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Host metabolism is profoundly altered during bacterial infection, both as a consequence of

immune activation and secondary to virulence strategies of invading pathogens. As a result,

the metabolic pathways that regulate nutrient acquisition, energy storage, and resource alloca-

tion in host cells must adapt to pathogen stress in order to meet the physiological demands of

the host during infection. However, the specific alterations in host metabolism that occur dur-

ing bacterial infection are challenging to decipher, owing to physiological disruption in multi-

ple organ systems that occur during infection and complex metabolic interactions between the

host and the pathogen. In this regard, the nematode Caenorhabditis elegans has emerged as a

useful starting point to characterize fundamental principles of immunometabolism. For nema-

todes, bacteria are both a source of food and agents of disease. As such, C. elegans has evolved

innate immune defenses coordinated by intestinal epithelial cells, which promote survival dur-

ing infection by ingested pathogens. Studies of pathogen infection in C. elegans can therefore

be used to define changes in host metabolism specifically associated with infection by patho-

genic bacteria in the intestine. Here, we discuss 5 concepts that have emerged in studies of

metabolic and immune interactions in C. elegans (Fig 1). The major emerging theme is that

the immune response and the ability to survive pathogen infection is heavily influenced by

pathogen-induced changes in host metabolism.

Insulin signaling integrates host metabolism, pathogen resistance,

and longevity

The insulin/insulin-like growth factor signaling pathway integrates host nutritional status and

environmental cues to control core physiological processes in C. elegans, including metabo-

lism, growth rate, behavior, and stress resistance [1]. Activation of the C. elegans insulin/IGF-1

transmembrane receptor (IGFR) ortholog DAF-2 by insulin-like peptides results in the phos-

phorylation of the Foxo transcription factor DAF-16, causing it to be sequestered in the cyto-

plasm [2]. Low activity of DAF-2 allows DAF-16 to translocate to the nucleus where it controls

the transcriptional output of this pathway [3]. Constitutive activation of DAF-16 in daf-2 loss-

of-function mutants extends nematode life span up to 3 times than that of wild-type animals

and drives resistance to both abiotic stresses and pathogen infection [4,5]. In addition, de novo

lipogenesis is increased in daf-2 mutants, which leads to accumulation of somatic fat. The

pathogen resistance and life span extension phenotype of daf-2 mutants require the p38 mito-

gen-activated protein kinase (MAPK) PMK-1 pathway, a critical innate immune pathway in C.

elegans [6]. However, the transcriptional targets of the DAF-2/DAF-16 and the p38 MAPK

PMK-1 pathways during pathogen infection have essentially no overlap, suggesting that these

pathways operate in parallel to promote resistance to pathogen infection [6]. Interestingly,

infection by the bacterial pathogen Pseudomonas aeruginosa activates DAF-2 signaling as an

offensive mechanism to suppress host immune defenses by causing DAF-16 to be sequestered

in the cytoplasm [7]. Insulin/insulin-like growth factor signaling is strongly conserved across
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metazoan evolution. Thus, examination of the mechanisms by which the DAF-2/DAF-16

pathway integrates information about host nutrition to control metabolism, pathogen resis-

tance, and life span may yield fundamental insights about immunometabolism.

Allocation of lipid resources affects physiological trade-offs

between pathogen resistance, life span, and reproduction

Studies of immunometabolism in C. elegans have uncovered trade-offs between immune acti-

vation and lipid homeostasis that affect pathogen resistance, reproduction, and life span. The

cytoprotective transcription factor SKN-1, the C. elegans ortholog of mammalian Nrf2, coordi-

nates transcriptional responses that restore cellular homeostasis during oxidative, proteotoxic,

and metabolic stresses and also provides protection during pathogen infection [8,9]. During

bacterial infection, activation of SKN-1 promotes resistance to pathogen-derived toxins and

drives redistribution of fat from the soma to the germline [10]. However, altered lipid homeo-

stasis in C. elegans with unchecked SKN-1 activation has lasting deleterious effects, which

impair organismal health later in life [10]. Thus, the activity of SKN-1 is closely regulated, in

part through epigenetic modifications, which redirect its transcriptional output to meet the

physiological need [10].

