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Abstract

Application and use of deep learning algorithms for different healthcare applications is gaining 

interest at a steady pace. However, use of such algorithms can prove to be challenging as they 

require large amounts of training data that capture different possible variations. This makes it 

difficult to use them in a clinical setting since in most health applications researchers often have to 

work with limited data. Less data can cause the deep learning model to over-fit. In this paper, we 

ask how can we use data from a different environment, different use-case, with widely differing 

data distributions. We exemplify this use case by using single-sensor accelerometer data from 

healthy subjects performing activities of daily living - ADLs (source dataset), to extract features 

relevant to multi-sensor accelerometer gait data (target dataset) for Parkinson’s disease 

classification. We train the pre-trained model using the source dataset and use it as a feature 

extractor. We show that the features extracted for the target dataset can be used to train an effective 

classification model. Our pretrained source model consists of a convolutional autoencoder, and the 

target classification model is a simple multi-layer perceptron model. We explore two different pre-

trained source models, trained using different activity groups, and analyze the influence the choice 

of pre-trained model has over the task of Parkinson’s disease classification.

I. INTRODUCTION AND RELATED WORK

Recent advances in wearable technologies like smart-watches and fitness trackers has proven 

to be an accessible and low-cost approach for a variety of activity-based health interventions. 

These devices contain inertial measurement unit (IMU) sensors like accelerometers, 

gyroscopes that help monitor movements continuously for extended periods during daily 

activities. Data from these devices together with sophisticated machine learning algorithms 

like deep learning can help characterize human movement and develop automated systems 

for many applications in movement disorders such as Parkinson’s [8], [1], [5], [13], [17] and 

human activity recognition for health and well-being interventions [20], [23], [18], [10]. 

With the rise in deep learning algorithms, hand-engineered features have been replaced by 

features learnt by data-driven methods. However, for robust performance, they require a 

substantial amount of data to do well at inference. Gaining access to large amount of 

clinically relevant movement data, can be difficult, expensive and can lead to privacy-related 
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issues. One can address this issue by using pre-trained models trained using a larger source 

dataset. Part of the pre-trained model can be used as a feature extraction tool for the target 

dataset of interest. The features extracted are later used to train a smaller, simpler 

classification model. However, this technique assumes that the source and target datasets 

have similar data distributions and data collection environments, i.e., same sensor-device, 

data collection protocol, sensor placement on the body, etc. This assumption is rarely 

applicable to real-world applications. An unsupervised pre-trained model can help address 

this issue to a certain extent as it learns to characterize data without taking the associated 

class labels into account.

In this paper, we ask whether movement data acquired from wearable devices for one 

specific intervention can be used to learn deep-learning models, but applied to an entirely 

different end-use robustly. To address this question, we use two specific situations. For the 

source domain, we assume access to accelerometry data from general health and well-being 

interventions, including tracking of activities of daily living. We seek to apply features learnt 

from the source to the target domain of accelerometer-based Parkinson’s disease gait-based 

assessment. The motivation for this is that while general purpose activities of daily living 

can be obtained relatively easily, including from public databases like USC-HAD [24], it is 

much harder to obtain large-scale gait-data from special populations like Parkinson’s 

disease.

Parkinson’s disease is the second most common neurodegenerative disease in the world [16]. 

Symptoms include postural instability, gait dysfunction, speech degradation, motor function 

impairment, erratic behavior and thought process. It is estimated that about one million 

people are afflicted by the disease in the United States alone and live with no cure [15]. The 

most common approach to detect presence of Parkinson’s disease consists of questionnaires 

and visual evaluation of disease-specific impairments by a clinical expert. However, these 

evaluations can be prone to subjective bias. An ideal scenario would involve a consensus 

evaluation by multiple clinicians, but this would result in being an expensive and time-

consuming process for the patient.

