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Abstract

The nutritional source for catabolism in the tricarboxylic acid (TCA) cycle is a fundamental 

question in metabolic physiology. Limited by data and mathematical analysis, controversy exists. 

Using isotope-labeling data in vivo across several experimental conditions, we construct multiple 

models of central carbon metabolism and develop methods based on metabolic flux analysis 

(MFA) to solve for the preferences of glucose, lactate, and other nutrients used in the TCA cycle. 

We show that in nearly all circumstances, glucose contributes more than does lactate as substrate 

to the TCA cycle. This conclusion is verified in different animal strains from different studies, 

different administrations of 13C glucose, and is extended to multiple tissue types. Thus, this 

quantitative analysis of organismal metabolism defines the relative contributions of nutrient fluxes 

in physiology, provides a resource for analysis of in vivo isotope tracing data, and concludes that 

glucose is the major nutrient used in mammals.

Blurb

Liu et al. construct a series of models using 13C-isotope tracing data to quantify glucose 

metabolism in physiology. They analyzed contributions of circulating metabolites to fueling the 
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TCA cycle and provide evidence that glucose is the major nutrient source of the TCA cycle in 

most situations.

INTRODUCTION

Cellular metabolism that resides within tissues utilizes many metabolites as their source in 

the TCA cycle such as glucose, lactate, amino acids, and fatty acids. As part of systemic 

metabolism, each cell has unique preferences for the utilization of particular metabolites, 

which is influenced by tissue type, cell state, environmental factors such as nutrition and 

physiological status. The nutrient preferences are critical for normal organ function, and 

closely linked to disease. For example, the fermentative glucose metabolism known as the 

Warburg effect has been widely found in numerous types of healthy and malignant cells 

(Liberti and Locasale, 2016), but glucose utilization is highly variable and depends on 

genetics and environment (Faubert et al., 2017; Feron, 2009; Hensley et al., 2016). Those 

specific metabolic fluxes could be potential targets for cancer treatment (Liberti et al., 2017; 

Sonveaux et al., 2008). For other tissues like the myocardium, the energy contribution from 

fatty acids, glucose, lactate and others are thought to directly reflect its nutrient and oxygen 

availability, and have important roles in cardiology (Kodde et al., 2007; Ma et al., 2019). 

Therefore, an investigation of nutrient source utilization in physiological conditions is of 

utmost importance.

To quantitate different nutrient sources, isotope-labeling-based methods have long been 

used. Cells or animals are fed or infused with isotopically-labeled substrates, and labeling 

ratios of metabolites are analyzed by mass spectrometry (MS) or nuclear magnetic 

resonance (NMR). Previous studies have used these data to qualitatively explain the 

contribution of nutrient sources to the TCA cycle (Stanley et al., 1988). However, those 

studies have been limited by measurements that often included only a few metabolites. 

Recent studies have looked to quantitatively measure the utilization of nutrient sources at the 

systemic level using metabolic flux analysis (MFA) (Hui et al., 2017; Jang et al., 2019; 

Neinast et al., 2019). MFA is a mathematical framework that seeks a solution of metabolic 

fluxes that best fits the isotope labeling data (i.e. using machine learning or artificial 

intelligence) for a given biochemical reaction network (Dai and Locasale, 2017; Zamboni et 

al., 2009). The biochemical model used is essential for the resulting solutions. For instance, 

reversible (i.e. exchange) fluxes of metabolites between tissue and plasma are almost always 

significant and may highly influence isotope labeling patterns (Witney et al., 2011). 

However, many MFA models do not consider exchange fluxes (Hui et al., 2017). Another 

important point is the heterogeneity of metabolism. Some studies have shown that metabolic 

heterogeneity exists widely in within and between lung cancers (Hensley et al., 2016). 

Organismal metabolism relies on mutual cooperation between tens of organs and tissues. 

However, most current MFA models consider the flux calculation in one kind of tissue and 

assume the tissue is a homogenous system.

To investigate the quantitative selection of nutrient sources of entry into the TCA cycle 

under physiological conditions, we developed a framework to overcome current challenges. 

Multiple tissues are considered, linked by circulation. This model also uses the MFA 
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framework and requires isotope-labeling data for different tissues to fit fluxes in different 

compartments. Surprisingly we found that under physiological conditions, as we validated 

using different animal models and experimental isotope labeling conditions, most tissues 

utilize circulating glucose more than lactate for the TCA cycle which may challenge current 

dogma in metabolic physiology.

RESULTS

Model construction and flux analysis

In the fasting state, systemic metabolism involves a source tissue (usually liver) that converts 

circulating lactate to glucose in blood, and a sink tissue that consumes glucose back to 

lactate, which is referred as the Cori cycle (Nelson et al., 2017) (Figure 1A). Glucose and 

lactate in the source and sink tissues are interconverted through pyruvate. Sink and source 

tissues are connected through plasma, which allows for the transport of glucose and lactate 

(Figure 1B).

Fluxes are computed based on data from mass spectrometry (MS) in 13C-glucose infused 

mice as follows. After infusion, tissues are collected and analyzed by MS. Metabolites with 
13C at different positions are distinguished and their relative abundance is referred to as the 

mass isotopomer distribution (MID) (Figure 1C). MID data are then used to fit the fluxes in 

the model. Given a set of fluxes, MIDs are calculated and compared with experimental data. 

The difference (i.e. cost function) between the estimated MIDs and experiments, measured 

by a standard metric used in Information Theory, the Kullback-Leibler divergence (Kullback 

and Leibler, 1951), is minimized to find a set of fluxes that best fits the data. Next, statistical 

sampling is conducted to find all sets of fluxes that can be considered as valid solutions 

(Figures 1D, E, STAR Methods). Additional constraints are then introduced to ensure the 

simulated fluxes are physiological feasible, such as requirements for minimal TCA flux 

values in the source and sink tissues (STAR Methods).

The model was first fit and fluxes were computed using data from a recent study (Hui et al., 

2017). Among all calculations of fluxes obtained from our algorithmic procedure (Figures 

1C–E), the MIDs of most metabolites can be predicted by the current model (Figure S1A–

H), and the values of the fluxes in the model are physiologically feasible (Figure S1I). The 

value of the cost function for the set of fluxes computed is also significantly lower that what 

is obtained from considering randomized data indicating that the values of fluxes computed 

are statistically significant (methods, Figure S1J–P).

Glucose contributions in different tissues

The flux network can be mathematically defined with a simplified diagram: the TCA cycle 

in the source and sink tissue is fed by two fluxes from glucose and lactate in plasma (Figure 

2A, STAR Methods). Non-negative contribution fluxes to TCA cycle from glucose (Fglc in 

source tissue and Gglc in sink tissue) or from lactate (Flac in source tissue and Glac in sink 

tissue) are calculated from net fluxes of related reactions and diffusion (STAR Methods). 

From the computed fluxes, two glucose contribution ratios, a local one Rglc and a global one 

Rglc′ , are defined to reflect the relative ratio of glucose contribution to the TCA cycle. The 
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local value Rglc distinguishes the glucose flux from circulating metabolites into the sink 

tissue and from the source tissue, while the global ratio Rglc′  reflects the general glucose 

contribution in the complete model, which includes both sink and source tissue. If Rglc or 

Rglc′  is higher than 0.5, it implies that glucose contributes more than lactate to TCA cycle in 

sink tissue or in the complete model, respectively. On the contrary, if it is lower than 0.5, 

lactate contributes more than glucose (Figure 2B, S2A).

To evaluate the glucose contribution, feasible solutions are sampled from the solution space 

and displayed in a violin plot (Figure 2C). The source tissue is the liver and the sink tissues 

are set as heart, brain, skeletal muscle, kidney, lung, pancreas, small intestine and spleen. For 

each combination of sink and source tissue, the model is fitted with data from mice infused 

by glucose and lactate. The local glucose contribution ratios Rglc tend to locate in extreme 

values in sampled feasible solutions and display a bimodal distribution (STAR Methods). In 

the fitted results, they largely concentrate around 1 in most of infused mice when fitting with 

different types of sink tissue (Figure 2D–K). The global glucose contribution ratios Rglc′

show continuous distributions, and the median of the distribution in all types of sink tissue is 

higher than 0.5 (Figure S2B–I). Therefore, those results show that in almost all cases 

glucose contributes more than lactate does to the TCA cycle.

The results from these two-tissue models rely on MID data and some parameters. To 

evaluate these dependencies, we implemented a Monte Carlo based sensitivity analysis 

(Shestov et al., 2014). First, original data and parameters are perturbed randomly. The 

perturbed values are used to calculate distribution of the local contribution Rglc as previously 

described. After this process, the median of this distribution under each individual 

perturbation is collected, and the distribution of median Rglc reflects its sensitivity to data 

and parameters (Figure 3A). Results show that the median value of Rglc is very robust to 

perturbations in glucose circulatory flux and input flux, but more sensitive to the value of 

lactate circulatory flux and the MID data (Figure 3B–E). However, in most parameter sets, 

the median Rglc is still higher than 0.5 (Figure 3C, 3E). These results demonstrate the 

robustness of the conclusion that glucose contributes more than lactate to the TCA cycle 

under physiological conditions.

One confounding issue is that the process of tissue harvesting may induce ischemia and 

hypoxia. Hypoxia will induce elevated glycogenolysis in source tissue and glycolysis in sink 

tissue, which may significantly change measured MID of metabolites (Figure S3A). To 

estimate its effect on the final conclusion, a correction is introduced to simulate these effects 

under hypoxia. Measured MIDs of glucose in source tissue and lactate in sink tissue are 

assumed to be a mixture of 80% real MID in physiological state, and 20% MID of newly 

synthesized metabolites in elevated reactions under hypoxia (Figure S3B). Specifically, 

glucose in source tissue is assumed to be mixed with unlabeled glucose, and lactate in sink 

tissue is assumed to be mixed with lactate synthesized from pyruvate, which has same MID 

as pyruvate. Therefore, the physiological MID can be solved for and utilized for the same 

analysis of glucose contribution. Compared to results before the correction, conclusions 

were not altered, and in most cases glucose contributes more than lactate is robust to 

hypoxia considerations (Figure S3C–D).
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Generality of the glucose contribution to the TCA cycle

To further investigate the generality of this conclusion, we considered a different animal 

strain, different diet and different infusion protocol with mice infused with 13C-glucose at a 

higher infusion rate which is one of the key technical variables of consideration in these 

studies (Ayala et al., 2010). In addition to our analysis of published data (Hui et al., 2017), 

these new experiments expand the scope of physiological variables (Figure 4A). These data 

are referred to as “high-infusion rate”, while the previous analysis is referred to as “low-

infusion rate”. Importantly, with the higher infusion rate, the glucose, lactate and insulin 

levels in plasma are not significantly altered during the infusion (Figure 4B). Because of the 

higher infusion rate, an input flux Jin in plasma is added to the model to capture the infusion 

operation (Figure 4C). The amount of 13C labeling increases with the infusion rate, and with 

a higher infusion rate, the model predicts the MIDs (Figure S4A). In this case, the cost 

function is also significantly lower than that obtained from a random unfitted control for the 

4 glucose-infused mice in the higher infusion rate experiments (Figure 4D), and the value of 

all fluxes are physiologically feasible (Figure S4B). As defined previously, the local 

contribution Rglc and global contribution Rglc′  to the TCA cycle are calculated for the pair of 

source tissue (liver) and sink tissue (skeletal muscle) for all mice (Figure 4E, S4C). The 

analysis shows that in most mice, Rglc and Rglc′  are both higher than 0.5, again implying that 

glucose contributes more than lactate to the TCA cycle (Figure 4F, S4D).

Glucose contribution upon consideration of multiple tissue interactions

The current model is based on source and sink tissues. However, mammals consist of tens of 

different tissues which cooperate and interact. To demonstrate the utility of this model to 

multiple tissue compartments, more sink tissues are introduced and the glucose contribution 

under these conditions are analyzed. This model contains one source tissue and two sink 

tissues, which are connected by glucose and lactate in plasma (Figure 5A, 5B). This model 

is fit with the low-infusion rate data, in which source tissue is liver and two sink tissues are 

combinations from heart, brain and skeletal muscle. The fitting is sufficiently precise (Figure 

S5A), implying that computed fluxes are physiologically feasible (Figure S5B). The cost 

functions of all combinations are also significantly lower than a random unfitted control 

(Figure S5C). In this model, glucose and lactate in plasma can contribute to the TCA cycle 

through three kinds of tissue, and therefore the definitions of local and global glucose 

contribution ratios Rglc and Rglc′  are slightly modified (Figure 5C, S5D). Fitting results show 

in all three combinations of two sink tissues, glucose contributes more than does lactate to 

the TCA cycle regardless of the definition of glucose contribution ratio (i.e. local or global 

contribution ratio) used (Figure 5D, S5E).

