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Abstract

Phosphodiesterase type 4 (PDE4) inhibitors prevent hydrolysis of cyclic adenosine 

monophosphate and increase protein kinase A (PKA)-mediated phosphorylation. PDE4 inhibitors 

also regulate responses to ethanol and GABAergic drugs. We investigated mechanisms by which 

the PDE4 inhibitor, apremilast, regulates acute effects of ethanol and GABAergic drugs in male 

and female mice. Apremilast prolonged the sedative-hypnotic effects of gaboxadol, zolpidem, and 

propofol but did not alter etomidate effects, and unexpectedly shortened the sedative-hypnotic 

effects of diazepam. Apremilast prolonged rotarod ataxia induced by zolpidem, propofol, and 

loreclezole, shortened recovery from diazepam, but had no effect on ataxia induced by gaboxadol 

or etomidate. The PKA inhibitor H89 blocked apremilast’s ability to prolong the sedative-hypnotic 

effects of ethanol, gaboxadol, and propofol and to prolong ethanol- and propofol-induced ataxia. 

H89 also blocked apremilast’s ability to shorten the sedative-hypnotic and ataxic effects of 

diazepam. The β1-specific antagonist, salicylidene salicylhydrazide (SCS), produced faster 

recovery from ethanol- and diazepam-induced ataxia, but did not alter propofol- or etomidate-

induced ataxia. SCS shortened the sedative-hypnotic effects of ethanol and diazepam but not of 

propofol. In Xenopus oocytes, a phosphomimetic (aspartate) mutation at the PKA phosphorylation 

site in β1 subunits decreased the maximal GABA current in receptors containing α1 or α3, but not 

α2 subunits. In contrast, phosphomimetic mutations at PKA sites in β3 subunits increased the 
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maximal GABA current in receptors containing α1 or α2, but not α3 subunits. The GABA 

potency and allosteric modulation by ethanol, propofol, etomidate, zolpidem, flunitrazepam, or 

diazepam were not altered by these mutations. We propose a model whereby apremilast increases 

PKA-mediated phosphorylation of β1- and β3-containing GABAA receptors and selectively alters 

acute tolerance to ethanol and GABAergic drugs.
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1. INTRODUCTION

Phosphodiesterases (PDEs) catalyze the hydrolysis of cyclic adenosine monophosphate 

(cAMP) and cyclic guanosine monophosphate and play a key role in regulating intracellular 

levels of these cyclic nucleotides. Of the 11 different families of PDEs, PDE4 is the most 

important for controlling cAMP levels, is expressed in the brain, and is involved in alcohol 

and drug dependence as well as in the regulation of inflammatory and neuroimmune 

responses (Wen et al., 2018). Chronic alcohol intake (liquid diet model) increases 

neuroimmune signaling, including activation of astrocytes and microglia, and these effects 

are attenuated by a PDE4 inhibitor (rolipram) or genetic deletion of Pde4b (Avila et al., 

2017). In view of the role of neuroimmune activation in regulating alcohol consumption and 

other behavioral effects (Erickson et al., 2019), the anti-inflammatory actions of PDE4 

inhibitors may be an important part of their mechanism of action in these responses.

PDE4 inhibitors also decrease ethanol seeking and consumption in rodents (Blednov et al., 

2014; Franklin et al., 2015; Hu et al., 2011; Liu et al., 2017; Wen et al., 2012). In a large 

genetic association study in humans, PDE4B was identified as a locus associated with all 

tobacco and alcohol use phenotypes examined (Liu et al., 2019). We recently reported that 

apremilast, a selective FDA-approved PDE4 inhibitor, produced stable decreases in ethanol 

intake in male and female mice in different drinking tests (Blednov et al., 2018b) and altered 

other behaviors that are correlated with ethanol consumption (Blednov et al., 2018a). For 

example, apremilast prolonged the acute sedative-hypnotic and ataxic effects of ethanol and 

decreased acute functional tolerance to ethanol. Acute functional tolerance is behavioral 

tolerance that occurs within an individual test session, and is distinguished from rapid 

tolerance which develops over 8–72 h after ethanol or drug exposure (Pietrzykowski and 

Treistman, 2008).

Understanding how PDE4 inhibitors decrease ethanol consumption could be beneficial for 

drug development to treat alcohol use disorder. We are particularly interested in apremilast 

because of its low side effect profile and clinical success. Apremilast, like other PDE4 

inhibitors, reduces hydrolysis of cAMP leading to increased activation of protein kinase A 

(PKA). Current evidence indicates that PKA regulates γ-aminobutyric acid type A 

(GABAA) receptor function. For example, intracerebroventricular administration of the PKA 

activator Sp-cAMP increases the sedative-hypnotic effects of ethanol and the GABAA 

receptor agonist muscimol (Kumar et al., 2012). PKA is able to phosphorylate the large 
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intracellular loops of β1 and β3 subunits (McDonald et al., 1998). Phosphorylation of β3-

containing receptors at S408 and S409 enhances GABA-stimulated responses, but 

phosphorylation of S409 alone inhibits responses, similar to effects found with β1 subunits, 

which are phosphorylated solely on S409. Similar to neuronal receptors, GABAA receptors 

expressed in HEK293 cells and phosphorylated by PKA on β1 and β3 subunits show 

opposing effects on GABA-stimulated currents (i.e., phosphorylation increases α1β3γ2 

responses and decreases α1β1γ2 responses) (McDonald et al., 1998).

In this study, we examined mechanisms by which apremilast regulates behavioral responses 

to ethanol and different GABAergic drugs in mice. We found that apremilast altered 

recovery from the ataxic and sedative-hypnotic effects of ethanol and GABAergic drugs in a 

PKA-dependent manner. We also used two-electrode voltage clamp of αβγ GABAA 

receptors expressed in Xenopus laevis oocytes to show that the phosphorylation states of β1 

and β3 differentially alter receptor function depending on the type of co-expressed α 
subunit. Our findings suggest that apremilast-induced increases in PKA-dependent 

phosphorylation of β1-and β3-containing GABAA receptors in the brain alter acute tolerance 

to ethanol and GABAergic drugs.

2. MATERIALS AND METHODS

2.1 Mice

Male and female C57BL/6J mice were from a colony maintained in the Animal Resources 

Center at The University of Texas at Austin. Original breeders were purchased and 

replenished every 6 months from The Jackson Laboratory (Bar Harbor, ME). Mice were 

group-housed by sex (4 or 5 per cage) in temperature- and humidity-controlled rooms with 

free access to food and water using a 12-h light/dark cycle (lights on at 7:00 a.m.). 

