrodes here. Future work would be to incorporate high

density or intracranial EEG recordings to link the electrode order in the domino cascades to

the underlying generators of epileptic activity. In particular, we observe for the multi-domino

onset example shown in S8 Fig that for the onset patterns classified as multi-domino onset the

maximum lag always precedes recruitment of electrode C4. We note that the association

matrix shown in S11 Fig, electrode C4 has lower connectivity values than other nodes for the

multi-domino event. This is incorporated in our modeling results shown in Fig 3 where row a

column 4 shows the best fit for the multi-domino case where the largest simulated lag proceeds

electrode C4 (not labelled). This raises the question of how the persistence of this lag relates to

the underlying neurodynamics.

We present here, a variety of clinically observed onset patterns and a modeling framework

applied at multiple scales to show that the interplay between excitability and coupling is

required to generate them. Together these constitute a step toward a more comprehensive

understanding of different types of seizures and therefore a more advanced classification of the

epilepsies.

Supporting information

S1 Text. Association index.

(PDF)
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S1 Fig. Visualization of the steps for the threshold detection algorithm applied to one

channel. Panel a shows the raw data from one channel from an EEG recording. Panel b shows

the data, band pass filtered to 4-20Hz, z-normalized and rectified. An envelope shown in blue

is computed using spline interpolation over local maxima separated by at least np = 60 data

points. Seizure onset time is the first time over a threshold defined by s×standard deviation

from the mean of the envelope time series, here s = 0.6 for the EEG data, shown in panel c.

This process is repeated for all channels in each epoch. The values of np and s are adjusted for

the mEC data appropriately and tested for robustness in S3 Fig.

(EPS)

S2 Fig. The six mEC recordings, labelled a–f, described in Section Mouse mEC recording.

The results of applying the threshold detection algorithm to each channel are marked with a

red star. The average of the red stars in each channel is shown in Fig 3c. Electrode 1 is at the

ventral end of the slice, electrode 16 is at the dorsal end of the slice; this is fixed throughout.

(EPS)

S3 Fig. Robustness in extracting recruitment times when altering parameters np and s in

the algorithm for mEC data. Panel a shows cascade duration (the change of mean recruit-

ment time maxnð~tnÞ � minnð~tnÞ) for the mEC data when altering np or s; red curves are for

fixed s = 1 and varying np while black curves are for fixed np = 22000 and varying s. Panel b

shows the mean recruitment times for various s with fixed np = 22000 (top) and for various np
with fixed s = 1 (bottom). Note that the order of channels from ventral to dorsal is the same in

each panel.

(EPS)

S4 Fig. The seizure onset patterns of the 15 generalized seizures clinically classified as focal

onset. The stars mark the seizure onset time for each electrode. In panel c seizure onset is only

detected in 18 of the 19 channels and this seizure is excluded from further analysis. Panel d

shows the original assignment of onset patterns, where the separatricies are at total recruit-

ment time = 0.5 and maximum lag = 0.4. Panel a shows onset patterns that were assigned

multi-domino onset, panel b shows the onset pattern assigned fast-domino onset, and panel e

shows onset patterns assigned slow-domino onset.

(EPS)

S5 Fig. Variety of seizure onset patterns from one subject with JAE. 12 generalized seizures

are classified as generalized onset, three are clinically classified as focal onset. The stars mark

the seizure onset time for each electrode. Panel d shows the original assignment of onset pat-

terns, where the separatricies are at total recruitment time = 0.5 and maximum lag = 0.4. Panel

a shows onset patterns that were assigned multi-domino onset, panel b shows the onset pattern

assigned slow-domino onset, and panel e shows onset patterns assigned fast-domino onset.

(EPS)

S6 Fig. Robustness for the fast-domino seizure onset pattern when altering parameters np
and s in the seizure detection algorithm. The top row shows the recruitment and lag times

for the seizure onset patterns detected using np = 60 fixed and 0.4 < s< 0.8. Seizure onset pat-

terns are shown for s = 0.4, 0.6, 0.8. The bottom row shows the recruitment and lag times for

the seizure onset patterns detected using s = 0.60 fixed and 40 < np< 80. Seizure onset pat-

terns are shown for np = 40, 60, 80. In the first column the linear classification lines L1 and L2

are marked. The point corresponding to np = 60, s = 0.6 is marked with a �, and the median

over all points is marked with a +. For s< 0.54 the recruitment time and lag time become

larger and the onset falls into the slow-domino onset group, however the median overall
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remains in the fast-domino group. For all values of np the onset is in the fast-domino onset

group. Note that the electrode order in the onset patterns shown in the remaining panels

changes for some values of np and s.
(EPS)