Glucose contribution upon consideration of multiple nutrient sources

The current analysis considers two circulating metabolites as sources for the TCA cycle: 

glucose and lactate. However, many other metabolites circulate and are exchanged between 

tissue and plasma, such as acetate, alanine and pyruvate (Hui et al., 2017; Liu et al., 2018). 

Therefore, to investigate the applicability of this model, circulating pyruvate is introduced 

(Figure 6A). Circulating pyruvate can also represent other nutrient sources including but not 

limited to alanine, glutamine, acetate, or fatty acids. In this model, circulating pyruvate is 
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not only exchanged with sink and source tissue, but also converted to lactate in plasma. 

Glucose and lactate in plasma can also be directly converted to pyruvate (Figure 6B). This 

model predicts the experimental MID with both low-infusion rate and high-infusion rate data 

(Figure S6A, S6B) with the physiologically feasible fluxes (Figure S5C, S5D). The 

distribution of values of the cost function is also significantly lower than random unfitted 

control in all kinds of sink tissue fitted with the low-infusion data (Figure S6E), or in the 

skeletal muscle fitted with the high-infusion data indicating statistical significance (Figure 

S5F).

Because circulating glucose, lactate and pyruvate each contributes to the TCA cycle in 

source and sink tissues, the local contribution ratios of the three metabolites Rglc, Rlac and 

Rpyr need to be calculated individually, as well as three global contribution ratios Rglc′ , Rlac′

and Rpyr′ , and the sum of the three local or global contribution ratios equals to 1 (Figure 6C, 

S6H). The distribution of three ratios can be displayed by a ternary plot (Marc et al., 2019, 

STAR Methods). For the low-infusion rate data, the local contribution from glucose is 

predominantly higher than lactate and pyruvate (Figure 6D), and the conclusion is similar 

when the sink tissue in the model is replaced by other types of tissue (Figure S6G). For the 

global contribution, contribution from glucose is close to or slightly lower than lactate, 

which are both significantly higher than pyruvate (Figure S6I). The situation is similar in the 

high-infusion rate data, in which the local contribution from glucose markedly dominates in 

all sampled solutions, but the global contribution from glucose is closed to lactate (Figure 

6E. S6J). Therefore, in a model with more metabolites in circulatory system, circulating 

glucose contributes more than lactate to the TCA cycle in all kinds of sink tissue, and has 

similar contribution than does lactate.

DISCUSSION

The nutrient sources for the TCA cycle have long been of interest. However, due to 

difficulties in data acquisition and mathematical analysis, quantitative studies under 

physiological conditions are still rare. With advances in mass spectrometry and 

mathematical modeling, in vivo flux analysis studies with isotope-labeling data have become 

a mainstay in the study of metabolic physiology. Previous studies have measured TCA cycle 

source utilization by MFA. However, with the development of these new mathematical tools, 

our study challenges some key conclusions that form the current consensus for the relative 

contributions of lactate and glucose to the TCA cycle. For example, it was reported that 

lactate is the major energy source for most tissues and tumors (Hui et al., 2017; Jin et al., 

2019). Our results show that most organs uptake more glucose than lactate to fuel the TCA 

cycle. This conclusion also holds under various parameters, experimental conditions such as 

animal strain and diet, tissue type, tissue interactions and source metabolite number, which 

together indicate the robustness and generalizability of the conclusions. Our results, 

however, are consistent with conventional knowledge that glucose behaves as a primary 

energy source in cells and tissues, especially for neural systems (Nelson et al., 2017). 

Nevertheless, our results confirm that lactate is highly exchanged between tissue and plasma, 

while glucose is transferred from the liver to other organs. These phenomena appear to also 

be observed in recent studies on flux measurements in pigs (Jang et al., 2019).
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In addition to addressing an important issue in metabolic physiology, our study provides a 

framework for metabolic flux analysis in physiological conditions. Compared with previous 

studies, the first improvement is that fluxes calculated by our model can capture more 

aspects of metabolic biochemistry. For example, the flux from pyruvate to glucose (G6/H6), 

the gluconeogenesis flux in sink tissue, relies on Phosphoenolpyruvate Carboxykinase 

(PEPCK), which only expresses in few kinds of tissue such as liver, kidney and adipose 

tissue (Geiger et al., 2013). Therefore, G6/H6 fluxes are very small in most of our fitting 

results (Figure S1I, S4B, S5B, S6C–D). Another example is high diffusion and exchange of 

lactate between tissue and plasma, which is usually overlooked, but captured by our model 

(F3/F4, G3/G4, H3/H4 in Figure S1I, S4B, S5B, S6C–D) and validated by experimental 

measurements (Jang et al., 2019). The second improvement is that, rather than fitting the 

model with a single solution, we sampled the entire high-dimensional solution space and 

analyzed all feasible results. Those millions of sampled points can cover more regions in 

solution space and precisely reflect real distribution of fluxes, especially in a complicated 

model. The third improvement is more complete analysis for parameter sensitivity than 

previous studies. This study verified the robustness of the conclusions not only under 

random perturbation of parameters and MID data, which accounts for uncertainties in 

experimental precision, but also may account for hypoxia which introduces systematic 

experimental bias. These analyses serve to extend much of the Metabolic Flux Analysis 

framework that was developed for cell systems to physiological conditions.

Another intriguing feature of this model is its generalizability and scalability. From a basic 

two-tissue version, this model is readily extended to compute fluxes from isotope patterns 

with higher infusion rates, more tissue types and more nutrient sources which could be 

useful to study for example different nutritional situations and pathophysiology states such 

as metabolic syndromes, diabetes and cardiovascular disease. The generality of this model 

allows for a broader usage in future research. More kinds of tissue can be introduced to 

better mimic the physiological condition such as the interaction between cancer and host 

organs. As the number of tissues considered increases, their roles could be more complicated 

rather than a single source and sink. For example, previous research indicates that the kidney 

may also have a significant contribution to net production of glucose in pigs (Jang et al., 

2019). Second, more nutrient sources could be introduced and the metabolic network in each 

cell could also be expanded. The current model includes three nodes: glucose, pyruvate and 

lactate which capture fluxes in central carbon metabolism but could be extended into 

intermediary metabolism. Although sufficient for analyzing the contribution of 

macronutrients, studies of fatty acids, ketosis and amino acid metabolism will require a 

larger network. Nevertheless, the methodology contained within this model could be 

extended. For instance, subcellular compartmentalized metabolic flux analysis is also 

important (Lee et al., 2019). However, its application is usually restricted to the 

mitochondria and nucleus because of the difficulty in acquiring isotope-labeling data in each 

cellular compartment. On the other hand, interactions within heterogenous tissues could also 

be described by this model. It has been widely shown that cells in a tumor may express 

different metabolic states, and will compete or cooperate for many resources (Hensley et al., 

2016). Quantitative methods based on this model may help to better describe those precise 

and complicated interactions.
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LIMITATIONS OF STUDY

Our ability to resolve metabolic fluxes is first limited by the data. Thus, limited by data and 

then computational techniques, this model only covers a small portion of biochemical 

reactions. Specifically, this model combines all fluxes in the TCA cycle into one 

unidirectional flux that gives an overall rate, because adding those fluxes and metabolites to 

the model will not largely improve fitting precision of current fluxes, but will increase the 

dimension of solution space and thus increase uncertainty of results (STAR Methods). 

Therefore, this model may not fit the MID of some metabolites connected with TCA. For 

example, pyruvate can feed the TCA cycle and change the MID of metabolites in it, but it 

can also be fed by cataplerotic fluxes of TCA cycle. Consequently, the MID of pyruvate will 

be coupled with metabolites in TCA cycle, and cannot be precisely described as the model 

currently stands. Another limitation is the high dimensionality of the solution space in light 

of limited available constraints. In our models, high dimensionality of the solution space 

requires sampling algorithms to measure the solution space. As the model expands, these 

algorithmic challenges become more difficult. Thus, more constraints must be introduced to 

reduce the dimensionality of the feasible solution space. For example, our study includes 

constraints from circulatory fluxes (Hui et al., 2017), and some MFA model uses fixed 

biomass fluxes as boundary conditions (Reid et al., 2018). However, the precision and 

generalizability of these external constraints requires additional assessments, and they may 

introduce bias. Heterogeneity of those constraints in different individual systems should also 

be evaluated. Comprehensive and precise model analysis requires more effort to establish 

reliable constraints as well as acquisition of metabolite data with more coverage and higher 

resolution.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for reagents may be directed to and will 

be fulfilled as appropriate by the Lead Contact, Jason W. Locasale 

(dr.jason.locasale@gmail.com).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The low-infusion data set is available in previous work 

(Hui et al., 2017). The time-series concentration data of metabolites in plasma, the high-

infusion data set and all source codes are available from GitHub (https://github.com/

LocasaleLab/Lactate_MFA). Scripts in this study are implemented in Python 3.6. The 

package version dependency is also provided on GitHub website. A Docker on Linux system 

for out-of-the-box running is also available on Docker Hub (https://hub.docker.com/r/

locasalelab/lactate_mfa). Each model requires around 10 ~ 50 hours of running time.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal—All animal procedures were approved by the Institutional Animal Care and Use 

Committee (IACUC) at Duke University. Mouse models is from 8 to 10-week old, male and 
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female mixed background (129/SVJae and C57BL/6) with a combination of alleles that have 

been previously described: Pax7CreER-T2, p53FL/FL, LSL-NrasG12D and ROSA26mTmG 

(Zhang et al., 2015). Mice were fed standard laboratory chow diets ad libitum.

METHOD DETAILS

Data Sources—This study is based on two data sources: low-infusion data were obtained 

from infused fasting mice in previous work (Hui et al., 2017), while the high-infusion data 

were acquired based on following protocols.

Reagents—Unless otherwise specified, all reagents were purchased from Sigma-Aldrich. 

Jugular vein catheters, vascular access buttons, and infusion equipment were purchased from 

Instech Laboratories. Stable isotope glucose were purchased from Cambridge Isotope 

Laboratories.

In vivo 13C glucose infusions—To perform in vivo nutrient infusions, chronic 

indwelling catheters were placed into the right jugular veins of mice and animals were 

allowed to recover for 3–4 days prior to infusions. Mice were fasted for 6 hours and infused 

with [U-13C]glucose for 3 hours at a rate of 20 mg/kg/min (150 μL/hr). Blood was collected 

via the tail vein at 3 h and serum was collected by centrifuging blood at 3000g for 15 min at 

4°C. At the end of infusions, tissues were snap frozen in liquid nitrogen and stored at −80°C 

for further analyses.

Insulin measurement—The concentration of insulin in plasma is measured by Ultra 

Sensitive Mouse Insulin ELISA Kit from Crystal Chem.

Metabolite extraction from tissue—Briefly, the tissue sample was first homogenized in 

liquid nitrogen and then 5 to 10 mg was weighed in a new Eppendorf tube. Ice cold 

extraction solvent (250 μl) was added to tissue sample, and a pellet mixer was used to further 

break down the tissue chunk and form an even suspension, followed by addition of 250 μl to 

rinse the pellet mixer. After incubation on ice for an additional 10 min, the tissue extract was 

centrifuged at a speed of 20 000 g at 4 °C for 10 min. 5 μl of the supernatant was saved in 

−80 °C freezer until ready for further derivatization, and the rest of the supernatant was 

transferred to a new Eppendorf tube and dried in a speed vacuum concentrator. The dry 

pellets were reconstituted into 30 μl (per 3 mg tissue) sample solvent 

(water:methanol:acetonitrile, 2:1:1, v/v) and 3 μl was injected to LC-HRMS.

HPLC method—Ultimate 3000 UHPLC (Dionex) was used for metabolite separation and 

detection. For polar metabolite analysis, a hydrophilic interaction chromatography method 

(HILIC) with an Xbridge amide column (100 × 2.1 mm i.d., 3.5 μm; Waters) was used for 

compound separation at room temperature. The mobile phase and gradient information were 

described previously. 2-hydrazinoquinoline derivatives were measured using reversed phase 

LC method, which employed an Acclaim RSLC 120 C8 reversed phase column (150 × 2.1 

mm i.d., 2.2 μm; Dionex) with mobile phase A: water with 0.5% formic acid, and mobile 

phase B: acetonitrile. Linear gradient was: 0 min, 2% B; 3 min, 2% B; 8 min, 85% B;9.5 
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min, 98% B; 10.8 min, 98% B, and 11 min, 2% B. Flow rate: 0.2 ml/min. Column 

temperature: 25 °C.

Mass Spectrometry—The Q Exactive Plus mass spectrometer (HRMS) was equipped 

with a HESI probe, and the relevant parameters were as listed: heater temperature, 120 °C; 

sheath gas, 30; auxiliary gas, 10; sweep gas, 3; spray voltage, 3.6 kV for positive mode and 

2.5 kV for negative mode. Capillary temperature was set at 320°C, and S-lens was 55. A full 

scan range was set at 70 to 900 (m/z) with positive/negative switching when coupled with 

the HILIC method, or 170 to 800 (m/z) at positive mode when coupled with reversed phase 

LC method. The resolution was set at 140 000 (at m/z 200). The maximum injection time 

(max IT) was 200 ms at resolution of 70 000 and 450 ms at resolution of 140 000. 