In addition, pathogen and stress-resistance programs are suppressed as animals increase

resource investment to promote reproductive success. Two conserved homeodomain tran-

scription factors CEH-60/PBX and UNC-62/MEIS function as a heterodimer to promote the

synthesis of lipoproteins, which shuttle lipids to the germline to support embryogenesis. In

Fig 1. Immunometabolism in C. elegans. A schematic diagram presents 5 concepts that have emerged in studies of

metabolic and immune interactions in C. elegans.

https://doi.org/10.1371/journal.ppat.1008897.g001
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addition, the CEH-60:UNC-62 complex also suppresses genes, which are important for patho-

gen defense and longevity [11]. Similarly, TCER-1, a transcription elongation and splicing fac-

tor, promotes reproductive fitness and lipid synthesis at the expense of pathogen and abiotic

stress defenses [12]. Finally, a core host defense pathway in C. elegans, the p38 MAP PMK-1

pathway, is activated by nutrient signals independently of canonical mechanisms that sense

food availability and accelerates aging when it is aberrantly induced, providing an example of

the deleterious effects of immune activation on longevity [13].

Lipid metabolism is required for immune activation and pathogen

defense

C. elegans pathogenesis assays have defined requirements for specific lipids and lipogenesis

enzymes in innate immune regulation and pathogen defense. C. elegans can synthesize the full

range of fatty acid molecules de novo and thus does not have a dietary requirement for specific

fatty acids. Monounsaturated and polyunsaturated fatty acids are synthesized through sequen-

tial action of conserved elongase (elo) and desaturase (fat) genes. The Δ6-desaturase fat-3,

which produces the polyunsaturated fatty acids gamma-linoleic acid and stearidonic acid, is

required for the basal expression of innate immune genes and resistance to infection by the

bacterial pathogen P. aeruginosa [14]. In addition, the 2 stearoyl-coenzyme A desaturases that

synthesize the monounsaturated fatty acid oleate in C. elegans, fat-6 and fat-7, are required for

the induction of innate immune genes [15]. Accordingly, nematodes with loss-of-function

mutations in fat-6 and fat-7 are hypersusceptible to infection by diverse pathogens, which can

be rescued by the addition of exogenous oleate [15].

Additionally, low levels of s-Adenosylmethionie (SAM), the methyl donor that modifies

nucleic acids and histones and is involved in producing phospholipids, result in a decrease in

phosphatidylcholine (PC). Low levels of PC in animals that lack sams-1, an enzyme that pro-

duces SAM, induce expression of lipogenesis genes resulting in lipid droplet accumulation

[16,17]. Interestingly, low PC increases the basal expression of immune genes in C. elegans
feeding on nonpathogenic food. However, low levels of activating histone methylation in these

animals also limit pathogen-responsive transcription and renders animals more susceptible to

infection [16].

Together, these studies in C. elegans reveal novel connections between nutrient stores,

metabolism, and host susceptibility to bacterial infection.

Mitochondria link energy metabolism and immune activation

Mitochondria are required for multiple aspects of cellular metabolism. Bacteria often target

mitochondria during infection as an offensive strategy to promote tissue damage. For example,

P. aeruginosa secretes phenazine toxins, electron shuttles that disrupt mitochondrial function,

[18] and Streptomyces sp. elaborate antimycin A and oligomycin, inhibitors of mitochondrial

respiration that are widely used in the laboratory. Studies in C. elegans have characterized sev-

eral host countermeasures that have evolved to detect mitochondrial dysfunction as a sign of

pathogen infection.