In this paper we use an unsupervised pre-trained model (trained using a source dataset 

containing single-sensor ADLs data from healthy subjects) as a feature extractor for the 

target dataset of interest. Here, the target dataset consists of multi-sensor gait data. We use 

the extracted features for the task of binary classification of gait patterns into healthy or 

Parkinson’s disease subjects. Note, the source and target datasets share no similarity. We 

also explore the influence the distribution of the different classes in the source dataset has on 

the final binary classification task. Variants of the proposed approach have been successfully 

applied to other clinical and non-clinical applications [3], [12], [6], [11], [7], [14]. The rest 

of the paper is organized as follows – Section II provides background information on 

supervised and unsupervised learning. Section III goes over details of the autoencoder and 

classification model used. Section IV gives a detailed description of the source and target 

datasets. In Section V we discuss the binary classification experiment results. Section VI 

concludes the paper.
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II. BACKGROUND

Supervised learning is concerned with learning complex mappings from X to Y when many 

pairs of (x, y) are given as training data. Here, x ∈ X and y ∈ Y are the input and output 

variables respectively. In a classification setting Y corresponds to a fixed set of labels. On 

the other hand, unsupervised learning algorithms assume not having access to the label 

information of the data samples, thereby allowing us to learn the underlying patterns and 

characteristics of the data without making any assumptions of the associated class labels. An 

autoencoder is a popular unsupervised learning algorithm. It focuses on learning mappings 

from X to X, i.e., the output of the model is set equal to the model’s input. In other words, it 

tries to behave like an identity function. An autoencoder consists of two parts: (1) Encoder, 

(2) Decoder. At the time of training, the encoder learns to map the input data to a latent 

space representation, while the decoder learns to map the projected latent representation to 

the output of the model. At inference time, if x is passed as input then x is obtained as 

output, with x being very similar to x. The mean-squared-error loss function is used to 

update the model’s weights. Using a pre-trained autoencoder – trained using a source 

dataset (Ds), we can compute latent representations of the target training dataset (Dt). The 

projected latent representations of Dt can be used to train a new classifier for the target 

classification task (Tt).

Training deep learning models in a supervised fashion is suitable only when there is a large 

amount of training data that captures different variations. Often these models are trained 

using clean, uniformly distributed source datasets that are collected in well-defined 

controlled environments. They assume that the target data of interest is also collected in a 

similar environment and adheres to the same distribution as the source dataset. However, this 

is never the case and collecting vast quantities of data in a healthcare setting can prove to be 

a challenge. Also, training a deep learning model with limited amount of data can cause the 

model to overfit. Data augmentation and domain adaptation techniques have been employed 

to handle these issues but mainly for visual classification tasks [21], [19]. It would be 

difficult to apply these techniques in a healthcare setting, especially for time-series data, 

where the data environment continuously changes. Due to this reason we explore using pre-

trained unsupervised autoencoder models for feature extraction. The autoencoder is trained 

using a larger Ds – comprised of different activities performed by healthy subjects. It is later 

used to extract latent feature representations for a smaller Dt – consisting of gait data from 

healthy and Parkinson’s disease subjects.

III. NETWORK ARCHITECTURE

Here we go over the network architecture and hyperparameter settings for the source 

autoencoder model and the target classification model.

A. Autoencoder Model

We use a temporal DenseNet architecture [9] to build the autoencoder model, with the 

DenseNet model being a variant of Convolutional Neural Networks (CNNs). There have 

been previous works that explored the use of Recurrent Neural Networks (RNNs) instead for 
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Parkinson’s disease modeling [4]. However, a recent study suggests that temporal CNNs 

have a longer memory retention capacity and outperform RNNs on a diverse range of tasks 

and datasets [2]. For this reason we use the DenseNet architecture for building the 

autoencoder model. We set the number of dense blocks in the encoder and the decoder to 2. 

