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Establishment and validation 
of an in vitro co‑culture model 
for oral cell lines using human 
PBMC‑derived osteoclasts, 
osteoblasts, fibroblasts 
and keratinocytes
Daniel Steller1*, Alexandra Scheibert1, Tabea Sturmheit2 & Samer G. Hakim1

Indirect co-culture models with osteoclasts including oral cell lines may be influenced by M-CSF and 
RANKL in the common cell medium. Therefore, we investigated the viability and proliferation of 
osteoblasts (OB), fibroblasts (FB) and oral keratinocytes (OK) under stratified medium modification 
and assessed the differentiation of osteoclasts in each co-culture. The impact of M-CSF and RANKL 
in the common OC co-culture was assessed for OB, FB and OK via MTT assay via DAPI control. The 
multinuclearity and function of OC were evaluated by light microscopy, DAPI staining, resorption 
assay and FACS analysis. The PBMC showed the highest differentiation into OC after an incubation 
period of 7 days. Furthermore, co-culture with OB enhanced the number of differentiated 
multinucleated OC in comparison with monoculture, whereas co-culture with OK decreased PBMC 
multinuclearity and OC differentiation. FB did not influence the number of differentiated OC in a 
co-culture. RANKL and M-CSF reduction had no impact on OC differentiation in co-culture with 
FB or OB, whereas this medium modification for OK attenuated PBMC multinuclearity and OC 
differentiation in all approaches. Supplementation of RANKL and M-CSF can be modified for a 
co-culture of PBMC with FB or OB without disturbing OC differentiation. Thus, pathogenic processes of 
bone remodelling involving OB, OC, FB and OK in the oral cavity can be investigated thoroughly.

RANKL inhibitors and bisphosphonates are used to treat osteoclast-induced disorders of bone metabolism 
such as osteoporosis and bone metastases1,2. Both substances stop bone turnover via multiple mechanisms, 
particularly by influencing OC and OB. They act either by preventing differentiation of osteoclasts or by block-
ing their activity. High drug concentrations result in osteoclast apoptosis, whereas lower concentrations inhibit 
bone resorption3. As a side-effect observed in experimental works, they inhibit proliferation, adhesion and cell 
migration of osteoblasts, fibroblasts and keratinocytes in a dose-dependent manner4–6. These events are associated 
with the development of the main side effect of these substances–drug-related osteonecrosis of the jaw7. Dealing 
with this side-effect, it is mandatory to understand the intercellular interaction affecting wound healing. For 
this reason, the establishment and validation of comprehensive models for an in vitro cell co-culture model to 
investigate osteoclasts and osteoblasts, as well as gingival fibroblasts and oral keratinocytes is essential. Peripheral 
mononuclear blood cells (PBMC) are a well-studied source for in vitro osteoclast differentiation. They mature 
to osteoclasts (OC) by cell fusion and lead to multinucleated cells8 with a specific function of bone resorption9. 
To obtain the OC character in vitro, the differentiation medium mostly contains M-CSF and RANKL10,11. 
M-CSF is important for the survival of OCs precursor cells, and RANKL particularly supports resorption activ-
ity when cultivated on bone or bone-like materials12. There are different settings for the simulation of in vivo 
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osteoclastogenesis. Combination of suitable culture conditions, media supplementation and bone or bone-like 
materials in a co-culture is crucial to simulate the bone environment13–15. The aim of this study was to investigate 
the influence of indirect co-culture cultivation on the proliferation and differentiation of PBMC-derived OC on 
one side and the viability of OB, FB and OK in this co-culture on the other side.

Material and methods
This study was performed to establish and validate an indirect co-culture model of osteoclasts (OC) with differ-
ent oral cell lines. Peripheral blood mononuclear cells (PBMC) were isolated by gradient density centrifugation 
with Histopaque. With the aim of achieving a large differentiation percentage within a short period of time 
from thawed PBMC to OC according to a protocol of Marino et al.16, we analysed different times for osteoclast 
generation and their specific activity. Afterwards, the influences of different concentrations of RANKL, M-CSF 
and culture medium on the viability of intra-oral cell lines in a co-culture approach were tested via MTT assay 
and DAPI staining.