S7 Fig. Robustness for the slow-domino seizure onset pattern when altering parameters np
and s in the seizure detection algorithm. The top row shows the recruitment and lag times

for the seizure onset patterns detected using np = 60 fixed and 0.4 < s< 0.8. Seizure onset pat-

terns are shown for s = 0.4, 0.6, 0.8. The bottom row shows the recruitment and lag times for

the seizure onset patterns detected using s = 0.60 and 40< np< 80. Seizure onset patterns

are shown for np = 40, 60, 80. In the first column the linear classification lines L1 and L2 are

marked. The point corresponding to np = 60, s = 0.6 is marked with a �, and the median over

all points is marked with a +. For 0.61 < s< 0.68 the lag time are large and onset falls into the

multi-domino onset group, however the median remains in the slow-domino group. Varying

np gives a spread of points over all three groups, but the median is in the slow-domino onset

group. Note that the electrode order in the onset patterns shown in the remaining panels

changes for some values of np and s, but seizure onset is first detected in electrode C3 in each

case.

(EPS)

S8 Fig. Robustness for the multi-domino seizure onset pattern when altering parameters

np and s in the seizure detection algorithm. The top row shows the recruitment and lag

times for the seizure onset patterns detected using np = 60 fixed and 0.4< s< 0.8. Seizure

onset patterns are shown for s = 0.4, 0.6, 0.8. The bottom row shows the recruitment and lag

times for the seizure onset patterns detected using s = 0.60 and 40< np< 80. Seizure onset

patterns are shown for np = 40, 60, 80. In the first column the linear classification lines L1 and

L2 are marked. The point corresponding to np = 60, s = 0.6 is marked with a �, and the median

over all points is marked with a +. For all values of s the onset falls into the multi-domino

onset group. For np< 77 the onset is classed as multi-domino onset, and the median is within

this group. For larger np values the onset is classed as slow-domino. Note that the first three

electrodes remain the same when the onset is classified as multi-domino, and that the maxi-

mum lag is always before node C4. The association matrix in Fig. S8. shows that C4 has low

connectivity values.

(EPS)

S9 Fig. Robustness of the classification of the points from a single patient and all the clini-

cally classified focal-onset events to the detection algorithm parameters np and s. The first

panel shows the classification of the 26 points points from a single patient with all the focal

onset events for np = 60 and s = 0.6. The fast, slow and multi-domino example are in darker

blue, purple and orange, respectively, with L1 and L2 marked; this is the same as Fig 1a but here

is plotted on a log scale. The other two panels show these 26 points each with a corresponding

median value (+) that indicate the results of varying np for s = 0.6, and varying s for np = 60. For

fixed s = 0.6 the median values computed for 40< np< 80 give the same classification as the

points np = 60, s = 0.6 in 81% of the 26 events. For fixed np = 60 the median values computed

for 0.4< s< 0.8 give the same classification in 96% of the events. The algorithm is very robust

to the choice of threshold modified by s but is more sensitive to the spline interpolation modi-

fied by np. We note that the multi-domino group is robust to all values of both np and s.
(EPS)

S10 Fig. Panel a shows the bifurcation diagram of Eq (2) for fixed ω = 20. For ν< 0 there

is one unstable equilibrium and a stable limit cycle. At ν = 0 there is a subcritical Hopf
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bifurcation that gives rise to an unstable limit cycle and stabilizes the equilibrium. For 0< ν<
1 the system is bistable. At ν = 1 there is a saddle node of limit cycles and for ν> 1 there is one

stable equilibrium. We restrict our ν values to the bistable regime where the stable equilibrium

represents the background state and the stable limit cycle represents the seizure state. Panel b

shows an example of node trajectories from the network model given by (1) with (2) for

N = 16 nodes. Electrodes transition from resting (steady) state to seizure (oscillatory) state is

driven by noise. Here we use coupling strength of β = 0.03.

(EPS)

S11 Fig. The association index matrices A computed using Eq (1) above, for of the three

example seizures shown in Fig 1a–1c. The association index matrices are not symmetric

along the diagonal. The association index here is computed using the entire 15s epoch contain-

ing each seizure. The An;m values shown here are used as the coupling weights An,m in the net-

work modeling framework for each seizure.

