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Abstract

Understanding how certain brain regions relate to a specific neurological disorder has been an 

important area of neuroimaging research. A promising approach to identify the salient regions is 

using Graph Neural Networks (GNNs), which can be used to analyze graph structured data, e.g. 

brain networks constructed by functional magnetic resonance imaging (fMRI). We propose an 

interpretable GNN framework with a novel salient region selection mechanism to determine 

neurological brain biomarkers associated with disorders. Specifically, we design novel regularized 

pooling layers that highlight salient regions of interests (ROIs) so that we can infer which ROIs are 

important to identify a certain disease based on the node pooling scores calculated by the pooling 

layers. Our proposed framework, Pooling Regularized-GNN (PR-GNN), encourages reasonable 

ROI-selection and provides flexibility to preserve either individual- or group-level patterns. We 

apply the PR-GNN framework on a Biopoint Autism Spectral Disorder (ASD) fMRI dataset. We 

investigate different choices of the hyperparameters and show that PR-GNN outperforms baseline 

methods in terms of classification accuracy. The salient ROI detection results show high 

correspondence with the previous neuroimaging-derived biomarkers for ASD.
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1 Introduction

Explaining the underlying roots of neurological disorders (i.e., what brain regions are 

associated with the disorder) has been a main goal in the field of neuroscience and medicine 

[1,2,3,4]. Functional magnetic resonance imaging (fMRI), a non-invasive neuroimaging 

technique that measures neural activation, has been paramount in advancing our 

understanding of the functional organization of the brain [5,6,7]. The functional network of 

the brain can be modeled as a graph in which each node is a brain region and the edges 

represent the strength of the connection between those regions.
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The past few years have seen the growing prevalence of using graph neural networks (GNN) 

for graph classification [8]. Like pooling layers in convolutional neural networks (CNNs) 

[9,10], the pooling layer in GNNs is an important design to compress a large graph to a 

smaller one for lower dimensional feature extraction. Many node pooling strategies have 

been studied and can be divided into the following categories: 1) clustering-based pooling, 

which clusters nodes to a super node based on graph topology [11,12,13] and 2) ranking-

based pooling, which assigns each node a score and keeps the top ranked nodes [14,15]. 

Clustering-based pooling methods do not preserve node assignment mapping in the input 

graph domain, hence they are not inherently interpretable at the node level. For our purpose 

of interpreting node importance, we focus on ranking-based pooling methods. Currently, 

existing methods of this type [14,15] have the following key limitations when applying them 

to salient brain ROI analysis: 1) ranking scores for the discarded nodes and the remaining 

nodes may not be significantly distinguishable, which is not suitable for identifying salient 

and representative regional biomarkers, and 2) the nodes in different graphs in the same 

group may be ranked totally differently (usually caused by overfitting), which is problematic 

when our objective is to find group-level biomarkers. To reach group-level analysis, such 

approaches typically require additional steps to summarize statistics (such as averaging). For 

these two-stage methods, if the results from the first stage are not reliable, significant errors 

can be induced in the second stage.

To utilize GNN for fMRI learning and meet the need of group-level biomarker finding, we 

propose a pooling regularized GNN framework (PR-GNN) for classifying neurodisorder 

patients vs healthy control subjects and discovering disorder related biomarkers jointly. The 

overview of our methods is depicted in Fig. 1. Our key contributions are:

• We formulate an end-to-end framework for fMRI prediction and biomarker 

(salient brain ROIs) interpretation.

• We propose novel regularization terms for ranking-based pooling methods to 

encourage more reasonable node selection and provide flexibility between 

individual-level and group-level interpretation in GNN.

2 Graph Neural Network for Brain Network Analysis

The architecture of our PR-GNN is shown in Fig. 2. Below, we introduce the notation and 

the layers in PR-GNN. For simplicity, we focus on Graph Attention Convolution 

(GATConv) [16,17] as the node convolutional layer. For node pooling layers, we test two 

existing ranking based pooling methods: TopK pooling [14] and SAGE pooling [15].