Automated gain control (AGC) was targeted at 3 × 106 ions. For targeted MS2 analysis, the 

isolation width of the precursor ion was set at 1.0 (m/z), high energy collision dissociation 

(HCD) was 35%, and max IT is 100 ms. The resolution and AGC were 35 000 and 200 000, 

respectively.

Metabolite Peak Extraction and Data Analysis—Raw peak data was processed on 

Sieve 2.0 software (Thermo Scientific) with peak alignment and detection performed 

according to the manufacturer’s protocol. The method “peak alignment and frame 

extraction” was applied for targeted metabolite analysis. An input file of theoretical m/z and 

detected retention time was used for targeted metabolite analysis, and the m/z width was set 

to 5 ppm. An output file was obtained after data processing that included detected m/z and 

relative intensity in the different samples.

QUANTIFICATION AND STATISTICAL ANALYSIS

GENERAL ANALYSIS METHOD

Model design—A principle of model design is parsimony, also referred to as “Occam’s 

razor” that is to use the simplest model that can appropriately address the question at hand. 

Inclusion of parameters and variables should correspond to available data and constraints 

that parameterize the model and allow for the model to address the relevant questions. The 

primary goal of this study is to quantify the contribution of circulating glucose and lactate to 

the TCA cycle. Therefore, the model, to reach appropriate conclusions, should balance the 

ability to achieve this goal and the complexity that can be precisely evaluated from available 

data.

To study circulating metabolites, the model contains at least two compartments: plasma and 

a specific tissue. However, because circulating glucose and lactate must be balanced, the net 

flux between plasma and tissue is limited to boundary fluxes of circulating glucose and 

lactate, which cannot capture dynamics between circulation and target organs. Therefore, a 

heterogenous two tissue system is introduced, and it allows for different patterns in 

utilization of nutrient source. One common pattern is the Cori cycle, in which in the fasting 

state, the sink tissue (muscle) utilizes circulating glucose and excretes lactate, while the 

source tissue (liver) convert them back to glucose. The basic structure using two tissues and 

plasma is already difficult to model. To prevent overfitting leading to parameter uncertainty, 

the network in each tissue contains three key nodes: glucose, pyruvate and lactate, and their 
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interconversion fluxes. TCA-related reactions are described by one unidirectional flux, 

because introducing more TCA cycle reactions would not address the question of relative 

nutrient contributions and lead to overfitting. To intuitively understand whether TCA-related 

reactions have a substantial impact on the labeling patterns, the MID of 

phosphoenolpyruvate (PEP), the metabolite generated from oxaloacetate (OAA) in the first 

step of gluconeogenesis, is also measured in liver (source tissue) and skeleton muscle (sink 

tissue) in the high-infusion rate data. The MID for PEP is uncorrelated with that of malate in 

TCA cycle (Figure S7A), suggesting that the cataplerotic flux from the TCA cycle 

intermediates to glucose (which requires PEP as an intermediate) does not have a significant 

impact on labeling patterns of metabolites. Similar results are also observed in a previous 

study from Hui et al Nature 2017. Although the MID of PEP is not available in those data, 3-

phosphoglycerate (3PG), the metabolite adjacent to PEP in glycolysis/gluconeogenesis 

(Figure S7B), showed a similar trend, again indicating that the effect of the labeling pattern 

from TCA cycle intermediates to glucose is very low. Therefore, although previous studies 

show that cataplerotic flux of TCA may be one of major sources of PEP in liver, introducing 

more TCA reactions do change results of the fits from current metabolites, and thus not 

significantly improve the precision of this model.

However, a more complicated model that includes every reaction carrying the fluxes of the 

TCA cycle, at least 6 metabolite MIDs and tens of fluxes should be added, including citrate, 

α-ketoglutarate (as well as glutamate), succinate, oxaloacetate (as well as aspartate) in the 

TCA cycle and PEP in glycolysis. Absolute measurements of fluxes feeding into the TCA 

cycle from other carbon sources such as branched chain amino acids and glutamine are also 

required to fully parameterize the model. The lack of data would lead to overfitting and 

parameter uncertainty which limits the conclusions that can be drawn. Under this condition, 

introducing more detailed fluxes may not substantially improve fitting precision, but would 

introduce uncertainties within the current model. Therefore, after careful consideration of 

the available data and the primary goal of the model, the resulting model consists of one 

plasma and two tissues, which includes glucose, pyruvate, lactate and conversion fluxes 

between them.

There are some limitations in the current model. For example, in the source tissue, M+3 PEP 

is higher and M+3 pyruvate is lower compared with that in sink tissue. considering the 

similar abundance of M+6 glucose both in source and sink tissue (Figure S4A), this implies 

that there might be more high-labeled carbon source that supply of PEP in the source tissue. 

Limited by available data, the current model cannot explain the source of those hidden high-

labeled carbon sources. Similarly, lower M+3 pyruvate in the source tissue might be due to 

some unlabeled sources of pyruvate in source tissue, such as glucogenic amino acids. 

However, data also show that the abundance of M+4 in malate in liver is very low, both in 

the Hui et al. Nature 2017 data and the high-infusion data. Considering the high exchange 

rate between malate and aspartate/oxalacetate, although the cataplerotic flux may be one of 

the main sources of PEP, it should not be the main reason for higher M+3 PEP in source 

tissue, nor the main reason of the difference between experimental and predicted MID in this 

study.
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The structure of this model is another point of discussion. For example, in cellular 

metabolism, the flux G2 relies on glucose 6-phosphatase (G6Pase), but most kinds of sink 

tissue lack this enzyme. Similarly, the flux G6 relies on phosphoenolpyruvate carboxykinase 

(PEPCK), which is often thought to be most highly expressed in liver. However, these two 

fluxes are both preserved in the sink tissue, since one of the main goal of this model is to 

introduce exchange fluxes of some metabolites between tissue and circulation. Exchange 

fluxes may significantly affect MID data, which will also influences the results of flux 

analysis. In tissue level, these exchange fluxes are derived as an abstracted model of a series 

of complicated biochemical reactions, including transport in extracellular fluid, absorption/

secretion by tissue cells, and utilization/production by the tissue cells. This complicated 

process is not directly equivalent to a cellular biochemical reaction. On the other aspect, for 

the G2 flux, many sink tissues, such as kidney, heart, lung, head and leg, has been reported 

to have release flux or nearly release flux of glucose by direct flux measurement in pigs 

(Figure 3B, 3C in (Jang et al., 2019)). For the G6 flux in sink tissue, from the distribution in 

the region of feasible solutions, G6 is very small in most cases (Figure S7I, M1 and M4 in 

Figure S4B, Figure S5B, Figure S6C–D). However, because of heterogeneity in biological 

organisms, in some cases G6 is still very high (M2 and M3 in Figure S4B). These results 

indicate that the current model may reflect the difference between cellular level and tissue/

organ level metabolism.

Flux model—In this study, each metabolic reaction network includes many fluxes between 

different metabolites (chemical reactions) or metabolites traversing through different tissues 

(diffusions). Flux models include glucose, lactate and pyruvate as metabolites in three 

compartments (plasma, source tissue and sink tissue). Each model contains tens of fluxes, 

labeled with F (for fluxes in the source tissue), G (for fluxes in the sink tissue), H (for fluxes 

in the second sink tissue in models with multiple sink tissues) and J (for fluxes within 

plasma). The solution is a vector F = {F1, F2,…, G1, G2,…H1,…, J1,…} containing flux 

values for all reactions in the metabolic reaction network.

It is required that all fluxes satisfy mass balance constraint, which is:

∑
∀Fin, i

Fin, i = ∑
∀Fout, i

Fout, i (S1)

in which Fin,i and Fout,i represent all input and output fluxes connected to metabolite i 
respectively (Figure S7C). All fluxes are required to be within a range [Fmin, Fmax].

Flux constraints—To reduce the degrees of freedom, constraints are introduced: first, the 

flux that supplements glucose in the source tissue (referred as F10 in all models) is set as a 

fixed value Finput. Second, the sum of total input fluxes to plasma glucose, which is glucose 

turnover flux in plasma, is set as a fixed value Fcirc,glc. Similarly, the lactate turnover flux in 

plasma is set as a fixed value Fcirc,lac (Figure S7D). Their values were chosen from previous 

research (Hui et al., 2017), and sensitivity with respect to changes in their values was 

evaluated.
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To search the solution space, some fluxes are set to a fixed value during the fitting process. 

Details are explained in “Solution space sampling” section.

Mass isotopomer distribution calculation—The predicted mass isotopomer 

distribution (MID) of a metabolite is calculated based on MID of its precursors and 

corresponding flux values, which can be expressed as:

Mi = ∑jFjMji
∑jFj

(S2)

where Mi is predicted MID of metabolite i, Mji is MID of metabolite i produced from a 

substrate j, and Fj is the flux from j to i. Mji could be calculated by experimental MID of 

metabolite j: Mji = f(Mj), in which f is the MID conversion function between substrate j and 

product i.

For example, glucose and lactate can be converted to pyruvate and mixed together. In the 

source tissue, F5 and F7 describes the fluxes that convert glucose and lactate to pyruvate, 

respectively. Therefore, the predicted MID of pyruvate in the source tissue that comes from 

lactate and glucose can be formulated (Figure S7E).

For the MID conversion function f, there are three types of conversions:

1. Transport of metabolites between plasma and tissue, such as metabolite j being 

glucose in the plasma and metabolite i being glucose in the source tissue. This 

conversion does not change the MID. Therefore, Mji = Mj.

2. Conversion between lactate and pyruvate, such as metabolite j being lactate in 

the source tissue and metabolite i being pyruvate in the source tissue. Because 

they have similar structure, conversion between lactate and pyruvate does not 

change MID. Therefore, Mji = Mj is also valid in this category.

3. Conversion between glucose and pyruvate, such as metabolite j being glucose in 

the source tissue and metabolite i being pyruvate in the source tissue. Because 

they have a different carbon number, this kind of conversion is complicated. Two 

special functions are designed to calculate the corresponding MIDs:

a. To calculate the MID of glucose produced by pyruvate through 

gluconeogenesis, a convolution is used. Suppose that the MID of 

pyruvate is Mpyr = [Mpyr,0, Mpyr,1, Mpyr,2, Mpyr,3], the MID vector of 

glucose synthetized from pyruvate could be expressed as a convolution 

function:

Mglc_from_pyr = conv2 Mpyr = convolution Mpyr, Mpyr (S3)

where the discrete convolution function is defined as:

If twovectorsA = A0, …, Am − 1 andB = B0, …, Bn − 1 ,
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C = convolution(A, B), in which: 

Ck = ∑
i = max(0, k − n)

min(k, m − 1)
AiBk − i, k ∈ 0, 1, …, m + n − 1 (S4)

b. To calculate the MID of pyruvate produced by glucose through 

glycolysis, an approximation method is used here. Suppose that the 

MID of glucose is Mglc = [Mglc,0, Mglc,1, Mglc,2, Mglc,3, Mglc,4, Mglc,5, 

Mglc,6], because for glucose, carbon atoms are either all 13C or all 12C, 

Mglc,0 and Mglc,6 will be dominant in MID vectors. Therefore, the MID 

of pyruvate from glucose could be expressed as a split function:

Mpyr = split Mglc = Mglc, 0, Mglc, mid, Mglc, midMglc, 6 (S5)

in which Mglc, mid =
1 − Mglc, 0 − Mglc, 6

2

The MID of unlabeled glucose is set to Mglc,natural, which is a binomial 

distribution based on the natural abundance of 13C in glucose, that is:

Mglc, natural, i = 6
i R13C

i 1 − R13C
6 − i, i = 0, 1, …, 6 (S6)

in which R13C is natural abundance of 13C. The MID of infused labeled 

glucose (substrate of Jin flux in some models) is set to Mglc,label, in 

which all carbon atoms are 13C.

MID fitting and flux solutions—The flux solution to a MID data is obtained by 

minimizing the difference between predicted and experimental MID data. The difference 

between the predicted MID Mx and the experimental MID Mx for a metabolite x can be 

defined by the Kullback–Leibler divergence DKL (Kullback and Leibler, 1951), which is 

referred as cost function Lx:

Lx = DKL Mx ∥ Mx = ∑
i

Mx, i + εlog logMx, i + εlog
Mx, i + εlog

(S7)

in which Mx,i and Mx, i are element i in vector Mx and Mx, respectively. εlog is a small 

number added to maintain numerical stability.

The total cost function of a model is the sum of cost function values for selected metabolites 

(referred as target metabolites), which is defined as:

Lmodel = ∑
x

Lx (S8)
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Target metabolites in most models consisting of glucose, pyruvate and lactate in source and 

sink tissues. Some models may include target metabolites in plasma for better fitting.