Experiments began when the mice were 2–3 months old. Mice were allowed to adapt to the 

testing rooms for about one week before behavioral testing. Experiments were approved by 

the Institutional Animal Care and Use Committee at The University of Texas at Austin and 

comply with the ARRIVE guidelines and the National Institutes of Health Guide for the 

Care and Use of Laboratory Animals.

2.2 Drug Administration

Ethanol (100% stock, Aaper Alcohol and Chemical, Shelbyville, KY) solutions were 

prepared in 0.9% saline (20%, v/v) and injected i.p. Apremilast (Toronto Research 

Chemicals Inc., North York, ON, Canada) was freshly prepared as a suspension in saline 

with 3–4 drops of Tween-80, and 20 mg/kg p.o. was administered once daily in a volume 

0.05 ml/10 g of body weight 1 h before experiments. This timeframe was chosen based on 

our previous working showing peak levels of apremilast in plasma, liver, and brain 1 h after 

administration (Blednov et al., 2018b). Gaboxadol (10 and 55 mg/kg), diazepam (6 and 50 

mg/kg), and propofol (30 and 120 mg/kg) were purchased from Sigma-Aldrich (St. Louis, 

MO) and administered by i.p. injection (0.1 ml/10 g body weight). Gaboxadol was dissolved 

in saline, and diazepam and propofol were suspended in saline with 3–4 drops of Tween-80. 

The propofol suspension was also sonicated for 10 min. Zolpidem (5 and 60 mg/kg), 

loreclezole (60 mg/kg), salicylidene salicylhydrazide (SCS) (40 mg/kg), and H89 (10 
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mg/kg) were purchased from Tocris Bioscience (Minneapolis, MN), and etomidate (10, 15, 

25, and 50 mg/kg) was purchased from Toronto Research Chemicals Inc. These drugs were 

freshly prepared in 0.9% saline with 3–4 drops of Tween-80 and injected at 0.1 ml/10 g of 

body weight for i.p. administration or at 0.05 ml/10 g of body weight for s.c. administration 

of H89. SCS and H89 were injected 15 min before drug treatment based on previous 

findings (Kumar et al., 2012) and our preliminary experiments.

2.3 Loss of the Righting Reflex

Responses to sedative-hypnotic doses of ethanol and other drugs were measured as the 

duration of the loss of righting reflex (LORR). When mice became ataxic, they were placed 

in the supine position in V-shaped plastic troughs until they were able to right themselves 

three times within 30 s. The duration of the LORR was defined as the time elapsed between 

being placed in the supine position until recovering the righting reflex. Saline or apremilast 

(20 mg/kg, p.o.) was injected once 1 h before i.p. injection of gaboxadol (55 mg/kg), 

zolpidem (60 mg/kg), propofol (120 mg/kg), etomidate (25 and 50 mg/kg), or diazepam (50 

mg/kg). To study the role of PKA on apremilast responses, mice were treated with 

apremilast (20 mg/kg, p.o.) 1 h before testing and then treated with H89 (10 mg/kg, s.c.) 15 

min before i.p. injection of ethanol (3.6 g/kg), gaboxadol (55 mg/kg), propofol (120 mg/kg), 

or diazepam (50 mg/kg). To study the role of β1 subunits, mice were pretreated with SCS 

(40 mg/kg, i.p.) 15 min before i.p. injection of ethanol (3.6 g/kg), propofol (120 mg/kg), or 

diazepam (50 mg/kg).

2.4 Rotarod Ataxia

Mice were trained on a fixed speed rotarod (Economex; Columbus Instruments, Columbus, 

OH) at 10 rpm, and training was considered complete when mice were able to remain on the 

rotarod for 60 s. Every 15 min after drug injection, each mouse was placed on the rotarod 

and latency to fall was measured until the mouse was able to remain on the rotarod for 60 s. 

Saline or apremilast (20 mg/kg, p.o.) was injected once 1 h before i.p. injection of gaboxadol 

(10 mg/kg), diazepam (6 mg/kg), zolpidem (5 mg/kg), propofol (30 mg/kg), loreclezole (60 

mg/kg), or etomidate (10 mg/kg). To study effects of PKA inhibition, mice were treated with 

apremilast (20 mg/kg, p.o.) or saline (p.o.) 1 h before testing and then treated with saline or 

the PKA inhibitor H89 (10 mg/kg, s.c.) 15 min before injection of ethanol (2 g/kg), 

diazepam (6 mg/kg), or propofol (30 mg/kg). To investigate the role of β1-containing 

GABAA receptors, saline or the β1-specific antagonist SCS (40 mg/kg, i.p.) was injected 15 

min before i.p. injection of ethanol (2 g/kg), diazepam (6 mg/kg), propofol (30 mg/kg), or 

etomidate (15 mg/kg).

2.5 Electrophysiology

Xenopus laevis frogs were obtained from Nasco (Fort Atkinson, WI). Experiments were 

approved by the Institutional Animal Care and Use Committee at The University of Texas at 

Austin and comply with the ARRIVE guidelines and the National Institutes of Health Guide 

for the Care and Use of Laboratory Animals. The complementary DNAs encoding the rat 

GABAA subunits α1, β1, β3, and γ2 were provided by Dr. M. H. Akabas (Albert Einstein 

College of Medicine); human α2 (provided by Dr. Neil Harrison, Columbia University) was 

subcloned into pGEMHE, and rat α3 was optimized and synthesized by GenScript 
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(Piscataway, NJ). Mutations in the β cDNAs were made through site-directed mutagenesis 

using QuikChange (Agilent Technologies, Santa Clara, CA). The in vitro transcription of 

GABAA subunits was performed using mMessage mMachine (Life Technologies, Grand 

Island, NY). Manually isolated Xenopus laevis oocytes were injected with 50 nl capped 

complementary RNAs encoding wild-type or mutant subunits in different ratios, depending 

on the subunits: αβ3γ2, 0.5:0.3:0.5 ng/oocyte and αβ1γ2, 0.5:0.5:0.5 ng/oocyte. The 

injected oocytes were incubated at 15°C in sterilized Modified Barth’s solution for 1–4 days 

before recording.