Cells and culture conditions.  Primary human gingival fibroblasts (FB) and osteoblasts (OB) were pur-
chased from Provitro (Berlin, Germany). Human oral keratinocytes (OK) were purchased from ScienCell (San 
Diego, USA). The cells were routinely cultured at 37 °C/5% CO2 and kept in the recommended growth medium 
until reaching the required number of cells. Dulbecco’s Modified Eagle Medium for fibroblasts and osteoblasts 
(DMEM, Thermo Fisher Scientific Inc, Waltham, USA) was supplemented with 10% foetal bovine serum (FBS, 
Thermo Fisher Scientific Inc, Waltham, USA) and 1% antibiotics (100 U/ml penicillin G, 100 μg/ml streptomy-
cin, Biochrom, Berlin, Germany). Additionally, 1% l-Glutamine (Biochrom, Berlin, Germany) was added to the 
OB medium. Human oral keratinocytes (OK) were grown in serum-free oral keratinocyte medium (ScienCell, 
San Diego, USA) or in Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham (DMEM/F-12, Sigma 
Aldrich, St. Louis, USA). DMEM/F12 was supplemented with 1% antibiotic solution (100 U/ml penicillin G, 
100 μg/ml streptomycin, Biochrom, Berlin, Germany) and 1% or 5% serum-replacement solution (KnockOut 
serum replacement (KO-SR, Thermo Fisher Scientific Inc, Waltham, USA). Experiments were performed with 
FB, OB and OK between passages 3 and 10 in triplicate. Trypsin/EDTA solution (Biochrom, Berlin, Germany) 
was used for passaging monolayer cultures.

Isolation and cryopreservation of PBMC.  Whole blood collected from volunteers was provided from 
the Department of Transfusion Medicine, University hospital of Lübeck. The blood was first centrifuged for 
20 min at 22 °C and 3500 RPM to obtain the buffy coat. Buffy coats were transferred into anticoagulant EDTA 
tube and peripheral blood mononuclear cells (PBMC) were isolated by gradient density centrifugation with 
Histopaque-1077 (Sigma-Aldrich, St Louis, USA). For this procedure 10 ml of "buffy coat" was mixed with 10 ml 
of warm (37 °C), sterile phosphate-buffered saline (PBS, Life Technologies, Darmstadt, Germany), layered over 
10 ml of Histopaque and centrifuged (800g, 30 min, 22 °C, with brake off). The cell layer direct on top of the His-
topaque contains PBMC. This layer was transferred into a new 50 ml tube, resuspended in 10 ml of warm PBS, 
diluted with 10 ml PBS (= 20 ml volume) and centrifuged (300 g, 3 min, 22 °C, with brake on). Subsequently, cells 
were counted in a haematocytometer, aliquoted, frozen and stored in liquid nitrogen (Fig. 1).

Osteoclast differentiation of PBMC.  Thawed PBMCs were plated in cell-culture dishes at 8.5 × 107 cells 
per dish in DMEM, 10% FBS, 1% antibiotics, 5% l-Glutamine and 25 ng/ml human M-CSF. After an expansion 
time of 72 h, the PBMCs were incubated with PBS/EDTA (Life Technologies, Darmstadt, Germany) for 10 min, 
detached for counting and settled in experimental set up. For osteoclast differentiation in the experimental 
set-up, medium was supplemented with 25 ng/ml human M-CSF (Peprotech, Rocky Hill, USA) and 50 ng/ml 
human RANKL (Peprotech, Rocky Hill, USA).

Validation of osteoclasts via resorption assay and TRAP and DAPI staining.  First, DAPI (4′, 
6-diamidino-2′-phenylindole, dihydrochloride; Roche, Basel, Switzerland) staining was performed to count the 
number of nuclei per cell. After rinsing once in PBS, cells were fixed with 100 µl 4% paraformaldehyde (Merck 
Millipore, Burlington, USA) for 15 min at 22 °C and then incubated with 1 g/ml DAPI in PBS for 5 min. Cell 
nuclei glow blue when exposed to 345 nm lights (Immunofluorescence microscopy, Axioobserver Z.1, Zeiss, 
Jena, Germany). Three images were captured per well. These were analysed using the ImageJ software17. Only 
cells containing more than three nuclei were considered multinuclear cells. Second, TRAP activity staining was 
performed to prove the osteoclast character of the giant cells. The cells were fixed and stained using the acid 
phosphatase, leukocyte (TRAP) kit (Sigma-Aldrich; Steinheim, Germany) according to the manufacturer’s 
instructions. Third, the osteoclast bone resorption assay was performed using a commercially available bone 
resorption assay kit (CosMo Bio, Tokyo, Japan) (Fig.  2). The resorption assay in the mono-culture arm was 
performed for 7 days only to ensure that the osteoclasts going in co-culture are functionally active cells. The 
cells were incubated on fluoresceinated calcium phosphate-coated microplate with RANKL (50 ng/ml) in the 
presence or absence of M-CSF (25 ng/ml). Bone resorption activity was evaluated by detecting the fluorescence 
intensity of conditioned medium at an excitation wavelength of 485 nm and an emission wavelength of 535 nm.