Because each Mx is a function of the flux vector F, the cost function of the model Lmodel is 

also a function of F. Therefore, the flux solution can be written as:

min
F

Lmоdel(F), s.t. A ⋅ F = bandFmin ≤ F ≤ Fmax (S9)

in which A·F = b represents the flux balance requirement and other constraints. An 

additional constraint of a flux range F ∈ [Fmin, Fmax] is also incorporated.

Eq. S9 represents an optimization problem with a nonlinear objective function, linear 

equality and inequality constraints. Therefore, it is a constrained nonlinear optimization 

problem. In this study, we solve this problem by sequential quadratic programming (SQP) 

implemented in the SciPy package (Kraft, 1988).

Similar with other iterative optimization algorithms, this algorithm starts with an initial 

solution and iterates to find the locally optimal point. The initial solution is generated by a 

linear programming (LP) problem:

min
F

rT ⋅ F , s.t.A ⋅ F = bandFmin ≤ F ≤ Fmax (S10)

in which r is a uniformly distributed random vector in range [−0.4, 0.6] with the same size as 

F. This linear programming problem is solved by a simplex algorithm implemented in SciPy 

package (Dantzig, 2016; Winston et al., 2003).

Because SQP can only calculate a local optimum, the LP step is repeated nopt_repeat times to 

generate multiple different initial values. These initial values are fed into the SQP step to fit 

the flux vector respectively, and the flux vector with lowest objective value is then chosen as 

the final result. Random solutions are generated by Linear Programming (eq. S10) as 

previously described. The objective function value is computed for each random solution. To 

evaluate the difference in objective function values between the computed solutions and the 

random solutions, a p-value is calculated from a nonparametric Wilcoxon rank-sum test 

implemented in the SciPy package.

Glucose contribution calculation—After fitting a set of fluxes from the MID data, we 

can use the results to calculate the relative contribution of different nutrients to the TCA 

cycle. For all models in this study, the contribution from each nutrient in each tissue can be 

regarded as one non-negative contribution flux, referred as Fglc, Gglc, etc. From those 

contribution fluxes, the total contribution Rx from one metabolite x is defined as:

Rx = Fx + Gx + Hx
∑y Fy + ∑y Gy + ∑y Hy

, Hxmaynotexist insomemodels . (S11)

To calculate the non-negative contribution fluxes from raw flux result, we calculate all net 

fluxes that are connected to TCA cycle. Suppose those net fluxes are Fnet,x, Fnet,y and Fnet,z, 
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they could be positive or negative. We calculate the contribution fluxes from the following 

formulae:

Ftotal, in = ∑
∀Fnet, x > 0

Fnet, x (S12)

Ftotal, out = − ∑
∀Fnet, x < 0

Fnet, x (S13)

Foreachmetabolitex : Fx =
1 − Ftotal, out

Ftotal, in
Fnet, x Fnet, x > 0

0 Fnet, x < 0
(S14)

For example, suppose in a tissue, glucose, lactate and pyruvate can contribute to the TCA 

cycle. The raw fluxes are first converted to net fluxes Fnet,glc, Fnet,lac and Fnet,pyr. Then, the 

non-negative absolute contribution fluxes Fglc, Flac and Fpyr are calculated based on eq. S14. 

Finally, the normalized contribution ratio can be calculated from S11 (Figure S7F).

In the simple situation with only two metabolites (lactate and glucose), eq. S14 simplifies:

If Fnet, glc > 0, Fnet, lac > 0: Fglc = Fnet, glc andFlac = Fnet, lac

If Fnet, glc < 0, Fnet, lac > 0: Fglc = 0andFlac = Fnet, lac + Fnet, glc

If Fnet, glc > 0, Fnet, lac < 0: Fglc = Fnet, glc + Fnet, lacandFlac = 0 (S15)

Solution space sampling—The dimension of the solution space in a model is calculated 

based on:

ndim = nflux − nbalance − nconstrain − nmid (S16)

in which nflux is the number of flux variable, nbalance is the number of flux balance equations 

(number of eq. S1), nconstrain is the number of flux constraint equations, and nmid is the 

number of MID equations used to fit the model (number of eq. S7 and also elements in eq. 

S8). ndim equals to 2 in basic models (model A and model B) and is larger in the 

complicated model.

ndim determines the degree of freedom in the solution space. To sample the solution space 

uniformly, values of some fluxes are fixed during fitting (or be constant in random unfitted 

solutions), and the number of fixed fluxes equals to ndim. Those fluxes with fixed values are 

called “free fluxes”. Those free fluxes make the dimension of the solution space of the 

optimization problem the same as the number of target metabolites, which prevents the 
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problem from being overdetermined or underdetermined. The values of free fluxes are added 

to flux constraints equation A · F = b during the optimization process.

Free fluxes are chosen based on model structure. In most models with ndim equal to 2, fluxes 

F1 and G2 are chosen as free fluxes. The values of free fluxes are sampled uniformly in their 

defined ranges. When there are only two free fluxes, the whole solution space is scanned 

based on a lattice with nlattice discrete values on each edge (totally nlattice
2  points) (Figure 

S7G). As its dimension of free fluxes increases, computational cost for thorough scanning 

grows exponentially. Therefore, in some models with higher ndim, we choose ndiag points 

with equal intervals on the diagonal of the solution space and shuffle their coordinates to 

cover the whole space (Figure S7H).

For each point of free fluxes, the LP problem is solved to obtain the initial solution. If no 

solution exists under the current free flux combination, this point will be discarded in the 

following calculation. After generating an initial solution, for the random unfitted solutions, 

it is directly returned for following analysis. For fitted solutions, the SQP algorithm is 

executed to obtain the final flux vector F* that minimizes the objective function (eq. S8) and 

the corresponding objective value L*. To be regarded as a feasible solution, F* must satisfy 

a series of requirements: First, F* should meet minimal requirement for the value of a TCA 

flux, which means that one or multiple TCA fluxes must be larger than a threshold FTCA,min. 

Secondly, L* should be small enough, which means the predicted MID data based on F* is 

close enough to experimental data. Therefore, we require the objective value L* must be 

smaller than a threshold of objective function Lthreshold. Only feasible solutions will be used 

to calculate the final distribution of glucose contribution. Therefore, the general procedure of 

glucose contribution analysis is shown as follows:

1. Choose the free fluxes based on the model.

2. Generate the sample of free fluxes in the solution space.

3. Optimize the objective function and solve for the corresponding flux values 

based on each free flux sample. Select those solutions with large enough TCA 

fluxes and small enough objective value.

4. Calculate glucose contribution for all feasible solutions.

5. Plot distribution of glucose contribution.

Parameter sensitivity—For a parameter sensitivity analysis, experimental MID data or 

those flux constraints are varied based on a Gaussian distribution to generate nparam_sample 

different sets. For each perturbed parameter set, a solution space sampling is executed, 

similar with other model, to calculate the distribution of glucose contribution. For each MID 

data perturbation, each experimental MID vector are multiplied with a random vector, which 

consists of variables with identical independent distributions, to generate raw new vector 

Mx, i, raw′ , that is:

Mx, i, raw′ = Mx, i 1 + δi , inwhichδi is i.i.d.andMx, i is i ‐th elementinMx (S17)
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δi follows the truncated Gaussian distribution N(0, σmid) in the range of [0.1, 0.9] and [−0.9, 

−0.1]. Then the new raw MID vector is normalized to generate the final perturbed MID 

vector Mx′ :

Mx, i′ = Mx, i, raw′
∑i Mx, i, raw′ , in whichMx, i′ is i ‐th element in Mx′ . (S18)

The MID vector of different metabolites is multiplied by different random vector in one data 

perturbation. The perturbed data are used for the following glucose contribution analysis. 

Perturbation of other constraints is similar with MID data perturbation. In each perturbation, 

the target constraint is multiplied by a random variable, that is:

Finput′ = Finput(1 + δ) (S19)

Fcirc, glc′ = Fcirc, glc(1 + δ) (S20)

Fcirc, lac′ = Fcirc, lac(1 + δ) (S21)

Similar with the MID data, δ follows the truncated Gaussian distribution N(0, σflux) in the 

range of δmid or δflux. The perturbed parameters are used for the following glucose 

contribution analysis.

Hypoxia correction—Tissue extraction introduces issues due to hypoxia. To estimate 

these effects to the final glucose contribution, a correction to the MID data is introduced to 

simulate this process. The hypoxic state includes two major events: glycogen breakdown in 

source tissue and elevated lactate generation in sink tissue (figure S3A). To correct for the 

effect of hypoxia, the current data is assumed to be measured under hypoxia, which means 

the current MID of metabolites is a mixture of that metabolite in the original tissue and 

product of activated reaction under the hypoxia state. Specifically, the MID of glucose in the 

source tissue is mixture of (1−amix) (80%) original glucose MID and amix (20%) hydrolyzed 

glucose from glycogen (unlabeled MID), and the MID of lactate in the sink tissue is mixture 

of (1−amix) (80%) original one and amix (20%) reductive product from pyruvate (same MID 

as pyruvate in sink tissue) (figure S3B). From this assumption we calculate putative original 

MIDs of these two metabolites. If there is any negative item in MID, assign all of them to 

εmid and re-nomalized each MID to ensure sum of them equals to 1. Use those processed 

MID to do the same fitting and calculation of glucose contribution as Model A.

Ternary graph plotting—In those models with three circulating metabolites, glucose, 

pyruvate and lactate can all contribute to the contribution to the TCA cycle. Therefore, the 

ternary graph is plotted to display the distribution of their relative contribution ratio in one 

figure. The ternary graphs are plotted using a python package, python-ternary (https://

github.com/marcharper/python-ternary).

For each free flux sample, the contribution from glucose Rglc, from pyruvate Rpyr and from 

lactate Rlac are calculated based on eq. S14. Each triple set (Rglc, Rlac, Rpyr) in ternary space 
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T corresponds to the contribution of one sample of a free flux set with objective value lower 

than threshold. To better display the distribution of contribution the set of three fluxes, those 

points are binned and used to make the density heatmap. as figure 5D and E. Because of the 

limitation of ternary plot package, a complicated protocol is designed to reflect the point 

density (Figure S7I).

First, those sets (Rglc, Rlac, Rpyr) in ternary space T are transformed to the Cartesian 

coordinate system (xR, yR) in the space R2 by the following equations:

yR = 3
2 Rlac

xR = Rglc − yR
3

(S22)

The contribution of triplet set of all solution points are mapped onto the Cartesian system 

and binned in a two dimensional (2D) grid with nbin bins on each edge. The output matrix 

Ncontribution is a square matrix with nbin
2  items. A Gaussian kernel matrix G with the same 

size as Ncontribution from a two dimensional Gaussian distribution with the center at origin 

and covariance matrix as 
σternary2 0

0 σternary2  is constructed. Then, the binned contribution 

matrix Ncontribution and kernel matrix G are convoluted to obtain the final density matrix D 
based on a 2D discrete convolution rule:

If A andBaresquarematriceswithm‐ andn‐dimensionrespectively,

C = conv2d(A, B)

inwhichCij = ∑
l = 0

n
∑

k = 0

n
Ai − n

2 + k, j − n
2 + lBkl .  (FillAwith0if outof scope)  (S23)

In the final ternary graph, the triangle is divided into smaller hexagons. For each hexagon, its 

center coordinates in three-dimensional space (Rglc, Rlac, Rpyr) are mapped to 2D Cartesian 

space to get (xR, yR) based on eq. S22. This hexagon is colored based on the interpolated 

(xR, yR) onto the density matrix D.

Software implementation—Scripts in this study are implemented by Python 3.6. Results 

are running on a desktop PC with an i7-8700 CPU. To reduce the running time, some 

strategies such as parallel based processing are utilized. Each model requires around 10 ~ 50 

hours of CPU running time.
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Common parameters:

Parameter Comment Value

R13C Natural abundance of 13C 0.01109

Mglc,label MID of labeled infusion glucose [0,0,0,0,0,0,1]

εlog Small number to increase numeric stability in log function 1e-10

εmid Small number to increase numeric stability in MID normalization 1e-5

SPECIFIC MODELS

Based on general protocols described above, many models are implemented in this study. 

They are different in data source and metabolites, tissues and parameters included in those 

models. Relationships between these models are shown in Figure S7J.