The unfolded protein response in mitochondria (UPRmt) is regulated by the transcription

factor ATFS-1, a unique protein that contains both a nuclear localization (NLS) and a mito-

chondrial targeting sequence (MTS) [19,20]. Healthy mitochondria import ATFS-1 efficiently,

but during mitochondrial dysfunction, protein import is impaired, and ATFS-1 accumulates

in the cytoplasm, where it can traffic to the nucleus via its NLS. ATFS-1 activates a transcrip-

tional program in the nucleus that promotes both recovery of mitochondrial function and

defense against pathogen infection through the induction of secreted innate immune effectors
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[19,20]. Interestingly, the pathogen P. aeruginosa evolved mechanisms to suppress the UPRmt

by exploiting a host pathway that negatively regulates ATFS-1 [18].

In addition, ceramides, a class of host lipids, protect C. elegans from mitochondrial dysfunc-

tion induced by toxins or pathogen exposure [21]. Likewise, disruption of mitochondrial func-

tion activates the nuclear hormone receptor nhr-45, which induces detoxification programs

that provide protection during pathogen infection [22]. Finally, the iron-binding siderophore

pyoverdine, which is produced by P. aeruginosa, causes mitochondrial dysfunction during

infection, which engages protective destruction of damaged mitochondria (mitophagy) [23].

Together, these studies demonstrate that mitochondrial function is closely guarded by host

surveillance pathways that function to restore homeostasis and activate protective innate

immune defenses.

Transcriptional control of innate immunity and metabolism by

conserved nuclear hormone receptors

The C. elegans genome encodes a large number of nuclear hormone receptors (NHRs), unique tran-

scription factors that program adaptive transcriptional responses following recognition of specific

ligands, such as fatty acids, metabolites, hormones, and xenobiotics. NHRs regulate a number of

basic biological processes in C. elegans, including lipid and cholesterol metabolism, life span, devel-

opment, and anti-pathogen defenses. The marked expansion of NHRs in nematodes—284 NHRs

are present in C. elegans, whereas Drosophila and humans have only 21 and 48, respectively—sug-

gests that these proteins may play particularly important roles in nematode physiology, such as the

integration of host metabolism with innate immunity to promote resistance to pathogen infection.

Interestingly, 264 of the 284 NHRs in the C. elegans genome are orthologous to the alpha iso-

form of the mammalian nuclear receptor hepatocyte nuclear factor 4 (HNF4). HNF4 is

expressed in the intestinal epithelium and in hepatocytes and has been implicated in the control

of intestinal inflammation and the pathogenesis of inflammatory bowel disease and cancer. In

C. elegans, the HNF4 homolog NHR-86 surveys the chemical environment to activate protective

anti-pathogen defenses by binding to the promoters of immune effector genes [24]. These data

suggest that the expansion of the HNF4 family in C. elegans may have been fueled, at least in

part, by the roles of these proteins in the activation of host defense responses. In addition, the C.

elegans homolog of peroxisome proliferator-activated receptor (PPAR), NHR-49, a central regu-

lator of fat metabolism, is required for resistance to multiple gram-positive bacteria, including

Enterococcus faecalis [25]. Of note, NHR-49 interacts with a conserved subunit of the Mediator

complex MDT-15/MED15 to control the production of fatty acids, and a separate study found

that MDT-15 also coordinates immune defenses during pathogen infection [26]. Thus, NHR-49

and MDT-15 regulation of fatty acid metabolism may support immune function in nematodes.

In addition, the C. elegans homolog of the liver X receptor (LXR), NHR-8, which controls cho-

lesterol and bile acid homeostasis, is required for defense against infection with P. aeruginosa
[27,28]. Finally, the nuclear hormone receptor NHR-14 links iron availability with the induction

of innate immune defenses that provide protection from pathogen infection [29].

In summary, NHRs are able to mount rapid transcriptional responses to specific intracellu-

lar and extracellular cues and are thus poised to integrate host physiology and metabolism to

provide protection from pathogens during infection. Future studies of the mechanisms by

which NHRs control immunometabolism in C. elegans are of particular interest.
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