The responses of GABAA receptors expressed in oocytes were studied using two-electrode 

voltage clamp. Oocytes were discarded if the maximal current was over 30 μA or if the 

baseline was unstable or drifted to positive values. Final drug dilutions were freshly prepared 

each day. GABA concentration-response curves were determined using increasing 

concentrations of GABA (0.1–3000 μM) applied for 20–30 s followed by a 5–15 min 

washout. The oocyte’s response to each concentration was expressed as the percentage of 

the maximal current produced by that oocyte. To verify the presence of the γ2 subunit in the 

expressed receptors, responses to GABA were evaluated in the presence of Zn++ (10 μM). 

Flunitrazepam, zolpidem, etomidate, and propofol stocks were prepared in DMSO. The 

maximal GABA concentration was applied for 20 s, and after a 15-min washout, the GABA 

concentration that produced 5% of the maximal response was applied. If the resulting 

current was not between 3 and 7% of the maximal response, the GABA concentration was 

adjusted accordingly until the response was within those parameters. This was defined as the 

nominal EC5 GABA. After two consecutive applications of EC5 GABA, the modulators 

were coapplied with EC5 GABA in between EC5 GABA alone applications. Ethanol or zinc 

were preapplied alone for 60 s immediately before their co-application with EC5 GABA.

2.6 Statistical Analysis

Statistical analyses were performed using Prism 8 (GraphPad Software, Inc., La Jolla, CA) 

software. Data are reported as mean ± S.E.M values (number of mice and oocytes used are 

reported in the figure legends). For behavioral tests, sex as a factor was not significant so we 

combined the data from male and female mice (with the exception of data in Figures 3D and 

6 which were collected only in male mice). Data were analyzed by one- or two-way ANOVA 

and Tukey’s post hoc tests. For electrophysiology, GABA concentration-response curves 

were determined using non-linear fitting of a Hill equation with variable slope. Current 

values elicited by a maximal GABA concentration were analyzed over three consecutive 

days using two-way ANOVA (multiple comparisons with Sidak’s correction). Drug 

responses in the presence of EC5 GABA were quantified as the percent change in current 

from the average of the EC5 GABA alone responses obtained immediately before and after 

the drug. One-way ANOVA testing was used to detect significant differences in drug 

modulation between mutant receptors.
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3. RESULTS

3.1 Apremilast prolongs duration of the LORR induced by gaboxadol, zolpidem, and 
propofol

We previously showed that apremilast (20 mg/kg, p.o.) prolonged the sedative-hypnotic 

effects of ethanol in male and female C57BL/6J mice (Blednov et al., 2018a). Here we 

measured the duration of the LORR following injection of different GABAergic sedative-

hypnotic drugs in male and female C57BL/6J mice after pretreatment with saline or 

apremilast (20 mg/kg, p.o.). Apremilast significantly prolonged the duration of LORR 

induced by 55 mg/kg of gaboxadol [t(13) = 29.80, p < 0.0001)], 60 mg/kg of zolpidem [t(15) 

= 6.39, p < 0.0001], and 120 mg/kg of propofol [t(13) = 8.48, p < 0.0001)] (Figure 1A–C) 

but did not alter LORR induced by etomidate (Figure 1D). However, apremilast significantly 

shortened the duration of LORR induced by 50 mg/kg of diazepam [t(16) = 9.36, p < 

0.0001)] (Figure 1E).

3.2 Apremilast prolongs ataxia induced by zolpidem, loreclezole, and propofol

We previously showed that apremilast (20 mg/kg, p.o.) prolongs recovery from the acute 

ataxic effect of ethanol (Blednov et al., 2018a). Here, we investigated whether this effect 

occurs with other GABAergic drugs using lower doses that are selective for certain GABAA 

receptor subtypes. Apremilast (20 mg/kg, p.o.) did not alter recovery from rotarod ataxia 

induced by gaboxadol (10 mg/kg, i.p.), which is a selective agonist for receptors containing 

α4 and δ subunits (Figure 2A). However, it significantly prolonged recovery from the motor 

impairing effects of zolpidem (5 mg/kg) (F1,30 = 13.7, p < 0.001, effect of pretreatment; 

F7,210 = 144, p < 0.0001, effect of time; F7,210 = 9.5, p < 0.0001, pretreatment x time 

interaction), which is a positive allosteric modulator of receptors containing α1 and γ2 

subunits (Figure 2B). Apremilast also prolonged recovery from loreclezole (60 mg/kg) 

(F1,20 = 101, p < 0.0001, effect of pretreatment; F9,180 = 68.6, p < 0.0001, effect of time; 

F9,180 = 23.8, p < 0.0001, pretreatment x time interaction) (Figure 2D), which is a positive 

allosteric modulator of receptors that contain β2 or β3 subunits. Additionally, apremilast 

prolonged recovery from propofol (30 mg/kg) (F1,29 = 11.9, p < 0.01, effect of 

pretreatment; F6,174 = 91.5, p < 0.0001, effect of time; F6,174 = 3.9, p < 0.01, pretreatment 

x time interaction) (Figure 2E), which is not selective for β subunits (Rudolph and 

Antkowiak, 2004). In contrast, pretreatment with apremilast produced faster recovery from 

the motor impairing effects of diazepam (6 mg/kg, Figure 2C) (F1,28 = 19.6, p < 0.001, 

effect of pretreatment; F8,224 = 136, p < 0.0001, effect of time; F8,224 = 7.8, p < 0.0001, 

pretreatment x time interaction), which is a positive allosteric modulator of receptors 

containing γ2 with α1, α2, α3, or α5 subunits. Apremilast did not alter recovery from 

ataxia induced by etomidate (10 mg/kg) (Figure 2F). At low doses, etomidate is a positive 

allosteric modulator of receptors that contain β2 or β3 subunits (Sieghart and Savic, 2018).

3.3 A PKA inhibitor prevents apremilast modulation of LORR induced by ethanol, 
gaboxadol, or propofol

Since apremilast is a PDE4 inhibitor and increases activation of PKA, we next used the 

kinase inhibitor H89 (Hidaka et al., 1984) to evaluate the role of PKA on apremilast-induced 

increases in LORR duration in male and female C57BL/6J mice. Pretreatment with H89 (10 
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mg/kg, s.c.) did not alter the duration of the LORR induced by ethanol (3.6 g/kg, i.p.), 

gaboxadol (55 mg/kg, i.p.), or propofol (120 mg/kg, i.p.), but it completely blocked the 

ability of apremilast (20 mg/kg, p.o.) to prolong the sedative-hypnotic effect of these drugs 

[effect of pretreatment on LORR induced by ethanol (F1,34 = 118.0, p < 0.0001), gaboxadol 

(F1,34 = 479.5, p < 0.0001), and propofol (F1,34 = 140.1, p < 0.0001)] (Figure 3A–C). 