2.1 Notation and Problem Definition

We first parcellate the brain into N ROIs based on its T1 structural MRI. We define ROIs as 

graph nodes V = {v1, …, vN}. We define an undirected weighted graph as G = (V, ℰ), where 

ℰ is the edge set, i.e., a collection of (vi, vj) linking vertices vi and vj. G has an associated 

node feature matrix H = [h1, … , hN]⊺, where hi is the feature vector associated with node 

vi. For every edge connecting two nodes, (vi, vj) ∈ ℰ, we have its strength eij ∈ ℝ. We also 

Li et al. Page 2

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2020 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



define eij = 0 for (vi, vj) ∉ ℰ and therefore the adjacency matrix E = [eij] ∈ ℝN × N is well 

defined.

2.2 Graph Convolutional Block

Node Convolutional Layer—To improve GATConv [8], we incorporate edge features in 

the brain graph as suggested by Gong & Cheng [18] and Yang et. al [17]. We define 

hi
(l) ∈ ℝd(l)

 as the feature for the ith node in the lth layer and H(l) = [h1
(l), …, hN(l)

(l)
]
⊺
, where 

N(l) is the number of nodes at the lth layer (the same for E(1)). The propagation model for the 

forward-pass update of node representation is calculated as:

hi
(l + 1) = ϕi

Θ(l)
(H(l), E(l)) = αi, iΘ(l)hi

(l) + ∑
j ∈ N(i)

αi, jΘ(l)hj
(l), (1)

where the attention coefficients αij are computed as

αi, j = exp(αi, j)
∑k ∈ N(i)⋃{i}exp(αi, k) , αi, j = ei, j

(l)ReLU((a(l))⊺[Θ(l)hi
(l)‖Θ(l)hj

(l)]), (2)

where N(i) denotes the set of indices of neighboring nodes of vi, || denotes concatenation, 

Θ(l) ∈ ℝd(l + 1) × d(l)
 and a(l) ∈ ℝ2d(l + 1)

 are model parameters.

Node Pooling Layer—The choices of keeping which nodes in TopK pooling and SAGE 

pooling are determined based on the node importance score s(l) = [s1
(l), …, sN(l)

(l) ]
⊺
, which is 

calculated in two ways as follows:

si
(l) =

sigmoid((hi
(l))⊺w(l) ∕ ‖w(l)‖), TopK pooling

sigmoid(ϕi
θ(l)

(H(l), E(l))), SAGE pooling
(3)

where ϕi
θ is calculated in Eq. (1) and w(l) ∈ ℝd(l)

 and θ(l) ∈ ℝ1 × d(l)
 are model parameters. 

Note that θ(l) is different from Θ(l) in Eq. (1) such that the output of ϕi
θ is a scalar.

Given s(l) the following equation roughly describes the pooling procedure:

idx = top(s(l), k(l)), E(l + 1) = Eidx, idx
(l) . (4)

The notation above finds the indices corresponding to the largest k(l) elements in score 

vector s(l), and (·)i,j is an indexing operation which takes elements at row indices specified 

by i and column indices specified by j. The nodes receiving lower scores will experience less 

feature retention.
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Lastly, we seek a “flattening” operation to translate graph information to a vector. Suppose 

the last layer is L, we use z = mean {hi
(L) : i = 1, …, N(L)}, where mean operates 

elementwisely. Then z is sent to a multilayer perceptron (MLP) to give the final prediction.

3 Proposed Regularizations

3.1 Distance Loss

To overcome the limitation of existing methods that ranking scores for the discarded nodes 

and the remaining nodes may not be distinguishable, we propose two distance losses to 

encourage the difference. Before introducing them, we first rank the elements of the mth 

instance scores, sm(l), in a descending order, denote it as sm
(l) = [sm, 1

(l) , …, sm, N(l)
(l)

]
⊺
, and denote 

its top k(l) elements as am, i
(l) = sm, i

(l) , i = 1, …, k(l), and the remaining elements as 

bm, j
(l) = sm, j + k(l)

(l)
, j = 1, …, N(l) − k(l). We apply two types of constraint to all the M training 

instances.