Activated cell scanning via flow cytometry of osteoclast marker proteins.  Osteoclast differen-
tiation of PBMC induced by M-CSF and RANKL was measured by RANK- and calcitonin-receptor expression 
via FACS. Multinucleated giant cells of PBMC were identified and tagged by CD3−CD19−CD14+CD64+ surface 
expression18–20. Cells were investigated before plastic adhesion (PA) and after 3, 7 and 12 days of osteoclast differ-
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Figure 1.   Synopsis illustrating the study design from PBMC isolation to osteoclast differentiation in mono- and 
co-culture. PBMC peripheral blood mononuclear cell, BC buffy coat, OC osteoclasts, TRAP: tartrate-resistant 
acid phosphatase, DAPI 4′,6-diamidino-2′-phenylindole, FACS fluorescence-activated cell sorting, MTT 
tetrazolium assay technology.
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Figure 2.   Settings of the gates for FACS analysis are shown in the upper part of the image. In the lower part 
of the image, representative images of PBMC isolation, TRAP analysis, DAPI stained cell sorting and results 
of the resorption assay are presented. The white arrow in the lower right image indicates pit formation in 
the resorption assay. Yellow points in the DAPI staining mark mononuclear cells whereas red dots mark 
multinuclear ones.
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entiation. Control and treated cells were harvested and washed once with cold phosphate-buffered saline (PBS). 
Subsequently, cells were incubated with RANK- and Calcitonin receptor antibody (Human RANK/TNFRSF11A 
PE-conjugated Antibody and Human Calcitonin R PE-conjugated Antibody; each from bio-techne, RD systems, 
Minneapolis, United States) in 100 μl PBS at room temperature for 15 min. Cells were washed twice with PBS, 
and the RANK- and Calcitonin receptor levels were examined by fluorescence-activated cell sorting (FACS; 
Becton Dickinson, San Jose, CA, USA) (Fig. 2).

MTT assay for cell proliferation.  Recent studies demonstrated that MTT assay provides high sensitiv-
ity, reproducibility, stimulation index and a wide linear response range for cell growth in comparison to other 
methods21,22. For MTT assay, viable cells are detected and quantified by mitochondrial conversion of 3-(4,5-
dime thylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid (MTT, Sigma Aldrich, St Louis, USA). According to the 
instructions of the manufacturer, the different cells of the co-culture inserts were set in new wells and rinsed with 
PBS. Afterwards, 200 μl of MTT dye (1:10 in DMEM/ 10% FBS) was added, incubated for 1 h and rinsed again 
with PBS. Absorption in the control and experimental groups was measured using a multiwell ELISA reader at 
a wavelength of 570 nm (Clariostar, BMG-Labtech, Ortenberg, Germany).

Study design.  PBMC were seeded at a density of 8.5 × 107 cells. After a 3-day expansion phase of PBMC, 
osteoclast differentiation was induced by 50 ng/ml RANKL and 25 ng/ml M-CSF. Differentiation was evaluated 
for 12 days and controlled by the resorption assay, TRAP and DAPI staining and FACS analysis. After setting 
the optimal time for the harvest of osteoclasts and the proof of osteoclast function, an indirect co-culture was 
initiated. A trans-well indirect co-culture system with inserts containing a membrane of 0.4 μm pore size was 
used to test cell lines separately (ThinCerts cell culture inserts; 0.4 μm pore size, Greiner-bioOne, Kremsmünster, 
Austria). This model has the advantage to allow exchange of paracrine signaling and response to soluble signal-
ling factors between the upper (insert) and lower chamber of the well. Interaction among cell lines environment 
remains possible while cells are kept separated for further investigations.