Model A: basic model for two tissues (figure 1, S1, 2, S2)

Flux balance equations:

Glucose in source tissue:F1 + F6 + F10 = F2 + F5

Pyruvate in source tissue:F5 + F7 = F6 + F8 + F9

Lactate in source tissue:F3 + F8 = F4 + F7

Glucose in plasma:F2 + G2 = F1 + G1

Lactate in plasma:F4 + G4 = F3 + G3

Glucose in sink tissue:G1 + G6 = G2 + G5

Pyruvate in sink tissue:G7 + G5 = G6 + G8 + G9

Lactate in sink tissue:G3 + G8 = G4 + G7
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Flux constraints:

Supplement glucose flux:F10 = Finput

Glucose turnover flux:F2 + G2 = Fcirc, glc

Lactate turnover flux:F4 + G4 = Fcirc, lac

MID data:

Glucose in source tissue:Mglc, source

Pyruvate in source tissue:Mpyr, source

Lactate in source tissue:Mlac, source

Glucose in plasma:Mglc, plasma

Lactate in plasma:Mlac, plasma

Glucose in sink tissue:Mglc, sink

Pyruvate in sink tissue:Mpyr, sink

Lactate in sink tissue:Mlac, sink

MID predictions:

Glucose in source tissue: Mglc, source =
F1 ⋅ Mglc, plasma + F6 ⋅ conv2 Mpyr,source + F10 ⋅ Mglc, natural

F1 + F6 + F10
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Pyruvate in source tissue: Mpyr, source =
F5 ⋅ split Mglc, source + F7 ⋅ Mlac, source

F5 + F7

Lactate in source tissue: Mlac, source =
F3 ⋅ Mlac, plasma + F8 ⋅ Mpyr, source

F3 + F8

Glucose in sink tissue: Mglc, sink =
G1 ⋅ Mglc, plasma + G6 ⋅ conv2 Mpyr, sink

G1 + G6

Pyruvate in sink tissue: Mpyr, sink =
G5 ⋅ split Mglc, sink + G7 ⋅ Mlac, sink

G5 + G7

Lactate in sink tissue: Mlac, sink =
G3 ⋅ Mlac, plasma + G8 ⋅ Mpyr, sink

G3 + G8

Cost function:

Lmodel1 = Lglc,source + Lpyr,source + Llac,source + Lglc, sink + Lpyr, sink
+ Llac,sink

(S24)

Glucose contribution calculation:  After fitting a result F = {F1, F2,…, F9, F10, G1, G2,…, 

G8, G9}, glucose contribution Rglc is calculated based on eq. S11 and S15. We first calculate 

Fnet,glc, Fnet,lac, Gnet,glc and Gnet,lac:

Fnet, glc = F5 − F6, Fnet, lac = F7 − F8, Gnet, glc = G5 − G6, Gnet, lac = G7 − G8 (S25)

Therefore, Fglc and Flac can be calculated by:

If Fnet,glc > 0 and Fnet, lac > 0, Fglc = Fnet, glc, Flac = Fnet, lac

If Fnet, glc > 0 and Fnet, lac < 0, Fglc = Fnet, lac + Fnet, glc = F9, Flac = 0

If Fnet, glc < 0 and Fnet, lac > 0, Fglc = 0, Flac = Fnet, lac + Fnet, glc = F9  (S26)

Because F9 = Fnet,glc + Fnet,lac and it must be non-negative, it is impossible that Fnet,glc and 

Fnet,lac are both negative.
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The Gglc and Glac in the sink tissue have a similar form by replacing F to G in eq. S26.

Therefore, the glucose contribution of sink tissue and in complete model can be calculated 

as:

Rglc = Gglc
Gglc + Glac

(S27)

Rglc′ = Fglc + Gglc
Fglc + Gglc + Flac + Glac

(S28)

Similarly, the lactate contribution can also be calculated as:

Rlac = Glac
Gglc + Glac

(S29)

Rlac′ = Flac + Glac
Fglc + Gglc + Flac + Glac

(S30)

Free fluxes and sampling:  F1 and G2 are chosen as free fluxes. Because of limitation of 

circulatory flux of glucose, the common upper bound for them is Fcirc,glc. Each of them is 

uniformly sampled from [Fmin, Fcirc,glc] for nlattice different values. Therefore, the total 

sample number is nlattice
2 . For each sampled point, if F9 < FTCA,min or G9 < FTCA,min after 

optimization, this sample is filtered.

Data source:  The data to fit this model is the low-infusion data set. The source tissue is 

liver, while the sink tissue is one from heart, brain, skeletal muscle, kidney, lung, pancreas, 

small intestine and spleen, respectively. If not mentioned, MID data from glucose-infused 

M1 is used by default. Glucose-infused M5 and M9, and lactate-infused M3, M4, M10 and 

M11 are also analyzed to prove the data robustness.

Parameter table:

Category Parameter Comment Value

Model

nflux Total flux number 19

nbalance Number of flux balance equations 8

nconstrain Number of flux constraints (not including free fluxes) 3

nmid Number of MID predictions 6

ndim Number of free fluxes 2

Fmin Minimal flux value 1

Fmax Maximal flux value 500

Finput Value of supplement glucose flux in source tissue 35
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Category Parameter Comment Value

Fcirc,glc Value of glucose turnover flux 150.9

Fcirc,lac Value of lactate turnover flux 374.4

Optimization
nopt_repeat Repeat number to optimize the cost function 10

Lthreshold Objective value threshold to accept the fitting result 0.1

Sample
nlattice Sample number for each free flux 1000

FTCA,min Minimal TCA flux value 2

Distribution of local and global glucose contribution—The local contribution ratio 

Rglc reflects contribution ratios of circulating metabolites in sink tissue, while the global 

contribution ratio Rglc′  reflects those from both source and sink tissue. Therefore, it is 

reasoned that their distributions are different. Specifically, Rglc tends to approach extreme 

values, and usually shows a bimodal distribution. On the contrary, Rglc′  displays a continuous 

distribution in most cases. This kind of special distribution can be explained by model 

structure:

In the two-tissue model, flux balance requirement only allow three patterns for net fluxes 

(Figure S8A). Among these three patterns, the pattern with the contribution ratio 0 < Rglc < 

1 has a smaller solution space than what is observed for the other two patterns. This is 

because 0 < Rglc < 1 requires G7 > G8 but G7 − G8 < G9 (Figure S8A). However, the two 

lactate fluxes G7 and G8 are closed to each other and both much higher than G9 in most 

results (Figure S1I), and thus any small variation of G7 and G8 will lead to G7 < G8 

(situation that Rglc = 1) or G7 − G8 > G9 (situation that Rglc = 0). In addition, compared with 

concentrated solutions Rglc = 0 or 1, solutions with 0 < Rglc < 1 are evenly distributed 

between the range 0 to 1. Therefore, in violin plots, Rglc of most feasible solutions have 

bimodal distributions with Rglc = 0 or 1.

Considering that we only have a constraint on input flux (equal to the sum of TCA fluxes F9 

and G9) and common maximal value of all fluxes, the relative amounts of G7, G8 and G9 are 

inherently determined by MID data. Therefore, the bimodal distribution of Rglc is consistent 

with our data. The distribution that in most cases Rglc concentrates on 1 shows net fluxes 

follow the pattern of Cori cycle, in which in sink tissue glucose is transformed to lactate and 

in source tissue lactate is transformed to pyruvate or glucose (Figure S8A). Therefore, these 

results are consistent with the conclusion that circulating glucose is the major contribution to 

TCA cycle in sink tissue. Situations are also similar for other complicated models.

For the global contribution Rglc′ , it is an average glucose contribution ratio of source and sink 

tissue. It should be noticed that in three patterns allowed in this model, the glucose 

contribution ratio is usually complementary in sink and source tissue; that is, when glucose 

contributes to TCA cycle and is transformed to lactate in sink tissue, lactate will usually 

contribute to TCA cycle and/or be transformed back to glucose in source tissue, and vice 

versa (Figure S8A). Consequently, the average contribution ratio Rglc′  will tend to be 

intermediate in most cases.

Liu et al. Page 24

Cell Metab. Author manuscript; available in PMC 2021 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although with a continuous distribution, the global contribution Rglc′  might not be a perfect 

measurement for the contribution ratio from circulating metabolites in some special cases. 

Considering the following situation in Figure S8B: the local contribution ratio Rglc = 1 in 

sink tissue. According to the definition of Rglc′  (Figure S2A), Fglc = 0, Flac = F9, Gglc = G9, 

Glac = 0. Therefore, if F9 > G9, which means TCA flux in source tissue is higher than that in 

sink tissue, although TCA flux in sink tissue completely derives from glucose, the global 

contribution ratio Rglc′  is still lower than 0.5. However, in this case the major circulating 

metabolite contributing to TCA cycle should be considered as glucose, and lactate should be 

considered as the product of sink tissue.

In our opinion, Rglc and Rglc′  could both be referred as “glucose contribution ratio”, and that 

their value is larger or smaller than 0.5 in each feasible solution could both be an indicator 

whether major contribution to TCA fluxes is glucose or lactate in this case. Their different 

distributions merely reflects their different properties in large-scale sampling groups. 

Therefore, we use results from the calculations of both Rglc and Rglc′  together to solidify our 

conclusion.

Parameter sensitivity for model A (figure 3)—MID data and three parameters are 

perturbed individually and used for analysis based on model A. All model constructions and 

unperturbed parameters are also same as model A. Only the resolution to sample the solution 

space is reduced to increase efficiency.

Data source:  Similar with model A, this part uses the low-infusion data set. In all 

perturbations, the source tissue is liver and the sink tissue is heart. Only the MID data from 

M1 is used.

Parameter table:  (Underlined items indicate differences from those in model A)

Category Parameter Comment Value

Model

nflux Total flux number 19

nbalance Number of flux balance equations 8

nconstrain Number of flux constraints (not including free fluxes) 3

nmid Number of MID predictions 6

ndim Number of free fluxes 2

Fmin Minimal flux value 1

Fmax Maximal flux value 1000

Finput Initial value of supplement glucose flux in source tissue 100

Fcirc,glc Initial value of glucose turnover flux 150.9

Fcirc,lac Initial value of lactate turnover flux 374.4

Optimization
nopt_repeat Repeat number to optimize the cost function 10

Lthreshold Objective value threshold to accept the fitting result 0.2

Sample nlattice Sample number for each free flux 100
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Category Parameter Comment Value

FTCA,min Minimal TCA flux value 2

Parameter sensitivity

σmid Variance of perturbation random variable for MID data 0.5

σflux Variance of perturbation random variable for constant fluxes 0.2

δmid Variance range of MID data ±[0.1, 0.9]

δflux Variance range of constant fluxes ±[0.05, 0.6]

nparam_sample
Number of different perturbations generated for sensitivity 

analysis 100

Hypoxia correction for model A (figure S3)—MID data are corrected and used for 

analysis based on model A. All model constructions and unperturbed parameters are also 

same as model A.

Data source:  Similar with model A, this part uses the low-infusion data set. The source 

tissue is liver and the sink tissue is heart. Only the MID data from M1 is used.

Parameter table:  (Underlined items indicate differences from those in model A)

Category Parameter Comment Value

Model

nflux Total flux number 19

nbalance Number of flux balance equations 8

nconstrain Number of flux constraints (not including free fluxes) 3

nmid Number of MID predictions 6

ndim Number of free fluxes 2

Fmin Minimal flux value 1

Fmax Maximal flux value 500

Finput Value of supplement glucose flux in source tissue 35

Fcirc,glc Value of glucose turnover flux 150.9

Fcirc,lac Value of lactate turnover flux 374.4

Optimization
nopt_repeat Repeat number to optimize the cost function 10

Lthreshold Objective value threshold to accept the fitting result 0.1

Sample
nlattice Sample number for each free flux 1000

FTCA,min Minimal TCA flux value 2

Hypoxia correction amix Assumed mixture ratio for hypoxia correction 20%

Model B: model for high-infusion data (figure 4, S4)—(Underlined items indicate 

differences from those in model A)

Flux balance equations:

Glucose in source tissue:F1 + F6 + F10 = F2 + F5
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Pyruvate in source tissue:F5 + F7 = F6 + F8 + F9

Lactate in source tissue:F3 + F8 = F4 + F7

Glucose in plasma:F2 + G2 + Jin = F1 + G1

Lactate in plasma:F4 + G4 = F3 + G3

Glucose in sink tissue:G1 + G6 = G2 + G5

Pyruvate in sink tissue:G7 + G5 = G6 + G8 + G9

Lactate in sink tissue:G3 + G8 = G4 + G7

Flux constraints:  This model removes the glucose turnover flux constraint. Alternatively, it 

adds glucose in plasma to target metabolites.