Pretreatment with H89 also did not alter duration of the LORR induced by diazepam (50 

mg/kg), but it blocked the ability of apremilast to shorten diazepam-induced LORR (F1,20 = 

161.7, p < 0.0001) (Figure 3D).

3.4 Blockade of PKA prevents apremilast modulation of rotarod ataxia induced by 
ethanol, diazepam, or propofol

We next examined potential PKA-dependent effects of apremilast on ataxia induced by 

ethanol and GABAergic drugs. In male and female C57BL/6J mice, H89 (10 mg/kg, s.c.) 

reversed the ability of apremilast (20 mg/kg, p.o.) to prolong recovery from the ataxic effects 

of 2 g/kg of ethanol (F1,22 = 32.1, p < 0.0001, effect of pretreatment; F9,198 = 181, p < 

0.0001, effect of time; F9,198 = 10.7, p < 0.0001, pretreatment x time interaction) (Figure 

4A) and 30 mg/kg of propofol (F1,21 = 38.1, p < 0.0001, effect of pretreatment; F6,126 = 

152, p < 0.0001, effect of time; F6,126 = 15.7, p < 0.0001, pretreatment x time interaction) 

(Figure 4B). H89 also reversed the ability of apremilast to speed recovery from ataxia 

induced by 6 mg/kg of diazepam (F1,21 = 97.9, p < 0.0001, effect of pretreatment; F8,168 = 

447, p < 0.0001, effect of time; F8,168 = 35.9, p < 0.0001, pretreatment x time interaction) 

(Figure 4C).

3.5 A GABAA receptor β1 subunit antagonist accelerates recovery from ataxia induced by 
ethanol or diazepam

Because PKA can regulate GABAA receptor function through phosphorylation of β1 and β3 

subunits (McDonald et al., 1998), we first investigated the importance of β1-containing 

receptors using SCS, a β1-specific antagonist (Thompson et al., 2004). Pretreatment of 

C57BL/6J male mice with SCS (40 mg/kg, i.p.) induced faster recovery from the motor 

impairing effects of ethanol (F1,10 = 25.6, p < 0.001, effect of treatment; F7,70 = 191, p < 

0.0001, effect of time; F7,70 = 8.5, p < 0.0001, treatment x time interaction) (Figure 5A) and 

diazepam (F1,10 = 22.6, p < 0.001, effect of treatment; F8,80 = 194, p < 0.0001, effect of 

time; F8,80 = 10.2, p < 0.0001, treatment x time interaction) (Figure 5B). As predicted, SCS 

did not change recovery from ataxia induced by propofol (F5,45 = 337, p < 0.0001, effect of 

time) or etomidate (F7,70 = 41, p < 0.0001, effect of time) (Figure 5C and D).

3.6 A GABAA receptor β1 subunit antagonist shortens the duration of LORR induced by 
ethanol or diazepam, but not by propofol

We next examined the effect of SCS (40 mg/kg, i.p.) pretreatment on the sedative-hypnotic 

effects of ethanol, diazepam, and propofol in male C57BL/6J mice. SCS significantly 

shortened the duration of LORR induced by 3.6 g/kg of ethanol [t(10) = 12.9, p < 0.0001)] 

or 50 mg/kg of diazepam [t(10) = 12.3, p < 0.0001], but did not alter the sedative-hypnotic 

effect of 120 mg/kg of propofol (Figure 6A–C). A summary of results from our behavioral 

tests are shown in Table 1.
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3.7 Mutation of phosphorylation sites on β1 or β3 subunits alters the maximal response 
to GABA in heterologously expressed GABAA receptors

The direct application of apremilast (1–10 μM) to α1β2γ2 or α1β3γ2 GABAA receptors 

heterologously expressed in Xenopus oocytes did not alter receptor function (Figure S1).

In order to study a homogeneous population of receptors possessing a known 

phosphorylation state, we expressed mutated β1 and β3 subunits in combination with α1, 

α2, or α3, along with γ2 subunits. In these β subunits, the relevant serines were replaced by 

phosphomimetic or non-phosphorylatable residues. The GABA sensitivity of each subunit 

combination and the GABA-induced maximal current were determined over three 

consecutive days to control for changes in levels of receptor expression. The analysis of 

GABA-mediated maximal current yielded the same significant differences, whether the data 

were analyzed dayby-day by two-way ANOVA, or pooled and analyzed by one-way 

ANOVA.

The relevant serine residue in the intracellular loop of the β1 subunits (S409) was replaced 

by either an aspartate (phosphomimetic) or alanine (non-phosphorylatable) residue. When 

assessing the maximal GABA concentration-induced currents mediated by α1β1γ2 

combinations, the receptors containing the non-phosphorylatable subunit [β1(A)] showed 

larger currents than the phosphomimetic subunit [β1(D)] (F2,102 = 21.93, p < 0.0001, effect 

of days after injection; F2,102 = 17.54, p < 0.0001, effect of phosphorylation state; F4,102 = 

3.35, p < 0.05, days after injection × phosphorylation state interaction) (Figure 7A). The 

same result was observed for α3β1γ2 combinations, except that the difference was not yet 

significant on day 2 after injection (F2,107 = 40.24, p < 0.0001, effect of days after 

injection; F2,107 = 28.38, p < 0.0001, effect of phosphorylation state; F4,107 = 3.53, p < 

0.001, days after injection × phosphorylation state interaction) (Figure 7E). Currents 

mediated by receptors containing the wild-type subunit [β1(S)] were not consistent 

compared with the phosphomimetic and non-phosphorylatable subunits, likely reflecting a 

variable endogenous phosphorylation state. When β1 was expressed with α2 and γ2 

subunits, there were no differences in the maximal currents in β1-containing receptors with 

differing phosphorylation states (Figure 7C). The sensitivity to GABA was not affected by 

the phosphorylation state of the β1 409 residue in any subunit combination (Figure 7B, D 

and F, and Table 2).