MMD Loss—Maximum mean discrepancy (MMD) loss [19,20] was originally proposed in 

Generative adversarial nets (GANs) to quantify the difference of the scores between real and 

generated samples. In our application, we define MMD loss for the pooling layer as:

LMMD
(l) = − 1

M ∑
m = 1

M 1
(k(l))2

∑
i, j = 1

k(l)
κ(am, i

(l) , am, j
(l) ) + 1

(N(l) − k(l))2
∑

i, j = 1

N(l) − k(l)
κ(bm, i

(l) , bm, j
(l) )

− 2
k(l)(N(l) − k(l))

∑
i = 1

k(l)
∑

j = 1

N(l) − k(l)
κ(am, i

(l) , bm, j
(l) ) ,

where κ(a, b)=exp(|| a − b ||2)/σ is a Gaussian kernel and σ is a scaling factor.

BCE Loss—Ideally, the scores for the selected nodes should be close to 1 and the scores 

for the unselected nodes should be close to 0. Binary cross entropy (BCE) loss is calculated 

as:

LBCE
(l) = − 1

M ∑
m = 1

M 1
N(l) ∑

i = 1

k(l)

log(am, i
(l) )) + ∑

i = 1

N(l) − k(l)

log(1 − bm, i
(l) ) . (5)

The effect of this constraint will be shown in Section 4.3.

3.2 Group-level Consistency Loss

Note that s(l) in Eq. (4) is computed from the input H(l). Therefore, for H(l) from different 

instances, the ranking of the entries of s(l) can be very different. For our application, we want 

to find the common patterns/biomarkers for a certain neuro-prediction task. Thus, we add 

regularization to force the s(l) vectors to be similar for different input instances in the first 

pooling layer, where the group-level biomarkers are extracted. We call the novel 
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regularization group-level consistency (GLC) and only apply it to the first pooling layer, as 

the nodes in the following layers from different instances might be different. Suppose there 

are Mc instances for class c in a batch, where c ∈ {1, … , C} and C is the number of classes. 

We form the scoring matrix Sc
(1) = [s1, c

(1) , …, sMc, c
(1) ]⊺ ∈ ℝMc × N. The GLC loss can be 

expressed as:

LGLC
c = 1

Mc
2 ∑

i = 1

Mc
∑
j = 1

Mc
‖si, c

(1) − sj, c
(1)‖2 = 2Tr((Sc

(1))⊺LSc
(1)), (6)

where Lc = Dc − Wc, Wc is a Mc × Mc matrix with all 1s, Dc is a Mc × Mc diagonal matrix 

with Mc as diagonal elements. We propose to use Euclidean distance for si,c and sj,c due to 

the benefits of convexity and computational efficiency.

Cross entropy loss Lce is used for the final prediction. Then, the final loss function is formed 

as:

Ltotal = Lce + λ1 ∑
l = 1

L
LDist

(l) + λ2∑
c

C
LGLC

c , (7)

where λ’s are tunable hyper-parameters, l indicates the lth GNN block and L is the total 

number of GNN blocks, Dist is either MMD or BCE.

4 Experiments and Results

4.1 Data and Preprocessing

We collected fMRI data from a group of 75 ASD children and 43 age and IQ-matched 

healthy controls (HC), acquired under the ”biopoint” task [21]. The fMRI data was 

preprocessed following the pipeline in Yang et al. [22]. The Desikan-Killiany [23] atlas was 

used to parcellate brain images into 84 ROIs. The mean time series for each node was 

extracted from a random 1/3 of voxels in the ROI by bootstrapping. In this way, we 

augmented the data 10 times. Edges were defined by top 10% positive partial correlations to 

achieve sparse connections. If this led to isolated nodes, we added back the largest edge to 

each of them. For node attributes, we used Pearson correlation coefficient to node 1 – 84. 