Osteoclasts were seeded in 24-well-plates (Techno Plastic Products, Trasadingen, Switzerland), and the differ-
ent oral cell lines (fibroblasts, osteoblasts and keratinocytes) were placed in the semipermeable inserts onto the 
osteoclasts for 5 days (Fig. 1). Co-culture of keratinocytes and PBMC was performed using standard keratinocyte 
medium or DMEM/F12 (1% or 5% KO-SR) instead of osteoclast medium. Different concentrations of RANKL 
and M-CSF were tested (RANKL: 50 ng/ml and 25 ng/ml; M-CSF: 25 ng/ml and 12.5 ng/ml) in OB-PBMC 
and FB-PBMC co-culture but not in OK-PBMC. After 5 days, an MTT assay was performed to investigate the 
proliferation of osteoblasts, keratinocytes and fibroblasts in co-culture. Further, DAPI staining was performed 
on the remaining osteoclasts in each co-culture (Fig. 1).

Statistical evaluation.  The experiments were performed in three replicates within each experiment. Sta-
tistical evaluation was performed by one-way analysis of variance (ANOVA) applying a post hoc Bonferroni test 
(IBM SPSS Statistics Version 25, IBM, Armonk, USA). Statistical significance was considered at p ≤ 0.05. All data 
are expressed as the mean ± standard deviation.

Ethics statement.  The local Ethics Committee of the University of Lübeck, Germany approved this study 
(ID 16-348) and all participants (volunteers) signed informed consent according to the guidelines and regula-
tions of the Declaration of Helsinki.

Results
OC differentiation of PBMC in a monoculture.  OC differentiation was investigated by obtaining multi-
nucleated cells from PBMC, FACS analysis of RANKL and calcitonin receptor expression, as well as by the 
functional resorption assay.

DAPI staining by light microscopy.  Osteoclast differentiation of PBMC, evaluated as the number of multinucle-
ated cells, increased significantly in number after 7 days of cultivation in comparison to 0 and 3 days (7 days: 
17 ± 2% increase, compared to 0  days: 0%; p < 0.001; and 3  days: 10 ± 2%; p = 0.02). Longer cultivation up to 
12 days did not result in further differentiation (12 days: 15 ± 1%; p > 0.1; Fig. 3).

Differentiation by expression of calcitonin and RANK receptor.  FACS analysis of RANK and calcitonin recep-
tor expression in PBMCs showed an increase in calcitonin receptor expression after 3 days with a maximum at 
7 days (mean fluorescence intensity d0: 87 ± 9; d3: 11,699 ± 8096; d7: 12,336 ± 7155; d12: 9024 ± 5004), whereas 
the expression of RANK receptor showed a slight and continuous increase over this time period (mean of fluo-
rescence intensity d0: 106 ± 4; d3: 2046 ± 1307; d7: 3394 ± 2044; d12: 4467 ± 2329) (Fig. 4).

Resorption assay.  Considering day 7 as a peak for the multinuclearity and RANK / calcitonin receptor expres-
sion in PBMC, we investigated the resorption function of OC at this time. The calcium phosphate (CaP)-coated 
plates showed distributed pit formation, indicating the resorption capacity of differentiated OC. As a sham-
control, only PBMC medium was administered on the (CaP)-coated plates. The use of 25 ng/ml M-CSF and 
50 ng/ml RANKL for OC differentiation led to a significant increase in the resorption activity of OC in contrast 
to RANKL-free M-CSF (mean of fluorescence intensity: M-CSF + RANKL: 2419 ± 64 versus M-CSF: 2227 ± 36; 
p = 0.012).
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OC differentiation of PBMC in the indirect co‑culture model.  After confirmation of OC differen-
tiation in the monoculture pre-study (day 7), OC were transferred onto the co-culture model. This was then 
continued in each group for a further 5 days (Fig. 1). This time period was defined according to the pre-study, 
where RANK- and calcitonin expression had reached a stable peak (Fig. 4).