For α1β3γ2 combinations, both relevant serines in the intracellular loop of β3 (408 and 

409) were replaced by either aspartates or alanines. The phosphomimetic [β3(DD)] subunit 

showed a larger maximal GABA-induced current than the non-phosphorylatable [β3(AA)] 

and wild-type [β3(SS)] subunits, except on day 1, when the differences were not yet 

significant (F2,153 = 71.0, p < 0.0001, effect of days after injection; F2,153 = 13.9, p < 

0.0001, effect of phosphorylation state; F4,153 = 1.34, p > 0.05, days after injection × 

phosphorylation state interaction) (Figure 8A). The α2β3γ2 receptors showed a similar 

trend on days 1 and 2, but the only significant difference was on day 2 between the 

phosphomimetic [β3(DD)] and non-phosphorylatable [β3(AA)] subunits (F2,138 = 30.35, p 

< 0.0001, effect of days after injection; F2,138 = 6.07, p < 0.01, effect of phosphorylation 

state; F4,138 = 0.42, p > 0.05, days after injection × phosphorylation state interaction) 

(Figure 8C). We observed no differences in the maximal currents in α3β3γ2 combinations 
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on any day (Figure 8E). In β3-containing receptors, the sensitivity to GABA was not 

affected by the phosphorylation state of the β3 408 and 409 residues in α1 and α3 

combinations (Figure 8B and F, and Table 2). Small differences in the GABA EC50 values 

were observed in α2β3γ2 receptors (Figure 8D and Table 2).

In order to determine if the phosphorylation state of β subunits affects GABAA receptor 

function by different allosteric modulators, we co-applied a submaximal GABA 

concentration (EC5) with ethanol (200 mM), propofol (2 μM), etomidate (1 μM) (Figure 9), 

zolpidem (0.1 μM), flunitrazepam (0.1 μM), or diazepam (0.1 and 3 μM) to oocytes 

expressing α1β3γ2 receptors (Figure 10). We also tested diazepam modulation of α1β1γ2 

receptors (Figure 10). We corroborated expression of γ2 along with α and β subunits by 

measuring the effect of an endogenous modulator, zinc (10 μM), which inhibits αβ and αβγ 
receptors with different potencies (Figure 9). None of the allosteric modulators showed a 

differential effect that depended on the phosphorylation state of β subunits.

4. DISCUSSION

Apremilast profoundly altered the behavioral effects of ethanol and GABAA receptor-

specific drugs in male and female mice. Apremilast prolonged the duration of the LORR 

induced by ethanol, gaboxadol, zolpidem, and propofol and also prolonged ataxia induced 

by ethanol, zolpidem, propofol, and loreclezole. Surprisingly however, apremilast shortened 

the duration of the LORR and of ataxia induced by diazepam. The PKA inhibitor H89 

blocked apremilast modulation of behavior by ethanol, propofol, gaboxadol, and diazepam, 

suggesting that apremilast alters acute tolerance to ethanol and other GABAergic drugs via 

PKA-mediated phosphorylation of GABAA receptors. Our results with apremilast are 

consistent with work showing that increasing PKA activity intracerebroventricularly 

increases the sedative-hypnotic effects of ethanol or the GABAA receptor agonist muscimol 

(Kumar et al., 2012). Conversely, other work has shown that inhibiting PKA decreases 

ethanol’s sedative-hypnotic effects (Thiele et al., 2000).

Our behavioral studies suggest that α, β1, and β3 subunits are important for apremilast 

modulation of GABAergic drugs. Therefore, we studied how the phosphorylation state of β1 

or β3 expressed with different α subunits altered GABAA receptor function and modulation. 

In Xenopus oocytes, apremilast did not produce any direct changes in GABAA receptor 

function, suggesting a low level of PDE4 activity as previously reported (Stahl et al., 2015). 

To study β phosphorylation, we used mutated receptors expressed in oocytes. Decreased 

maximal GABA-induced currents were observed in phosphomimetic β1-containing subunits 

expressed with α1 or α3, but not α2 subunits. In contrast, increased maximal GABA-

induced currents were observed in phosphomimetic β3-containing subunits expressed with 

α1 and α2. Our findings in oocytes agree with those in HEK293 cells (McDonald et al., 

1998), showing that β1 phosphorylation decreases and β3 phosphorylation increases 

GABAA responses. These same β phosphorylation effects were observed in α1-containing 

receptors in oocytes, and thus apremilast prolongation of zolpidem (an α1-selective 

modulator) responses in vivo suggests that it acts by increasing phosphorylation of α1β3-

containing receptors. Furthermore, the differential GABAA responses of α2 and α3 subunits 

in combination with phosphomimetic β1- or β3-containing receptors suggest that these α 
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subunits can modulate ethanol- and diazepam-induced ataxia. Additional support for this 

comes from our previous study showing that deletion of α2 shortened recovery from ethanol 

and flurazepam, whereas deletion of α3 prolonged ataxia by both drugs (Blednov et al., 

2013).

We also studied modulation of α1βγ2 GABAA receptors in different phosphorylation states 

by the GABAergic drugs used in the behavioral tests. We found that the allosteric effects of 

ethanol and other GABAergic drugs did not depend on β subunit phosphorylation. Thus, we 

propose that the behavioral effects of apremilast result from PKA-mediated alterations in 

GABAA receptor responses to GABA rather than to changes in allosteric modulation by 

these drugs.

We were particularly interested in the effects of apremilast on ataxia because the lower drug 

doses used for this behavior would be expected to have more GABAA receptor specificity 

than the higher doses required to induce LORR. Apremilast did not alter ataxia induced by 

gaboxadol, which in low doses selectively targets GABAA receptors containing α4 and δ 
subunits (Chandra et al., 2006). However, apremilast prolonged recovery from the ataxic 

effects of zolpidem, which has a relative preference for receptors containing α1 and γ2 

subunits at low doses, but can also potentiate α2/3βγ2 receptors at higher concentrations 

(Sieghart and Savic, 2018). In contrast, we found that apremilast shortened recovery from 

LORR and from ataxia induced by diazepam, which acts at receptors containing α1, α2, α3, 

or α5 subunits in combination with γ2 subunits (efficacy α3 > α2 > α1 ~ α5) (Sieghart and 

Savic, 2018). These differential effects suggest that α subunits may influence apremilast 

modulation of certain GABAergic drugs.

It is not known which α subunits mediate the ataxic effect of diazepam since diazepam-

induced rotarod ataxia is not altered in α1, α2, or α3 knock-in mice carrying a mutation that 

prevents benzodiazepine binding to the respective α subunit (Low et al., 2000; Rudolph et 

al., 1999). Instead it appears that benzodiazepine binding to any two of these subunits is 

sufficient for diazepam to produce ataxia. None of the knock-in mice have undergone LORR 

testing in response to GABAergic drugs.