Pearson correlation and partial correlation are different measures of fMRI connectivity. We 

aggregate them by using one to build edge connections and the other to build node features.

4.2 Implementation Details

The model architecture was implemented with 2 conv layers and 2 pooling layers as shown 

in Fig. 2, with parameter d(0) = 84, d(1) = 16, d(2) = 16. We designed a 3-layer MLP (with 16, 

8 and 2 neurons in each layer) that takes the flattened graph z ∈ ℝ16 as input and predicts 

ASD vs. HC. The pooling layer kept the top 50% important nodes (k(l) = 0.5N(l)). We will 

discuss the variation of λ1 and λ2 in Section 4.3. We randomly split the data into five folds 

based on subjects, which means that the graphs from a single subject can only appear in 

either the training or test set. Four folds were used as training data, and the left-out fold was 
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used for testing. Adam was used as the optimizer. We trained the model for 100 epochs with 

an initial learning rate of 0.001, annealed to half every 20 epochs. We set σ = 5 in the MMD 

loss to match the same scale as BCE loss.

4.3 Hyperparameter Discussion and Ablation Study

We tuned the parameters λ1 and λ2 in the loss function Eq. (7) and showed the results in 

Table 1. λ1 encouraged more separable node importance scores for selected and unselected 

nodes after pooling. λ2 controlled the similarity of the selected nodes for instances within 

the same class. A larger λ2 moves toward group-level interpretation of biomarkers. We first 

performed an ablation study by comparing setting (0-0) and (0.1-0). Mean accuracies 

increased at least 3% in TopK (1-2% in SAGE) with MMD or BCE loss. To demonstrate the 

effectiveness of LDist, we showed the distribution of node pooling scores of the two pooling 

layers in Fig. 3 over epochs for different combination of pooling functions and distance 

losses, with λ1 = 0.1 and λ2 = 0. In the early epochs, the scores centered around 0.5. Then 

the scores of the top 50% important nodes moved to 1 and scores of unimportant nodes 

moved to 0 (less obvious for the second pooling layer using SAGE, which may explain why 

SAGE got lower accuracies than TopK). Hence, significantly higher scores were attributed to 

the selected important nodes in the pooling layer. Then, we investigated the effects of λ2 on 

the accuracy by varying it from 0 to 1, with λ1 fixed at 0.1. Without LGLC, the model was 

easier to overfit to the training set, while larger LGLC may result in underfitting to the 

training set. As the results in Table 1 show, the accuracy increased when λ2 increased from 0 

to 0.1 and the accuracy dropped if we increased λ2 to 1 (except for TopK+MMD). For the 

following baseline comparison experiments, we set λ1-λ2 to be 0.1-0.1.

4.4 Comparison with Existing Models

We compared our method with several brain connectome-based methods, including Random 

Forest (1000 trees), SVM (RBF kernel), and MLP (one 20 nodes hidden layer), a state-of-

the-art CNN-based method, BrainNetCNN [24] and a recent GNN method on fMRI [25], in 

terms of accuracy and number of parameters. We used the parameter settings indicated in the 

original paper [24]. The inputs and the architecture parameter setting (node conv, pooling 

and MLP layers) of the alternative GNN method were the same as PR-GNN. The inputs of 

BrainNetCNN were Pearson correlation matrices. The inputs of the other alternative 

methods were the flattened up-triangle of Pearson correlation matrices. Note that the inputs 

of GNN models contained both Pearson and partial correlations. For a fair comparison with 

the non-GNN models, we used Pearson correlations (node features) as their inputs, because 

Pearson correlations were the embedded features, while partial correlations (edge weights) 

only served as message passing filters in GNN models. The results are shown in Table 2. 

Our PR-GNN outperformed alternative models. With regularization terms on the pooling 

function, PR-GNN achieved better accuracy than the recent GNN [25]. Also, PR-GNN 

needs only 5% parameters compared to the MLP and less than 1% parameters compared to 

BrainNetCNN.