(EPS)

S12 Fig. The association index computed for 5s intervals, 0-5s, 5-10s and 10-15s for each of

the three example events. The Pearson dissimilarity [28] to the matrix using whole 15s inter-

val shown in S11 Fig in comparison to matrix using [0-5], [5-10], and [10-15] intervals are

respectively: for the fast-domino onset 0.1309, 0.0071, 0.1061; for the sow-domino onset

0.0952, 0.0022, 0.1439; and for the multi-domino onset 0.2166, 0.0026, 0.0835. In each case the

interval [5-10] is has the smallest distance to the whole interval matrix.

(EPS)

S13 Fig. Energy profiles of the three chosen examples shown in Fig 2 calculated using (3)

and (4). The time-dependent energy Et
n calculated from the whole recording are shown with

the scaled total energy profiles En. These energy profiles are used for the node excitability in

the network model for each event. See ‘Materials and Methods’ for further details.

(EPS)

S14 Fig. Experiment 1: Model simulations computed with excitability given by the energy

profiles shown in S13 Fig and homogeneous (constant) coupling given by the mean of the

association matrix An,m. The scaled recruitment times tn from the data are shown in column

1 for the multi, slow and fast-domino onset pattern; compare with Fig 1c. These events are

plotted as grey lines in the remaining panels. The scaled simulated total mean recruitment

times Tn with standard error bars for β = 0.0, 0.005, 0.015 are shown in columns 2-4. The least

squares distance d and 95% confidence intervals are given for each simulation.

(EPS)

S15 Fig. Experiment 2: Model simulations computed with coupling given by the associa-

tion matrix shown in S11 Fig and with equal excitability v = 0.15 on each node. The scaled

recruitment times tn from the data are shown in column 1 for the multi, slow and fast-domino

onset pattern; compare with Fig 1c. These events are plotted as grey lines in the remaining pan-

els. The scaled simulated total mean recruitment times Tn with standard error bars for β = 0.0,

0.005, 0.015 are shown in columns 2-4. The least squares distance d and 95% confidence inter-

vals are given for each simulation.

(EPS)

S16 Fig. Experiment 3: Model simulations computed with coupling given by the associa-

tion matrix shown in S11 Fig and excitability given by the energy profiles shown in S13

Fig. The scaled recruitment times tn from the data are shown in column 1 for the multi, slow

and fast-domino onset pattern; compare with Fig 1c. These events are plotted as grey lines in
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the remaining panels. The scaled simulated total mean recruitment times Tn with standard

error bars for β = 0.0, 0.005, 0.015 are shown in columns 2-4. The least squares distance d and

95% confidence intervals are given for each simulation.

(EPS)

S17 Fig. Homogeneous excitability and coupling for modeling mouse mEC. Each panel

shows the mean recruitment times from 2000 simulations with ν = 0.2 fixed for different values

of A. There is no discernible dorso-ventral gradient or vice versa for any value of A. For weak

and strong coupling, the recruitment times are synchronous across the nodes. For intermedi-

ate coupling, nodes 1, 2, 15 and 16 take a relatively longer time to recruit than the nodes in the

center of the chain. These are edge artifacts of the coupling structure used and can be rectified

by simulating with a longer chain (N� 16) and taking the results from the central 16 nodes.

(EPS)

S18 Fig. Modeling with linear gradient in excitability and constant fixed coupling A = 0.03;

compare to Fig 5. Panel a shows the scaled recruitment times from data and model simula-

tions with gradient in node excitability given by (ν0, δν) = (0.11, 0.004) indicated by the red

stars in panels b–c. Panels b and c show the distance d and the proportion of ventral initiation

PV, respectively. Here there is no overlap in the (ν0, δν) parameter space of the region that

gives d� 0.2 and within the confidence interval for PV.

(EPS)

S19 Fig. The assignment of seizures to the fast, slow and multi-domino groups computed

by submitting the first 8 seconds of each EEG recording epoch to the seizure detection

algorithm. Panel a shows 26 seizures from one individual, 12 clinically classified as generalized

onset (•) and 3 classified as having focal onset (^); with an additional 11 seizures from multiple

subjects classified as having focal onset (^), with the lines L0
1

and L0
2
; compare with Fig 1a. The

three example seizures are shown in darker blue, purple and orange. The lines L01 and L02 are

given by L01 = 73.7624 + −24.1667r + −138.5209l and L02 = 13.1003 + −9.35r + −42.6316l,
where r is the recruitment time and l is the lag time. Panel b shows 1145 generalized seizures.

The separation between groups in panel a is clearer than in Fig 1a, but the lag and recruitment

times for the generalized seizure onset shown in panel b still form a spectrum across all three

groups.

(EPS)
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