The findings in α subunit knock-in mice raised the possibility that differential modulation of 

receptors containing α1 and α3 subunits may account for contrasting effects of apremilast 

on behavioral responses to zolpidem and diazepam. Based on our electrophysiological 

recordings, the α-selectivity shown by diazepam and zolpidem in heterologous systems 

(Sieghart and Savic, 2018), and the most common combinations of GABAA subunits 

apparently present in brain (Benke et al., 1994), we propose the following: PKA-mediated 

phosphorylation reduced the function of α3β1-containing GABAA receptors resulting in 

reduced diazepam-induced ataxia, while PKA-mediated phosphorylation of α1β3-

containing receptors increased their function and drove the increase in zolpidem-induced 

ataxia. Other factors in play could be the selective expression of α subunits in different 

neuronal circuits (Pirker et al., 2000), or a differential selectivity for the pharmacologically 

active metabolites derived from diazepam (Nikas et al., 2015). Alternatively, in the case of 

diazepam, PKA modulation by apremilast may involve another target such as a protein that 

interacts with GABAA receptors rather than a specific GABAA receptor subunit.
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Apremilast also prolonged ataxia induced by propofol (which shows no selectivity towards β 
subunits in trimeric receptors) (Rudolph and Antkowiak, 2004) and loreclezole, (which 

preferentially modulates GABAA receptors containing β2 or β3 subunits) (Sieghart and 

Savic, 2018). PKA activation increases phosphorylation of β1 and β3, but not β2 subunits 

(McDonald et al., 1998), suggesting that β3 phosphorylation is responsible for apremilast 

modulation of propofol and loreclezole responses in vivo. As demonstrated in HEK293 cells 

(McDonald et al., 1998) and here in oocytes, phosphorylation of β3 increases inhibitory 

GABAA receptor-induced currents, which would be expected to increase the intoxicating 

motor effects and decrease acute tolerance to these drugs. Our finding that apremilast 

prolongs ataxia induced by ethanol and GABAergic drugs that can potentiate β3-containing 

receptors (propofol and loreclezole) is consistent with phosphorylation of β3 subunits being 

important for development of acute tolerance to ethanol.

Apremilast did not alter ataxia by etomidate, which also acts on β2/β3 subunits (Sieghart 

and Savic, 2018), but only β2 subunits are critical for the ataxic effects of etomidate 

(Reynolds et al., 2003). Because β2 subunits are not a target for PKA-mediated 

phosphorylation, the etomidate ataxic effect was not modified after apremilast 

administration. This stands in contrast with the increase in the propofol ataxic effect. 

Although etomidate and propofol have many similarities, including sharing GABAA 

receptors as main pharmacological targets, they also have clear differences in their 

molecular pharmacology and behavioral effects that could be responsible for this divergence 

(Drexler et al., 2009; Rudolph and Antkowiak, 2004).

Our findings that apremilast accelerated recovery from diazepam-induced ataxia and 

shortened duration of diazepam-induced LORR are consistent with a role for β1 subunits. 

The function of β1 subunits in GABAA receptor responses has not been well characterized, 

and there is also limited information about their role in behavioral responses to ethanol. To 

determine if apremilast modulation could be mediated by β1 subunits, we used the β1-

specific antagonist SCS (Thompson et al., 2004). SCS produced faster recovery from 

diazepam-induced ataxia and LORR, mimicking the effect of apremilast. These findings 

suggest that PKA-induced phosphorylation of β1-containing receptors, which would be 

expected to decrease neuronal GABAA responses (McDonald et al., 1998), is involved in the 

ability of apremilast to accelerate recovery from the behavioral effects of diazepam. Our 

results agree with work showing that allosteric GABAA modulators with limited activity at 

β1-containing GABAA receptors have reduced ability to cause ataxia (Gee et al., 2010).

When β1-containing receptors were blocked with SCS, the recovery from etomidate-induced 

ataxia was not affected given that this drug acts through β2-containing receptors to impair 

motor responses on the rotarod (Reynolds et al., 2003). Propofol-mediated ataxia was also 

unaffected, providing the first evidence that this propofol effect is not mediated by β1-

containing receptors. Propofol-induced LORR was also not modified by blocking β1-

containing receptors. The role of β3-containing receptors in both etomidate and propofol-

induced LORR has already been shown (Jurd et al., 2003), and while the increase in GABA-

mediated currents through β3-containing receptors after apremilast administration explains 

the increase in propofol-induced LORR, the absence of change in etomidate-induced LORR 
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seems to indicate a more complex mechanism of action. Perhaps apremilast modifies one or 

more of the other pharmacological targets of etomidate (Rudolph and Antkowiak, 2004).

Limiting β1-mediated responses using SCS also reduced the ataxic and sedative-hypnotic 

effects of ethanol, but unlike diazepam responses, SCS did not mimic the effect of 

apremilast. While these findings indicate a contributory role for β1 subunits in ethanol-

induced ataxia, under conditions of enhanced PKA activation by apremilast, the increased 

ataxic effects of ethanol appear to be mediated primarily by β3-containing receptors.

Other phosphorylation-dependent mechanisms that regulate GABAA receptors in neurons 

were not captured by our heterologous expression system. For example, PKC also 

phosphorylates β3 S408/S409 in cultured cortical neurons (Brandon et al., 2000), which 

modifies interaction with proteins like AP2 in the intracellular loop, ultimately interfering 

with the receptor’s clathrin-mediated endocytosis (Nakamura et al., 2015). Thus, the 

phosphorylation state of β subunits in neurons may be determined by additional factors that 

regulate GABAA receptor function and trafficking that are absent in the heterologous 

system. Furthermore, cAMP elevation and subsequent PKA activation have been shown to 

mediate the increase of GABA release from presynaptic terminals (Diao et al., 2017; Kelm 

et al., 2008; Lachamp et al., 2009), adding another possible apremilast mechanism for 

influencing GABAergic transmission. Despite the limitations of our oocyte studies, our 

behavioral results indicate that PKA-mediated phosphorylation of β1 or β3 subunits is 

important for the effects of apremilast on responses to GABAergic drugs.

In our hypothetical model shown in Figure 11, apremilast activates PKA-mediated 

phosphorylation of β1- and β3-containing GABAA receptors, producing differential 

regulation of ethanol and other GABAergic positive allosteric modulators. We propose that 

apremilast reduces the ataxic and sedative-hypnotic effects of diazepam via phosphorylation 

of β1 receptors, while its opposing effects on β3-containing receptors decrease acute 

tolerance to ethanol and other GABAergic drugs.