Supplement glucose flux:F10 = Finput

Infusion glucose flux:Jin = Finfusion

Lactate turnover flux:F4 + G4 = Fcirc, lac

MID data:

Glucose in source tissue:Mglc, source

Pyruvate in source tissue:Mpyr, source

Lactate in source tissue:Mlac, source
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Glucose in plasma:Mglc, plasma

Lactate in plasma:Mlac, plasma

Glucose in sink tissue:Mglc, sink

Pyruvate in sink tissue:Mpyr, sink

Lactate in sink tissue:Mlac, sink

MID predictions:

Glucose in source tissue: Mglc, source =
F1 ⋅ Mglc, plasma + F6 ⋅ conv2 Mpyr,source + F10 ⋅ Mglc,natural

F1 + F6 + F10

Pyruvate in source tissue: Mpyr, source =
F5 ⋅ split Mglc, source + F7 ⋅ Mlac, source

F5 + F7

Lactate in source tissue: Mlac, source =
F3 ⋅ Mlac,plasma + F8 ⋅ Mpyr, source

F3 + F8

Glucose in plasma:Mglc, plasma =
F2 ⋅ Mglc, source + G2 ⋅ Mglc, sink + Jin ⋅ Mglc, label

F2 + G2 + Jin

Glucose in sink tissue: Mglc, sink =
G1 ⋅ Mglc, plasma + G6 ⋅ conv2 Mpyr, sink

G1 + G6

Pyruvate in sink tissue:Mpyr, sink =
G5 ⋅ split Mglc, sink + G7 ⋅ Mlac, sink

G5 + G7

Lactate in sink tissue: Mlac, sink =
G3 ⋅ Mlac, plasma + G8 ⋅ Mpyr, sink

G3 + G8
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Cost function:

Lmodel1 = Lglc, source + Lpyr, source + Llac,source + Lglc,plasma + Lglc, sink
+ Lpyr, sink + Llac, sink

(S31)

Glucose contribution calculation:  Glucose contribution calculation in this model is same 

as model A. The raw flux result F = {F1, F2,…, F9, F10, G1, G2,…, G8, G9} is processed by 

eq. S25 and S26 to calculate glucose and lactate contribution fluxes. Finally, Eqs. S27 and 

S29 are utilized to calculate the relative glucose and lactate contribution Rglc and Rlac, while 

Eqs. S28 and S30 are for Rglc′  and Rlac′ .

Free fluxes and sampling:  ndim in this model is still 2. Free fluxes are also F1 and G2. This 

model removes constraint on the glucose turnover flux, and thus the free fluxes have a wider 

range. Each flux is uniformly sampled from [Fmin, Fmax_free] for nlattice different values. 

Therefore, the total sample size is still nlattice
2 . For each sampled point, if F9 < FTCA,min or 

G9 < FTCA,min after optimization, this sample is filtered out.

Data source:  The data to fit this model is the high-infusion data set. The source tissue is 

liver, while the sink tissue is skeletal muscle. The MID data from mouse M1, M2, M3 and 

M4 are used.

Parameter table:  Because of the higher infusion flux, the glucose turnover flux in plasma 

will increase, and thus lactate turnover flux Fcirc,lac should also increase. Furthermore, the 

higher labeling ratio decreases fitting accuracy (fig. S4). Therefore, the threshold of 

objective function was also increased.

Category Parameter Comment Value

Model

nflux Total flux number 20

nbalance Number of flux balance equations 8

nconstrain Number of flux constraints (not including free fluxes) 3

nmid Number of MID predictions 7

ndim Number of free fluxes 2

Fmin Minimal flux value 1

Fmax Maximal flux value 1000

Finput Value of supplement glucose flux in source tissue 80

Finfusion Value of glucose infusion flux 111.1

Fcirc,lac Value of lactate turnover flux 400

Optimization
nopt_repeat Repeat number to optimize the cost function 10

Lthreshold Objective value threshold to accept the fitting result 0.25

Sample
nlattice Sample number for each free flux 1500

Fmax_free Maximal flux value of two free fluxes 300
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Category Parameter Comment Value

FTCA,min Minimal TCA flux value 2

Model C: model for three tissues (figure 5, S5)—(Underlined items indicate 

differences from those in model A)

Flux balance equations:

Glucose in source tissue:F1 + F6 + F10 = F2 + F5

Pyruvate in source tissue:F5 + F7 = F6 + F8 + F9

Lactate in source tissue:F3 + F8 = F4 + F7

Glucose in sink tissue 1:G1 + G6 = G2 + G5

Pyruvate in sink tissue 1:G7 + G5 = G6 + G8 + G9

Lactate in sink tissue 1:G3 + G8 = G4 + G7

Glucose in sink tissue 2:H1 + H6 = H2 + H5

Pyruvate in sink tissue 2:H7 + H5 = H6 + H8 + H9

Lactate in sink tissue 2:H3 + H8 = H4 + H7

Glucose in plasma:F2 + G2 + H2 = F1 + G1 + H1

Lactate in plasma:F4 + G4 + H4 = F3 + G3 + H3
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Flux constraints:

Supplement glucose flux:F10 = Finput

Glucose turnover flux:F2 + G2 + H2 = Fcirc, glc

Lactate turnover flux:F4 + G4 + H4 = Fcirc, lac

MID data:

Glucose in source tissue:Mglc, source

Pyruvate in source tissue:Mpyr,source

Lactate in source tissue:Mlac, source

Glucose in sink tissue 1:Mglc, sink1

Pyruvate in sink tissue 1:Mpyr, sink1

Lactate in sink tissue 1:Mlac,sink1

Glucose in sink tissue 2:Mglc, sink2

Pyruvate in sink tissue 2:Mpyr, sink2

Lactate in sink tissue 2:Mlac, sink2

Glucose in plasma:Mglc, plasma
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Lactate in plasma:Mlac, plasma

MID predictions:

Glucose in source tissue:Mglc, source =
F1 ⋅ Mglc, plasma + F6 ⋅ conv2 Mpyr, source + F10 ⋅ Mglc,natural

F1 + F6 + F10

Pyruvate in source tissue: Mpyr, source =
F5 ⋅ split Mglc,source + F7 ⋅ Mlac, source

F5 + F7

Lactate in source tissue:Mlac, source =
F3 ⋅ Mlac, plasma + F8 ⋅ Mpyr,source

F3 + F8

Glucose in sink tissue 1:Mglc, sink1 =
G1 ⋅ Mglc, plasma + G6 ⋅ conv2 Mpyr, sink1

G1 + G6

Pyruvate in sink tissue 1:Mpyr, sink1 =
G5 ⋅ split Mglc, sink1 + G7 ⋅ Mlac, sink1

G5 + G7

Lactate in sink tissue 1:Mlac, sink1 =
G3 ⋅ Mlac, plasma + G8 ⋅ Mpyr, sink1

G3 + G8

Glucose in sink tissue 2:Mglc, sink2 =
H1 ⋅ Mglc, plasma + H6 ⋅ conv2 Mpyr, sink2

H1 + H6

Pyruvate in sink tissue 2:Mpyr, sink2 =
H5 ⋅ split Mglc, sink2 + H7 ⋅ Mlac, sink2

H5 + H7

Lactate in sink tissue 2:Mlac, sink2 =
H3 ⋅ Mlac, plasma + H8 ⋅ Mpyr, sink2

H3 + H8
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Cost function:

Lmodel1 = Lglc, source + Lpyr, source + Llac,source + Lglc, sink1 + Lpyr, sink1
+ Llac, sink1 + Lglc, sink2 + Lpyr, sink2 + Llac, sink2

(S32)

Glucose contribution calculation:  Slightly different from that in model A, after fitting a 

result F = {F1, F2,…, F9, F10, G1, G2,…, G8, G9, H1, H2,…, H8, H9}, Fnet,glc, Fnet,lac, 

Gnet,glc, Gnet,lac, Hnet,glc and Hnet,lac can be calculated from raw flux values:

Fnet, glc = F5 − F6, Fnet, lac = F7 − F8
Gnet, glc = G5 − G6, Gnet, lac = G7 − G8
Hnet, glc = H5 − H6, Hnet, lac = H7 − H8

(S33)

Therefore, Fglc, Flac, Gglc, Glac, Hglc and Hlac in different tissue can be calculated based on 

eq. S26. Then, the glucose contribution in sink tissue Rglc and in complete model Rglc′  can be 

calculated as:

Rglc = Gglc + Hglc
Gglc + Hglc + Glac + Hlac

(S34)

Rglc′ = Fglc + Gglc + Hglc
Fglc + Gglc + Hglc + Flac + Glac + Hlac

(S35)

Similarly, the lactate contribution Rlac and Rlac′  can also be calculated as:

Rlac = Glac + Hlac
Gglc + Hglc + Glac + Hlac

(S36)

Rlac′ = Flac + Glac + Hlac
Fglc + Gglc + Hglc + Flac + Glac + Hlac

(S37)

Free fluxes and sampling:  ndim in this model is 5. Therefore, F1, G2, H1, F3 and G4 are 

chosen as free fluxes. These fluxes are constrained by circulatory fluxes of glucose and 

lactate (see glucose turnover flux and lactate turnover flux in “flux constraints” section). 

Therefore, their maximal value is bounded by Fcirc,glc or Fcirc,lac. Specifically, dynamic 

ranges of F1, G2 and H1 are [Fmin, Fcirc,glc], and those of F3 and G4 are [Fmin, Fcirc,lac]. 

Those dynamic ranges constitute a 5-dimension solution space S . To uniformly sample in S, 

we pick ndiag points from its diagonal and shuffle the five coordinates of those points. Those 

ndiag sample points are used for following analysis. For each sampled point, if G9 < 

FTCA,min and H9 < FTCA,min after optimization, this sample is filtered.
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Data source:  The data to fit this model is the low-infusion data set. The source tissue is 

liver, the sink tissue 1 and sink tissue 2 are combinations from heart, brain and skeletal 

muscle. MID data from mouse M1 is used.

Parameter table:  Because the cost function includes more MID data during the 

optimization process, the threshold of objective function also increases. The sample number 

ndiag is set to be close to the previous total sample number nlattice
2 .

Category Parameter Comment Value

Model

nflux Total flux number 28

nbalance Number of flux balance equations 11

nconstrain Number of flux constraints (not including free fluxes) 3

nmid Number of MID predictions 9

ndim Number of free fluxes 5

Fmin Minimal flux value 1

Fmax Maximal flux value 700

Finput Value of supplement glucose flux in source tissue 40

Fcirc,glc Value of glucose turnover flux 150.9

Fcirc,lac Value of lactate turnover flux 374.4

Optimization
nopt_repeat Repeat number to optimize the cost function 10

Lthreshold Objective value threshold to accept the fitting result 0.15

Sample
ndiag Total sample number in solution space 3×106

FTCA,min Minimal TCA flux value 2

Model D: model for three circulating metabolites for low-infusion data (figure 
6B, D, S6A, C, E, G, I)—(Underlined items indicate differences from those in model A)

Flux balance equations:

Glucose in source tissue:F1 + F6 + F12 = F2 + F5

Pyruvate in source tissue:F5 + F7 + F9 = F6 + F8 + F10 + F11

Lactate in source tissue:F3 + F8 = F4 + F7

Glucose in plasma:F2 + G2 = F1 + G1 + J1
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Lactate in plasma:F4 + G4 + J2 = F3 + G3 + J3

Pyruvate in plasma:F10 + G10 + J1 + J3 = F3 + G3 + J2

Glucose in sink tissue:G1 + G6 = G2 + G5

Pyruvate in sink tissue:G5 + G7 + G9 = G6 + G8 + G10 + G11

Lactate in sink tissue:G3 + G8 = G4 + G7

Flux constraints:

Supplement glucose flux:F10 = Finput

Glucose turnover flux:F2 + G2 = Fcirc, glc

Lactate turnover flux:F4 + G4 = Fcirc, lac

Pyruvate turnover flux:F9 + G9 = Fcirc, pyr

MID data:

Glucose in source tissue:Mglc,source

Pyruvate in source tissue:Mpyr, source

Lactate in source tissue:Mlac, source

Glucose in plasma:Mglc, plasma
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Lactate in plasma:Mlac, plasma

Pyruvate in plasma:Mpyr, plasma

Glucose in sink tissue:Mglc, sink

Pyruvate in sink tissue:Mpyr, sink

Lactate in sink tissue:Mlac,sink

MID predictions:

Glucose in source tissue:Mglc, source =
F1 ⋅ Mglc, plasma + F6 ⋅ conv2 Mpyr, source + F12 ⋅ Mglc, natural

F1 + F6 + F12

Pyruvate in source tissue:Mpyr, source =
F5 ⋅ split Mglc, source + F7 ⋅ Mlac, source + F9 ⋅ Mpyr, plasma

F5 + F7 + F9

Lactate in source tissue:Mlac, source =
F3 ⋅ Mlac,plasma + F8 ⋅ Mpyr,source

F3 + F8

Glucose in sink tissue:Mglc, sink =
G1 ⋅ Mglc, plasma + G6 ⋅ conv2 Mpyr, sink

G1 + G6

Pyruvate in sink tissue:Mpyr, sink =
G5 ⋅ split Mglc, sink + G7 ⋅ Mlac, sink + G9 ⋅ Mpyr, plasma

G5 + G7 + G9

Lactate in sink tissue:Mlac, sink =
G3 ⋅ Mlac, plasma + G8 ⋅ Mpyr, sink

G3 + G8

Lactate in plasma:Mlac, plasma =
G4 ⋅ Mlac, sink + F4 ⋅ Mlac, source + J2 ⋅ Mpyr, plasma

G4 + F4 + J2
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Pyruvate in plasma:Mpyr, plasma

=
G10 ⋅ Mpyr, sink + F10 ⋅ Mpyr, source + J1 ⋅ split Mglc, plasma + J3 ⋅ Mlac, plasma

G10 + F10 + J1 + J3

Cost function:

Lmodel1 = Lglc, source + Lpyr, source + Llac,source + Lglc, sink + Lpyr, sink
+ Llac, sink + Llac, plasma + Lpyr, plasma

(S38)

Glucose contribution calculation:  Because there are three nutrients that contribute to the 

TCA cycle, after fitting a result F ={F1, F2,…, F9, F10, G1, G2,…,G8, G9, J1, J2, J3}, the 

glucose, lactate and pyruvate contribution ratio, Rglc, Rlac and Rpyr respectively, are 

calculated based on eq. S11.