At this time point (day 5 of co-culture), the impact of medium modification on fibroblasts (FB), osteoblasts 
(OB) and oral keratinocytes (OK) was assessed. For fibroblast co-culture, two different concentrations of RANKL 
and M-CSF (RANKL = 50 ng/ml and RANKL = 25 ng/ml, as well as M-CSF = 25 ng/ml and M-CSF = 12.5 ng/ml) 
showed no impact on fibroblast proliferation in comparison with FB medium (FB: 100% ± 0.0%; 25 ng/ml M-CSF 
and 50 ng/ml RANKL-FB: 97.6 ± 11.7%; 12.5 ng/ml M-CSF and 25 ng/ml RANKL-FB: 120.3 ± 5.7%; both p > 0.18; 
Fig. 5). The reduction of M-CSF and RANKL concentration also did not affect the number of multinucleated 
cells in the fibroblast-osteoclast co-culture (OC without co-culture: 100% ± 0.0%; 25 ng/ml M-CSF and 50 ng/
ml RANKL-FB: 99.9 ± 6.9%; 12.5 ng/ml M-CSF and 25 ng/ml RANKL-FB: 147.0 ± 25.8%; both p > 0.21; Fig. 6).

For OB, a common medium with 25 ng/ml M-CSF and 50 ng/ml RANKL led to a significant decrease in cell 
proliferation in comparison with the lower concentration medium (12.5 ng/ml M-CSF and 25 ng/ml RANKL) 
and to the standard OB medium (OB: 100% ± 0.0%; 25 ng/ml M-CSF and 50 ng/ml RANKL-OB: 43.7 ± 2.8%; 
p = 0.002; 12.5 ng/ml M-CSF and 25 ng/ml RANKL-OB: 80.7 ± 18.2%; p = 0.347; Fig. 5). Looking at the differen-
tiated OC in the co-culture, a significant increase in multinucleated cells was observed in comparison with the 
monoculture (OC in monoculture: 100% ± 0.0%; 25 ng/ml M-CSF and 50 ng/ml RANKL-OB: 158.9 ± 41.1%; 
12.5 ng/ml M-CSF and 25 ng/ml RANKL-OB: 192.1 ± 70.0%; both p < 0.041; Fig. 6). Keratinocyte proliferation 
decreased significantly in osteoclast medium as well as in DMEM/F12-Ko-SR 1% (both p ≤ 0.01) but was compa-
rable to that in standard medium with DMEM/F12-Ko-SR 5% (p = 0.71). Further, the percentage of differentiated 
OC in the keratinocyte co-culture was significantly low in all conditions compared to those in the monoculture 
(p < 0.02). DMEM/F12 provided higher OC differentiation than the OKM standard medium.

Discussion
Osteoclasts are a crucial cell type in bone remodelling. They are the main target of bisphosphonates and RANKL 
inhibitors in patients treated for osteoporosis, bone metastases and bone resorption-induced hypercalcemia. 
Administration of these drugs leads, therefore, to disturbed bone turnover and subsequent necrosis of the jaw1,2. 
In the current study we established an indirect co-culture model to investigate contactless cell–cell interaction 
between PBMC-derived osteoclasts and the main oral cell lines in vitro. Thus, the effect of soluble substances 
and media on viability and proliferation of osteoblasts, fibroblasts and keratinocytes can be better studied and 
understood.

OC differentiation from PBMC in co‑culture with OB, FB and OK.  Several protocols have been 
reported for osteoclast differentiation from PBMC in vitro16,23,24. These protocols are often time-consuming and 
incapable of generating sufficient numbers of osteoclasts10. Bernhardt et al. compared different PBMC isolation 
methods for obtaining a homogenous cell population and for improving osteoclast generation. They concluded 
that simple density gradient centrifugation, as performed in the current study, leads to optimal osteoclast dif-
ferentiation between 9 and 16 days25. In this study, PBMCs were differentiated to osteoclasts by adding 25 ng/ml 
M-CSF and 50 ng/ml RANKL to the standard medium. Using this method, we could show that PBMC had the 
highest number of multinucleated cells after 7 days. A longer cultivation period did not improve OC differentia-
tion. We assessed the advantage of RANKL supplementation to induce active osteoclasts in contrast to M-CSF 
alone. In accordance with our results, Cody et al. showed high OC differentiation after 7–8 days by adding a 
lower concentration of M-CSF to the standard medium10. Similarly, they observed more efficient OC formation 
in medium supplemented with 50 ng/ml RANKL compared with 10 ng/ml, whereas increasing the concentra-
tion to 100 ng/ml did not increase the osteoclast yield further10. In contrast to these findings, Costa-Rodriguez 
et al. showed that long-term supplementation—up to 21 days—with conditioned media derived from superna-
tants from either fibroblast or osteoblast cell cultures stimulated osteoclastogenesis of PBMC without addition 
of M-CSF and RANKL, since both cultures used to prepare the conditioned media express RANKL and M-CSF 