PDE4 is present throughout the brain and because apremilast acts as a nonselective inhibitor 

of all PDE4 subclasses, it can produce widespread effects that would depend on GABAA 

receptor composition and distribution. Phosphorylation of β3 subunits is consistent with the 

ability of apremilast to prolong ethanol-induced ataxia and decrease acute functional 

tolerance, as we observed in male and female mice (Blednov et al., 2018a), and is also 

consistent with the increased response to β3-acting drugs (propofol and loreclezole) by 

apremilast observed here. Given that β3 subunits are widely expressed in brain compared to 

the more discrete localization of β1 subunits (Hortnagl et al., 2013), and that expression 

levels of β1 are decreased in C57BL/6J mice compared with other strains (Mulligan et al., 

2019), the net in vivo effects of apremilast on ethanol responses may be explained by actions 

on β3-containing GABAA receptors. Effects of the α1-selective modulator zolpidem on 

α1β3-containing receptors would also be consistent with its modulation by apremilast in 
vivo.

In summary, we propose that apremilast-induced phosphorylation of β3-containing GABAA 

subunits increases synaptic inhibition and decreases acute tolerance to ethanol and 
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GABAergic drugs, which could contribute to the reduced alcohol drinking and related 

behaviors observed in mice (Blednov et al., 2018a; 2018b). Development of tolerance is one 

of the criteria for diagnosing alcohol dependence in humans, and our findings show that 

apremilast may be a promising candidate to reduce acute tolerance (and alcohol drinking) 

through PKA modulation of GABAergic signaling.
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ABBREVIATIONS

cAMP cyclic adenosine monophosphate

EC5 effective concentration 5

GABAA receptor ɣ-aminobutyric acid type A receptor

i.p. intraperitoneal

LORR loss of righting reflex

PDE4 phosphodiesterase type 4

PKA protein kinase A

p.o. per os

SCS salicylidene salicylhydrazide

s.c. subcutaneous
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HIGHLIGHTS

• Apremilast regulates alcohol and GABAergic drug responses in vivo

• Apremilast regulation occurs in a protein kinase A (PKA)-dependent manner

• Phosphorylation of β1 and β3 subunits differentially alters GABAA receptor 

function

• Apremilast acts via PKA to alter acute tolerance to alcohol and GABAergic 

drugs
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Figure 1. 
Effect of apremilast on the loss of righting reflex (LORR) induced by different 

sedativehypnotics. Duration of LORR in saline- vs. apremilast (20 mg/kg)-pretreated male 

and female C57BL/6J mice after i.p. injection of (A) gaboxadol (n = 13–14), (B) zolpidem 

(n = 7–10), (C) propofol (n = 7–8), (D) etomidate (n = 8–10), or (E) diazepam (n = 9). Data 

from male and female mice were combined. ****p < 0.0001 compared with the saline-

treated group, two-tailed t-test.
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Figure 2. 
Effect of apremilast on recovery from ataxia induced by GABAergic drugs. Time on the 

rotarod in saline- vs. apremilast (20 mg/kg)-pretreated male and female C57BL/6J mice after 

i.p. injection of (A) gaboxadol (n = 16), (B) zolpidem (n = 16), (C) diazepam (n = 15), (D) 

loreclezole (n = 10–12), (E) propofol (n = 15–16), or (F) etomidate (n = 11–12). Data from 

male and female mice were combined and analyzed by two-way repeated measures ANOVA.
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Figure 3. 
The PKA inhibitor H89 prevents apremilast-induced changes in duration of the loss of 

righting reflex (LORR) by ethanol, gaboxadol, propofol, and diazepam. Duration of LORR 

induced by i.p. injection of (A) ethanol (n = 9–10), (B) gaboxadol (n = 9–10), (C) propofol 

(n = 8–9), or (D) diazepam (n = 6) in C57BL/6J mice pretreated with saline (p.o.) or 

apremilast (20 mg/kg, p.o.) 1 h before LORR assay then saline (s.c.) or H89 (10 mg/kg, s.c.) 

was given 15 min before sedative-hypnotic drug. Data from male mice (D) or males and 

females combined (A-C) were analyzed by two-way ANOVA and Tukey’s post hoc tests, 

****p < 0.0001.
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Figure 4. 
The PKA inhibitor H89 prevents apremilast modulation of rotarod ataxia induced by 

ethanol, diazepam, or propofol. Time on the rotarod after i.p. injection of (A) ethanol (n = 

12), (B) propofol (n = 11–12), and (C) diazepam (n = 11–12) in male and female C57BL/6J 

mice pretreated with saline (s.c.) + apremilast (20 mg/kg, p.o.) or H89 (10 mg/kg, s.c.) + 

apremilast (20 mg/kg, p.o.). Data from male and female mice were combined and analyzed 

by two-way repeated measures ANOVA.
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Figure 5. 
A GABAA receptor β1 subunit antagonist accelerates recovery from ataxia induced by 

ethanol or diazepam. Time on the rotarod after i.p. injection of (A) ethanol (n = 6), (B) 

diazepam (n = 6), (C) propofol (n= 5–6), and (D) etomidate (n = 6) in male C57BL/6J mice 

pretreated with saline (i.p.) or salicylidene salicylhydrazide (SCS, 40 mg/kg, i.p.). Data were 

analyzed by two-way repeated measures ANOVA.
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Figure 6. 
Effect of SCS on the loss of righting reflex (LORR) induced by ethanol, diazepam, or 

propofol. Duration of LORR after i.p. injection of (A) ethanol (n = 6), (B) diazepam (n= 6), 

or (C) propofol (n = 5) in male C57BL/6J mice pretreated with saline (i.p.) or salicylidene 

salicylhydrazide (SCS, 40 mg/kg, i.p.). ****p < 0.0001 compared with the saline-treated 

group, two-tailed t-test.
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Figure 7. 
β1-containing GABAA receptors expressed in Xenopus laevis oocytes. The letters in 

parentheses in the legend indicate the residues in position 409 of β1. A) Currents induced by 

maximal GABA concentration (3 mM GABA, n = 9–16) and B) GABA concentration-

response curves (n = 4–5) in α1β1γ2 GABAA receptors. C) Currents induced by maximal 