Firstly, the net fluxes connected to the TCA cycle can be calculated:

Fnet, glc = F5 − F6, Fnet, lac = F7 − F8, Fnet, pyr = F9 − F10
Gnet, glc = G5 − G6, Gnet, lac = G7 − G8, Gnet, pyr = G9 − G10

(S39)

The total in and out fluxes for the TCA cycle in the source tissue (Ftotal,in and Ftotal,out) and 

in the sink tissue (Gtotal,in and Gtotal,out) can be calculated based on eq. S12, S13 and those 

net fluxes in eq. S39. Contribution fluxes of glucose Fglc, lactate Flac and pyruvate Fpyr in 

the source tissue can be calculated from eq. S14 and net fluxes in eq. S39. Similarly, Gglc, 

Glac and Gpyr in the sink tissue can also be calculated. Therefore, the contribution ratio from 

three metabolites can be calculated as:

Rglc = Gglc
Gglc + Glac + Gpyr

(S40)

Rglc′ = Fglc + Gglc
Fglc + Gglc + Flac + Glac + Fpyr + Gpyr

(S41)

Rlac = Glac
Gglc + Glac + Gpyr

(S42)

Rlac′ = Flac + Glac
Fglc + Gglc + Flac + Glac + Fpyr + Gpyr

(S43)

Rpyr = Gpyr
Gglc + Glac + Gpyr

(S44)
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Rpyr′ = Fpyr + Gpyr
Fglc + Gglc + Flac + Glac + Fpyr + Gpyr

(S45)

Free fluxes and sampling:  ndim in this model is 5. Therefore, F1, G2, F9, G10 and F3 are 

chosen as free fluxes. These fluxes are constrained by circulatory fluxes of glucose, lactate 

and pyruvate (see glucose turnover flux, lactate turnover flux and pyruvate turnover flux in 

“flux constraints” section). Therefore, their upper bounds are set by Fcirc,glc, Fcirc,lac or 

Fcirc,pyr. Specifically, the dynamic ranges of F1 and G2 are [Fmin, Fcirc,glc], those of F9 and 

G10 are [Fmin, Fcirc,pyr], and that of F3 is [Fmin, Fcirc,lac]. Those dynamic ranges constitute a 

5-dimensional solution space S. Similar with what was computed in model C, we pick ndiag 

points uniformly from the diagonal of S and shuffle the five coordinates of those points. 

Those ndiag sampled points are generated. For each sampled point, if F11 < FTCA,min or G11 

< FTCA,min after optimization, this sample is filtered.

Data source:  The data to fit this model is the low-infusion data set. Similar with model A, 

the source tissue is liver and the sink tissue is heart. The MID data from mouse M1 are used.

Parameter table:  Because this model includes more circulating metabolites, the value of 

input glucose flux is set slightly higher than that in model A. Similar with model C, the 

threshold of the objective function also increases, and the sample number ndiag is set to the 

same value. Parameters for the ternary graph are set to provide high resolution.

Category Parameter Comment Value

Model

nflux Total flux number 26

nbalance Number of flux balance equation 9

nconstrain Number of flux constraints (not including free fluxes) 4

nmid Number of MID predictions 8

ndim Number of free fluxes 5

Fmin Minimal flux value 1

Fmax Maximal flux value 800

Finput Value of supplement glucose flux in source tissue 60

Fcirc,glc Value of glucose turnover flux 150.9

Fcirc,lac Value of lactate turnover flux 374.4

Fcirc,pyr Value of pyruvate turnover flux 57.3

Optimization
nopt_repeat Repeat number to optimize the cost function 10

Lthreshold Objective value threshold to accept the fitting result 0.15

Sample
ndiag Total sample number in solution space 1×106

FTCA,min Minimal TCA flux value 2

Ternary graph
σternary Variance of gaussian kernel in ternary graph 0.15

nbin Resolution of ternary graph 256
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Model E: model for three circulating metabolites for high-infusion data (figure 
6E, S6B, D, F, J)—(Underlined items indicate differences from those in model A)

The only difference between this model and model D is the infusion flux.

Flux balance equations:

Glucose in source tissue:F1 + F6 + F12 = F2 + F5

Pyruvate in source tissue:F5 + F7 + F9 = F6 + F8 + F10 + F11

Lactate in source tissue:F3 + F8 = F4 + F7

Glucose in plasma:F2 + G2 + Jin = F1 + G1 + J1

Lactate in plasma:F4 + G4 + J2 = F3 + G3 + J3

Pyruvate in plasma:F10 + G10 + J1 + J3 = F3 + G3 + J2

Glucose in sink tissue:G1 + G6 = G2 + G5

Pyruvate in sink tissue:G5 + G7 + G9 = G6 + G8 + G10 + G11

Lactate in sink tissue:G3 + G8 = G4 + G7

Flux constraints:

Supplement glucose flux:F10 = Finput

Infusion glucose flux:Jin = Finfusion

Lactate turnover flux:F4 + G4 = Fcirc, lac
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Pyruvate turnover flux:F9 + G9 = Fcirc, pyr

MID data:

Glucose in source tissue:Mglc,source

Pyruvate in source tissue:Mpyr, source

Lactate in source tissue:Mlac, source

Glucose in plasma:Mglc, plasma

Lactate in plasma:Mlac, plasma

Pyruvate in plasma:Mpyr, plasma

Glucose in sink tissue:Mglc, sink

Pyruvate in sink tissue:Mpyr, sink

Lactate in sink tissue:Mlac,sink

MID predictions:

Glucose in source tissue:Mglc, source =
F1 ⋅ Mglc, plasma + F6 ⋅ conv2 Mpyr, source + F12 ⋅ Mglc, natural

F1 + F6 + F12

Pyruvate in source tissue:Mpyr, source =
F5 ⋅ split Mglc, source + F7 ⋅ Mlac,source + F9 ⋅ Mpyr,plasma

F5 + F7 + F9
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Lactate in source tissue:Mlac, source =
F3 ⋅ Mlac, plasma + F8 ⋅ Mpyr, source

F3 + F8

Glucose in sink tissue:Mglc, sink =
G1 ⋅ Mglc, plasma + G6 ⋅ conv2 Mpyr, sink

G1 + G6

Pyruvate in sink tissue:Mpyr, sink =
G5 ⋅ split Mglc, sink + G7 ⋅ Mlac, sink + G9 ⋅ Mpyr, plasma

G5 + G7 + G9

Lactate in sink tissue:Mlac, sink =
G3 ⋅ Mlac, plasma + G8 ⋅ Mpyr, sink

G3 + G8

Glucose in plasma:Mglc, plasma =
F2 ⋅ Mglc, source + G2 ⋅ Mglc, sink + Jin ⋅ Mglc, label

F2 + G2 + Jin

Lactate in plasma:Mlac, plasma =
G4 ⋅ Mlac, sink + F4 ⋅ Mlac, source + J2 ⋅ Mpyr, plasma

G4 + F4 + J2

Pyruvate in plasma:Mpyr, plasma

=
G10 ⋅ Mpyr, sink + F10 ⋅ Mpyr, source + J1 ⋅ split Mglc, plasma + J3 ⋅ Mlac, plasma

G10 + F10 + J1 + J3

Cost function:

Lmodel1 = Lglc,source + Lpyr,source + Llac,source + Lglc,sink + Lpyr, sink
+ Llac, sink + Lglc, plasma + Llac, plasma + Lpyr, plasma

(S46)

Glucose contribution calculation:  The glucose contribution calculation in this model is 

same as in model D. After fitting a flux vector F = {F1, F2,…, F9, F10, G1, G2,…, G8, G9, J1, 

J2, J3}, the contribution to the TCA cycle from glucose Rglc, from lactate Rlac and from 

pyruvate Rpyr in sink tissue can be calculated by eq. S40, S42 and S44, respectively. 

Similarly, those contribution in complete model Rglc′ , Rlac′  and Rpyr′  can also be calculated by 

eq. S41, S43 and S45.

Free fluxes and sampling:  It is the same as in model D. F1, G2, F9, G10 and F3 are chosen 

as free fluxes. Dynamic ranges of F1 and G2 are [Fmin, Fcirc,glc], those of F9 and G10 are 

[Fmin, Fcirc,pyr], and that of F3 is [Fmin, Fcirc,lac]. ndiag points are picked uniformly from its 
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diagonal and the five coordinates of those points are then randomly shuffled. Those ndiag 

sample points are generated. For each sampled point, if F11 < FTCA,min or G11 < FTCA,min 

after optimization, this sample is filtered.

Data source:  The data to fit this model is the high-infusion data set. Similar as in model C, 

the source tissue is liver and the sink tissue is skeletal muscle. MID data from mouse M1 are 

used.

Parameter table:  Most parameters are same with model D. Circulatory fluxes of lactate 

Fcirc,lac and pyruvate Fcirc,pyr are increased to adapt to the higher glucose infusion flux. 

Similar with model C, the higher labeling ratio decreases the fitting accuracy, hence 

requiring a higher tolerance threshold of objective function.

Category Parameter Comment Value

Model

nflux Total flux number 26

nbalance Number of flux balance equations 9

nconstrain Number of flux constraints (not including free fluxes) 4

nmid Number of MID predictions 8

ndim Number of free fluxes 5

Fmin Minimal flux value 1

Fmax Maximal flux value 1000

Finput Value of supplement glucose flux in source tissue 150

Finfusion Value of glucose infusion flux 111.1

Fcirc,lac Value of lactate turnover flux 400

Fcirc,pyr Value of pyruvate turnover flux 70

Optimization
nopt_repeat Repeat number to optimize the cost function 10

Lthreshold Objective value threshold to accept the fitting result 0.4

Sample
ndiag Total sample number in solution space 3×106

FTCA,min Minimal TCA flux value 2

Ternary graph
σternary Variance of gaussian kernel in ternary graph 0.15

nbin Resolution of ternary graph 256

PHYSIOLOGICAL FEASIBILITY OF SOLUTIONS

Physiological feasibility is a key feature for biomedical models. In the results shown in main 

figures, solutions that have low TCA flux are considered as infeasible in physiological 

conditions, and therefore filtered out. Here we provide an example of a solution without this 

filter for comparison. For simplicity, solutions with filter (in main figures) are referred as 

filtered results, while the results without filter (in this section) are referred as unfiltered 

results.

Solving process is identical with that in main text. If not specified, all other parameters are 

same.
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Model A: basic model for two tissues

Category Parameter Comment Value

Model
Fmax Maximal flux value 1000

Finput Value of supplement glucose flux in source tissue 100

In this model, the fitting process is identical to filtered results of Model A. Compared with 

filtered results in the main text, fitting precision has not been changed: MID prediction and 

distribution of objective function without filter are almost same as results with filter (Figure 

S9A–H, J–P, compared with Figure S1). Distributions of most fluxes are also similar, but F9 

and G9, which are two TCA fluxes to source and sink tissue respectively, are significantly 

different: Before filtering, boxplot shows quantiles of F9 and G9 are closed to extreme value 

(Figure S9I). This kind of distribution means one of TCA fluxes is optimized to near zero in 

many results, which should not occur in physiological condition. After filtering, F9 and G9 

are more concentrated on half of Finput, and two TCA fluxes are well balanced, which should 

be more physiologically feasible (Figure S1I).

The definition of glucose contribution in the complete model Rglc′  is also the same (figure 

S2A, S2B). Distribution of Rglc′  in unfiltered results is generally similar with that in filtered 

ones, but the distribution is more concentrated (Figure S9R–X, compared with Figure S2B–

I. Notice that the arrangement of sink tissue and mice is different in two results). This may 

due to high enrichment of extreme value of TCA fluxes F9 and G9.

Parameter sensitivity for model A

Category Parameter Comment Value

Model
Fmax Maximal flux value 1000

Finput Value of supplement glucose flux in source tissue 100

Parameter sensitivity
δflux Variance range of constant fluxes ±[0.1, 0.9]

σflux Variance of perturbation random variable for constant fluxes 0.5

Glucose contribution for lactate circulatory flux in this calculation is more robust than that in 

main figures (Figure S9Y, figure 3C). First reason is this calculation count for robustness of 

glucose contribution in complete model Rglc′ , while that in the main figure is glucose 

contribution in sink tissue (Rglc). Rglc may be more sensitive to perturbation on lactate 

circulatory flux. Another reason is current calculation has not been filtered, and TCA fluxes 

F9 and G9 concentrate on extreme value, which causes the relatively concentrated 

distribution of glucose contribution. This pattern may be more resistant to perturbation on 

parameters.