4.5 Biomarker Interpretation

Without losing generalizability, we investigated the selected salient ROIs using the model 

TopK+BCE (λ1 = 0.1) with different levels of interpretation by tuning λ2. As we discussed 
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in Section 3.2, large λ2 led to group-level interpretation and small λ2 led to individual-level 

interpretation. We varied λ2 from 0-0.5. Without losing generalizability, we show the salient 

ROI detection results of four randomly selected ASD instances in Fig. 4. We show the 

remaining 21 ROIs after the 2nd pooling layer (with pooling ratio = 0.5, 25% nodes left) and 

corresponding node pooling scores. As shown in Fig. 4(a), when λ2 = 0, we could rarely 

find any overlapped area among the instances. In Fig. 4(b–c), we circled the large 

overlapped areas across the instances. By visually examining the salient ROIs, we found two 

overlapped areas in Fig. 4(b) and four overlapped areas in Fig. 4(c). By averaging the node 

importance scores (1st pooling layer) over all the instances, dorsal striatum, thalamus and 

frontal gyrus were the most salient ROIs associated with identifying ASD. These ROIs are 

related to the neurological functions of social communication, perception and execution 

[26,27,28,29], which are clearly deficient in ASD.

5 Conclusion

In this paper, we propose PR-GNN, an interpretable graph neural network for fMRI analysis. 

PR-GNN takes graphs built from fMRI as inputs, then outputs prediction results together 

with interpretation results. With the built-in interpretability, PR-GNN not only performs 

better on classification than alternative methods, but also detects salient brain regions for 

classification. The novel loss term gives us the flexibility to use this same method for 

individual-level biomarker analysis (small λ2) and group-level biomarker analysis (large 

λ2). We believe that this is the first work using a single model in fMRI study that fills the 

critical interpretation gap between individual- and group-level analysis. Our interpretation 

results reveal the salient ROIs to identify autistic disorders from healthy controls. Our 

method has a potential for understanding neurological disorders, and ultimately benefiting 

neuroimaging research. We will extend and validate our methods on larger benchmark 

datasets in future work.
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Fig. 1: 
The overview of the pipeline. fMRI images are parcellated by atlas and transferred to 

graphs. Then, the graphs are sent to our proposed PR-GNN, which gives the prediction of 

specific tasks and jointly selects salient brain regions that are informative to the prediction 

task.
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Fig. 2: 
PR-GNN for brain graph classification and the details of its key component - Graph 

Convolutional Block. Each Graph Convolutional Block contains a node convolutional layer 

followed by a node pooling layer.
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Fig. 3: 
Distributions of node pooling scores over epochs (offset from far to near).
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Fig. 4: 
Selected salient ROIs (importance score indicated by yellow-red color) of four randomly 

selected ASD individuals with different weights λ2 on GLC. The commonly detected salient 

ROIs across different individuals are circled in green.
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Table 1:

Model variations and hyperparameter (λ1-λ2) discussion.

Loss Pool 0-0 0.1-0 0.1-0.1 0.1-0.5 0.1-1

MMD
TopK 0.753(0.042) 0.784(0.062) 0.781(0.038) 0.780(0.059) 0.744(0.060)

SAGE 0.751(0.022) 0.770(0.039) 0.771(0.051) 0.773(0.047) 0.751(0.050)

BCE
TopK 0.750(0.046) 0.779(0.053) 0.797(0.051) 0.789(0.066) 0.762(0.044)

SAGE 0.755(0.041) 0.767(0.033) 0.773(0.047) 0.764(0.050) 0.755(0.041)
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Table 2:

Comparison with different baseline models.

Metric╲Model SVM Random Forest MLP BrainNetCNN [24] Li et al. [25] PR-GNN*

Acc 0.686(0.111) 0.723(0.020) 0.727(0.047) 0.781(0.044) 0.753(0.033) 0.797(0.051)

#Par 3k 3k 137k 1438k 16k 6k

Acc: Accuracy; #Par: The number of trainable parameters; PR-GNN*: TopK+BCE.
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