GABA concentration (300 μM GABA, n = 9–10) and D) GABA concentration-response 

curves (n = 4–5) in α2β1γ2 GABAA receptors. E) Currents induced by maximal GABA 

concentration (3 mM GABA, n = 12–14) and F) GABA concentration-response curves (n = 

4–6) in α3β1γ2 GABAA receptors. Data were analyzed by two-way ANOVA followed by 

Sidak’s multiple comparisons test, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
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Figure 8. 
β3-containing GABAA receptors expressed in Xenopus laevis oocytes. The letters in 

parentheses in the legend indicate the residues in positions 408 and 409 of β3. A) Currents 

induced by maximal GABA concentration (1 mM GABA, n = 12–24) and B) GABA 

concentration-response curves (n = 3–5) in α1β3γ2 GABAA receptors. C) Currents induced 

by maximal GABA concentration (1 mM GABA, n = 13–18) and D) GABA concentration-

response curves (n = 5–7) in α2β3γ2 GABAA receptors. E) Currents induced by maximal 

GABA concentration (300 μM GABA, n = 6–12) and F) GABA concentration-response 

curves in α3β3γ2 GABAA receptors (n = 5–6). Data were analyzed by two-way ANOVA 

followed by Sidak’s multiple comparisons test, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p 

≤ 0.0001.
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Figure 9. 
Allosteric modulators of submaximal GABA currents in α1β3γ2 GABAA receptors with 

different phosphorylation states of β3 subunits. Data were analyzed by one-way ANOVA (n 

= 5–6).
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Figure 10. 
Modulation by ligands of the benzodiazepine binding site of submaximal GABA currents in 

α1βγ2 GABAA receptors with differing phosphorylation states of β subunits. Data were 

analyzed by one-way (flunitrazepam, zolpidem; n = 6) and two-way (diazepam) ANOVA 

(β3, n = 3–6; β1, n = 6–8).

Blednov et al. Page 27

Neuropharmacology. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. 
Hypothetical mechanism of action for apremilast. The phosphodiesterase type 4 (PDE4) 

inhibitor, apremilast, blocks hydrolysis of cAMP (cyclic adenosine monophosphate) to 

AMP, thus increasing levels of cAMP and activation of protein kinase A (PKA). PKA-

induced phosphorylation differentially regulates β1- and β3-containing GABAA receptors 

(as shown in both HEK293 cells and Xenopus oocytes), producing specific effects on acute 

tolerance to the ataxic (rotarod) and sedative-hypnotic (LORR) effects of ethanol and other 

GABAergic drugs in mice. *Loreclezole-induced LORR could not be determined.
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Table 1.

Summary of behavioral effects in male and female C57BL/6J mice.

Behavior Modulator Dose + Apremilast + Apremilast + H-89 + SCS 
a

Ethanol intake Ethanol ↓ 
b

LORR duration

Ethanol 3.6 g/kg ↑ 
b ↓ ↓

Gaboxadol
Non-specific

55 mg/kg ↑ ↓

Etomidate
β2-β3 specific

25 and 50 mg/kg =

Propofol
Non β-specific

120 mg/kg ↑ ↓ =

Diazepam α3/2/1/5 γ2 50 mg/kg ↓ ↑ ↓

Zolpidem
Non-specific

60 mg/kg ↑

Rotarod recovery

Ethanol 2 g/kg → 
b ← ←

Gaboxadol
α4 δ specific

10 mg/kg =

Etomidate
β2-β3 specific

10 mg/kg =

Etomidate
β2-β3 specific

15 mg/kg =

Propofol
Non β-specific

30 mg/kg → ← =

Diazepam
α3/2/1/5 γ2

6 mg/kg ← → ←

Zolpidem
α1γ2-specific

5 mg/kg →

Loreclezole
β2-β3 specific

60 mg/kg →

Effects of apremilast (20 mg/kg), apremilast (20 mg/kg) + PKA inhibitor H-89 (10 mg/kg), or a β1-specific antagonist salicylidene salicylhydrazide 
(SCS, 40 mg/kg) on ethanol- and GABAergic-mediated behaviors are summarized as follows: = no change from saline control; ↑ (increased) or ↓ 
(decreased) response from saline control; → (longer) or ← (shorter) recovery from rotarod ataxia compared with saline control. GABAergic drugs 
have subunit-specific or non-specific actions depending on the dose. Etomidate mediates ataxia mainly through β2-containing receptors.

a
Results are from male mice only.

b
Results are from (Blednov et al., 2018b). LORR, loss of the righting reflex.
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Table 2.

Parameters determined by nonlinear regression of GABA concentration-response curves (Figures 7 and 8). 

GABA EC50, GABA effective concentration 50 (μM); nH, Hill slope; n, number of oocytes.

Receptor GABA EC50 (95% confidence intervals) nH ± SEM n

α1β1(S)γ2 31.1 (26.2 to 37.0) 0.92 ± 0.05 5

α1β1(D)γ2 25.3 (23.4 to 27.4) 1.03 ± 0.03 5

α1β1(A)γ2 29.8 (26.1 to 34.1) 0.94 ± 0.04 4

α2β1(S)γ2 28.8 (24.8 to 33.7) 1.39 ± 0.10 4

α2β1(D)γ2 33.7 (29.8 to 38.1) 1.42 ± 0.08 5

α2β1(A)γ2 34.9 (18.4 to 65.9) 0.88 ± 0.14 4

α3β1(S)γ2 100 (82 to 127) 0.96 ± 0.07 6

α3β1(D)γ2 137 (117 to 165) 0.97 ± 0.06 4

α3β1(A)γ2 70.4 (55.8 to 91.5) 1.01 ± 0.10 5

α1β3(SS)γ2 24.7 (21.4 to 28.6) 1.50 ± 0.10 3

α1β3(DD)γ2 28.2 (26.6 to 30.0) 1.50 ± 0.05 6

α1β3(AA)γ2 21.5 (18.7 to 24.8) 1.77 ± 0.15 5

α2β3(SS)γ2 42.3 (30.4 to 59.1) 1.11 ± 0.12 5

α2β3(DD)γ2 14.8 (12.5 to 17.6) 1.53 ± 0.13 5

α2β3(AA)γ2 23.6 (21.8 to 25.5) 1.47 ± 0.06 7

α3β3(SS)γ2 19.8 (17.4 to 22.5) 1.57 ± 0.10 5

α3β3(DD)γ2 15.3 (13.7 to 17.1) 1.26 ± 0.06 5

α3β3(AA)γ2 21.0 (18.0 to 24.5) 1.47 ± 0.11 6
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