Model B: model for high-infusion data

Category Parameter Comment Value

Model Fmax Maximal flux value 2000
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Category Parameter Comment Value

Finput Value of supplement glucose flux in source tissue 100

Similarly, the fitting process except filtering is identical to filtered results of Model B. 

Compared with filtered results in the main text, fitting precision has not been changed: MID 

prediction and distribution of objective function in unfiltered results are almost same as 

filtered results (Figure S10A, C, Figure 4D, S4A). The distribution of fluxes for feasible 

solutions has significant changes: because the Fmax is higher in this calculation, G7 and G8 

are significantly larger than other fluxes, which is less feasible in physiological condition 

(Figure S10B, compared with Figure S4B). Furthermore, similar with Model A, F9 and G9 

tend to be optimized to extreme value, such as those in M1, M2 and M4 (Figure S10B). 

After filtering, as espected, F9 and G9 concentrate on intermediate value (Figure S4B).

The definition of glucose contribution in the complete model Rglc′  is also same (Figure S4C). 

Distribution of Rglc′  in unfiltered results is slightly different from filtered ones (Figure S10D, 

compared with Figure S4D).

Model C: model for three tissues

Category Parameter Comment Value

Model
Fmax Maximal flux value 1000

Finput Value of supplement glucose flux in source tissue 100

Similarly, the fitting process except filtering is identical to filtered results of Model C. MID 

prediction and distribution of objective function in unfiltered results are almost same as 

filtered results (Figure S11A, C, Figure S5A, S5C). The distribution of fluxes in feasible 

solutions has a significant change: because the Fmax is higher in this calculation, H7 and H8 

are slightly larger than other fluxes (Figure S11B, compared with Figure S5B). In this 

model, the filter just requires G9 and H9 not to be too small at the same time. Therefore, in 

unfiltered results, F9 and G9 tend to be optimized to extreme value (Figure S11B), while in 

filtered ones F9 tends to concentrate to a small value, and G9 tends to concentrate to a large 

value (Figure S5B).

The definition of glucose contribution in the complete model Rglc′  is also same (Figure S5D). 

Distribution of Rglc′  in unfiltered results is similar but also slightly different from filtered 

ones (Figure S11D, compared with Figure S5E).

Model D: model for three circulating metabolites for low-infusion data

Category Parameter Comment Value

Model
Fmax Maximal flux value 1000

Finput Value of supplement glucose flux in source tissue 200
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Model E: model for three circulating metabolites for high-infusion data

Category Parameter Comment Value

Model
Fmax Maximal flux value 2000

Finput Value of supplement glucose flux in source tissue 150

The fitting process in this two calculations except filtering are identical to filtered results of 

Model D and E. MID prediction and distribution of objective function in unfiltered results 

are almost same as filtered results (Figure S12A–B, E–F, Figure S6A–B, E–F). Due to 

higher value of Fmax, range of all fluxes are larger in this calculation than that in main 

figures, especially for G7 and G8 in Model E (Figure S12D, compared with Figure S6D). 

Filtering also dramatically change distributions of TCA fluxes F11 and G11 in two models: 

in unfiltered results, F11 concentrates on maximum value while G11 concentrates on 

minimum value in Model D (Figure S12C), and in Model E their quantiles are also closed to 

extreme value (Figure S12D). However, in filtered results F11 and G11 concentrate on 

intermediate values in both Model D and Model E (Figure S6C–D).

The definition of contribution from different metabolites in the complete model Rglc′ , Rlac′

and Rpyr′  are also same (Figure S6H). Compared with filtered results, unfiltered results 

shows almost zero Rpyr′  and lower Rlac′ , as well as relatively higher Rglc′  (Figure S12G–H, 

compared with Figure S6I–J). This may be due to much higher median value of F4 and F10 

in this unfiltered results compared to filtered results (Figure S12C, Figure S6C). Considering 

that the function of source tissue (liver) is converting lactate and other carbon source to 

glucose to supply other organs, lower outflux of lactate (F4) and pyruvate (F10) in source 

tissue in filtered results are more physiologically feasible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

A quantitative analysis of central carbon metabolism in physiology is conducted

Glucose is found to be the major nutritional source of the TCA cycle

Lactate has a high exchange flux but lower net circulating flux

Conclusions are robust across many experimental conditions
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Figure 1. General methodology and flux analysis.
(a) Diagram of metabolite exchange between source and sink tissues. Glycogen, amino acids 

and other nutrition source are utilized to supplement glucose in the source tissue. (b) Three 

components (source tissue, plasma and sink tissue) and two circulating metabolites (lactate 

and glucose). (c) Data acquisition. Tissues of 13C-infused mice are extracted and analyzed 

by mass spectrometry. Distribution of mass isotopomers for metabolites, such as glucose, 

lactate and pyruvate, are used to solve for the fluxes (b). (d) Definition of cost function. The 

flux vector is used to predict MID of target metabolites, and compared with experimental 

MID to calculate cost function. (e) Schematic and example of a feasible solution. The 

solution with cost function lower than a threshold is considered as feasible solution and will 

be utilized in the following analysis.
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Figure 2. Contribution to the TCA cycle from circulating glucose.
(a) Diagram of contribution fluxes. Glucose and lactate contribute to the TCA cycle by Fglc 

and Flac in the source tissue, while Gglc and Glac are related to the sink tissue. The direction 

of net flux between circulating glucose and glucose in source tissue is variable in different 

solutions. (b) Definition of global glucose contribution ratio Rglc based on fluxes in (a). The 

global glucose contribution Rglc is defined as the relative ratio of glucose contribution flux 

to total contribution flux in sink tissue. Rglc is a scalar between 0 and 1, and higher Rglc 

represents higher glucose contribution to the TCA cycle. (c) Procedure to compute 

distribution of glucose contribution. Feasible solutions are sampled and glucose contribution 

ratios are calculated. The distribution of glucose contribution is displayed by a violin plot. 

(d-k) Distribution of local glucose contribution based on models with different sink tissues. 

For each sink tissue, the source tissue is liver, and contribution ratio is calculated from data 

in 7 different mice. For most kinds of sink tissue, the median of glucose contribution is 
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higher than 0.5 in most mice, which means glucose contributes more than lactate to the TCA 

cycle. The orange dash line represents 0.5 threshold. Data set is from glucose-infused mice 

(M1, M5, M9) and lactate-infused mice (M3, M4, M10, M11) in Hui et al, 2017.
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Figure 3. Parameter sensitivity analysis.
(a) Original MID data or constraint parameters are randomly perturbed and used in the 

following analysis. The resulting distribution of the local glucose contribution for each 

perturbation is calculated, and their medians are collected. Distribution of medians reflects 

parameter sensitivities for this model. The distribution of medians under perturbation of 

glucose circulatory flux (b), lactate circulatory flux (c), input flux in source tissue (d) and 

MID data (e). Although the local contribution ratio is more sensitive to lactate circulatory 

flux and MID data, most of the medians are above the 0.5 threshold, which implies that 

under most perturbations, glucose contributes more than lactate to the TCA cycle. Data set is 

from glucose-infused mouse M1 in Hui et al, 2017. Source tissue is liver and sink tissue is 

heart.
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Figure 4. Robustness of results regarding animal strain and infusion rate.
(a) Diagram of comparison between two experiments. A higher infusion rate and longer 

infusion time are introduced, which leads to higher abundance of 13C labeling in most 

metabolites. The genetic background and diet are also different from previous experiments. 

(b) Time-course data for concentrations of glucose, lactate and insulin in plasma during 

infusion. Each color represents a specific mouse. In the insulin measurement, a data point at 

1h of red line is removed because of a significantly abnormal value. (c) Structure of high-

infusion model. The main difference is 13C labeled infusion to glucose in plasma. (d) 

Distribution of cost function fitted with data from different mice or unfitted control data. U-

statistics of a rank-sum test and p-values are displayed. (e) Definition of local glucose 

contribution Rglc. Glucose and lactate in plasma contribute to the TCA cycle in the source 

and sink tissue. Direction of net flux between circulating glucose and glucose in source 

tissue is variable in different solutions. The local glucose contribution Rglc is defined as the 
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relative ratio of glucose contribution flux to total contribution flux in sink tissue. (f) 

Distribution of local glucose contribution shows glucose contributes more than lactate to the 

TCA cycle in most cases. Fits from different mice are displayed. In all subfigures, the source 

tissue is liver and sink tissue is skeletal muscle.
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Figure 5. Flux analysis across multiple tissues.
(a) A model with additional sink tissues. (b) Structure of the multi-tissue model. One source 

tissue and two sink tissues are connected by glucose and lactate in the plasma. (c) Definition 

of local glucose contribution Rglc. Glucose and lactate can contribute to TCA by Fglc and 

Flac in the source tissue, Gglc and Glac in the sink tissue 1, and Hglc and Hlac in sink tissue 2, 

respectively. Direction of net flux between circulating glucose and glucose in source tissue is 

variable in different solutions. The local glucose contribution is defined as the relative ratio 

of glucose contribution flux to total contribution flux in two kinds of sink tissue. (d) 

Distribution of local glucose contribution shows glucose contributes more than lactate to the 

TCA cycle in all combinations of sink tissues. The model is fit by glucose-infused mouse 

M1 from the low-infusion data in Hui et al, 2017. The source tissue is liver and the sink 

tissue 1 and 2 are two from heart, brain and skeletal muscle respectively.
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Figure 6. Model with multiple circulating metabolites feeding the TCA cycle.
(a) Incorporation of additional circulating metabolites. (b) The structure of the model. The 

source tissue and sink tissue are connected with glucose, lactate and pyruvate in the plasma. 

(c) Definition of local contribution from metabolites Rglc, Rlac and Rpyr. Glucose, lactate and 

pyruvate can contribute to the TCA cycle by Fglc, Flac and Fpyr in source tissue, and Gglc, 

Glac and Gpyr in the sink tissue. Direction of net flux between circulating glucose and 

glucose in source tissue is variable in different solutions. The local contribution ratios of 

three metabolites Rglc, Rlac and Rpyr are defined by the relative ratio of the contribution flux 

from each metabolite to total contribution flux of all three metabolites in sink tissue. (d) 

Ternary plot to display distributions of local contributions from three metabolites. The 

orange point indicates average level. The model is fit by glucose-infused mouse M1 from 

low-infusion data. The source tissue is liver and sink tissue is heart. (e) Analysis and results 

as in (d) but for additional high-infusion system of different animal strain, different diet and 
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different infusion protocol. The model is fitted by glucose-infused mouse M1 from the high-

infusion data. The source tissue is liver and sink tissue is skeletal muscle.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

[13C6]-D-glucose Cambridge Isotope Laboratories Cat#CLM-1396–1

2-hydrazinoquinoline Sigma-Aldrich Cat#CDS000062

Acetonitrile, Optima LC/MS Fisher Scientific Cat# A955

Water, Optima LC/MS Fisher Scientific Cat# W6

Methanol, Optima LC/MS Fisher Scientific Cat# A456

Ammonium hydroxide, Optima LC/MS Fisher Scientific Cat#A470

Formic acid, Optima LC/MS Fisher Scientific Cat#A117

Acetic Acid, Glacial Fisher Scientific Cat#A38

Ammonium hydroxide, Optima LC/MS Fisher Scientific Cat#A470

Deposited Data

13C isotope labeling data (low-infusion) Hui et al., 2017 https://doi.org/10.1038/nature24057

13C isotope labeling data (high-infusion) This paper https://github.com/LocasaleLab/Lactate_MFA/blob/
master/data/data_collection_from_Dan.xlsx

Time-series concentration data of circulating 
metabolites in plasma

This paper https://github.com/LocasaleLab/Lactate_MFA/blob/
master/data/related_data_from_dan.xlsx

Experimental Models: Organisms/Strains

Mouse: C57BL/6J The Jackson Laboratory Stock No. 000664

Mouse: Pax7CreER-T2 Laboratory of Chen-Ming Fan, 
Carnegic Institution for Science

N/A

Mouse: p53fl/fl Laboratory of Anton Berns, the 
Netherlands Cancer Institute

N/A

Mouse: LSL-NrasG12D The Jackson Laboratory Stock No. 008304

Software and Algorithms

Sieve 2.0 ThermoFisher Scientific https://portal.thermo-brims.com/index.php/component/
thermosoftwares/thermosoftware/67?Itemid=121

NumPy Open source software https://numpy.org/

SciPy Open source software https://www.scipy.org/

Matplotlib Open source software https://matplotlib.org/

xlrd python-excel https://github.com/python-excel/xlrd

tqdm tqdm https://github.com/tqdm/tqdm

python-ternary marcharper https://github.com/marcharper/python-ternary

Docker Docker Inc. https://www.docker.com/
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