Figure 3.   Changes in the percentage of multinuclear PBMC in monoculture in osteoclast standard medium 
within the observation period of 12 days.
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themselves26. In the present study, we also observed an impact of osteoblasts and fibroblasts on osteoclastogen-
esis of PBMC. Using 12.5 ng/ml M-CSF and 25 ng/ml RANKL in the indirect co-culture of PBMC and osteo-
blasts led to significant enhancement of osteoclast differentiation in relation to PBMC monoculture, although 
this effect was higher in osteoblast co-culture. Based on these findings, it becomes clear that a reduction of 
M-CSF and RANKL concentration in indirect co-culture of PBMC with osteoblasts and fibroblasts does not 
attenuate osteoclast differentiation and activity. The decrease of OC differentiation from PBMC in OK medium 
observed in the present study can be explained by the missing RANKL and M-CSF stimulus and the absence 
of FBS in the culture medium23. In order to overcome this problem, Iwamoto et al. cultivated keratinocytes and 
fibroblasts together with OC and could show sufficient RANKL expression to differentiate osteoclasts in a co-

Figure 4.   FACS analysis of calcitonin and RANK receptors expression in CD64+ and CD14+ cells during the 
differentiation period.
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culture model. Intercellular communication among the different cell lines involved in the co-culture seems to 
trigger local RANKL expression27.

Proliferation of OB, FB and OK in co‑culture with OC.  The proliferation of the osteoblasts was com-
promised using medium with 25 ng/ml M-CSF and 50 ng/ml RANKL, while this effect was not evident at lower 
M-CSF and RANKL concentrations (12.5 ng/ml and 25 ng/ml, respectively). The intervention in the RANKL/
OPG ratio might be a reason for this observed impact on OB proliferation. It is known that RANKL up-regu-
lation and OPG down-regulation lead to bone loss via several endogenous factors that regulate the RANKL/
RANK/OPG pathway, including cytokines and mesenchymal transcription factors28,29. The establishment of an 
indirect keratinocyte-PBMC co-culture seems to represent a challenging issue, as we could not keep the OK and 

Figure 5.   MTT assay indicating viability/proliferation of fibroblasts (yellow), osteoblasts (red) and 
keratinocytes (blue) under stratified medium modification in co-culture, each with osteoclasts. The horizontal 
red line represents values for the standard medium of each cell line in monoculture. DMEM/F12: Dulbecco’s 
modified Eagle’s medium/nutrient mixture F-12 ham; KO-SR KnockOut- serum replacement, OCM osteoclast 
standard medium.

Figure 6.   Percentage of multinuclear cells with OC differentiation in the co-culture with OB and OK in relation 
to mono-culture OC differentiation under stratified medium modification. DMEM/F12 Dulbecco’s modified 
Eagle’s medium/nutrient mixture F-12 ham, KO-SR KnockOut- serum replacement, OKM oral keratinocytes 
standard medium.
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OC in co-culture viable or differentiated for the initial 5 days. Both cell lines underwent significant decreases 
in proliferation and differentiation in both media. The proliferation loss of OK in OC medium supports the 
assumption by Shipley et al., who reported on the advantage of serum-free medium for in vitro culturing of 
keratinocytes30. Compared with the standard medium of each cell line, co-culturing using DMEM/F12 with 
5% of knock-out serum replacement solution, however, results in a high proliferation rate of OK along with a 
relatively reasonable OC differentiation.

Conclusion
We show that OC differentiation of PBMC could be reached after 7 days in monoculture. Both OB and FB 
enhance PBMC differentiation onto OC in an indirect co-culture model and thus allow reduction of M-CSF and 
RANKL concentration in the medium without impact on OC differentiation.

The results presented above contribute to the establishment of an indirect co-culture model for the investi-
gation of environmental and soluble factors, which influence bone remodelling in pathogenic processes of the 
oral cavity, where OB, OC, FB and OK interact. The mechanism underlying altered osteoclasts differentiation in 
co-culture is an interesting and relevant aspect from the physiologic point of view, that has not been investigated 
in the current study but may be addressed in future studies to better develop therapeutic approaches.
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