The following hyper-parameter settings were used: number of layers per dense block = 4, 

bottleneck size = 4, initial number of convolution filters = 32, initial convolution filter width 

= 7, initial pool width = 3, number of convolution filters = 16, convolution filter width = 3, 

transition pool size = 2, stride = 1, theta = 0.5, dropout rate = 0.2. We set stride = 1 as this 

helps keep the temporal dimension of the input signal unchanged throughout the 

autoencoder. The autoencoder model was used only to train on the source dataset in our 

experiments. The total number of trainable parameters is 264265.

B. Multi Layer Perceptron (MLP) Model

The MLP model was used as the target classification model. It contains 4 dense layers with 

ReLU activation and having 64, 128, 128, 64 units respectively. To avoid overfitting, each 

dense layer is L2 regularized and followed by a dropout layer with a dropout rate of 0.2. The 

output layer is another dense layer with Softmax activation and with number of units equal 

to the number of classes. The total number of trainable parameters is a little over 35000, 

which is still a lot less compared to the pre-trained autoencoder model.

IV. DATASET

A. Source Dataset

The source dataset consists of 29 different activity classes from 152 healthy subjects. It was 

collected using the GENEactiv sensor, a single wrist worn accelerometer sensor at a 

sampling rate of 100Hz. Figure 1 shows the distribution of the different activity classes. 

Detailed description of the subject characteristics and data collection protocol can be found 

here [22]. In this dataset, we considered two different subsets with eight activities each, to 

serve as the source dataset in our experiments. This was done to check if the type of 

activities present in the source dataset influenced the target binary classification task in any 

way.

Subset-1: Contains treadmill activities (i.e., primarily walking) performed at different 

speeds and inclincations – Treadmill 1mph (0% grade), Treadmill 2mph (0% grade), 

Treadmill 3mph (0% grade), Treadmill 3mph (5% grade), Treadmill 4mph (0% grade), 

Treadmill 5mph (0% grade), Treadmill 6mph (0% grade), Treadmill 6mph (5% grade).

Subset-2: Contains four non-ambulatory and four treadmill activities – Seated-folding/

stacking laundry, Standing/fidgeting with hands, 1min brush teeth/1min brush hair, Driving 

car, Treadmill 1mph (0% grade), Treadmill 3mph (0% grade), Treadmill 5mph (0% grade), 

Treadmill 6mph (5% grade).

B. Target Dataset

Subject Characteristics and Selection Criteria: The target gait dataset consists of 16 

healthy and 18 Parkinson’s disease (PD) subjects. Age of healthy subjects ranged from 52 - 
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75. PD subjects were selected if they satisfied the following conditions: PD diagnoses is in 

accordance with the UK Brain Bank criteria; are aged between 30 - 80; have a Hoehn-Yahr 

score between 2 and 3.5 (on a scale of 0 to 5) during medication-off/Deep Brain 

Stimulation-on condition; are able to participate in walking and standing trials without 

assistance; are at least three months post-implantation of Deep Brain Stimulation (DBS) 

device(s) (unilateral or bilateral); have stable stimulator settings and an antiparkinsonian 

medication regime (as judged by the screening clinician) for at least two weeks before their 

experimental evaluation visit. Individuals with PD exhibiting any of the following conditions 

were excluded from the study: have a recent history of unstable heart or lung disease; have 

evidence of pregnancy; have a history of non-compliance with medical or research 

procedures; have untreated chemical addiction or abuse; have an uncontrolled psychiatric 

illness; have major neurological (e.g., stroke), musculoskeletal (e.g., rheumatoid arthritis), or 

metabolic (e.g., diabetes) problems; have cognitive impairment (score of less than 25 in the 

mini-mental state examination); are unable to walk or stand without any walking aid (e.g., 
using a cane) for any reason; and presence of significant dyskinesia.

Subject Evaluation and Gait Data Collection: Gait and severity of PD symptoms 

were evaluated in the medication- off condition at three different DBS frequency settings: 

(1) clinically determined setting (CDS); (2) intermediate frequency (INT) setting, where the 

frequency was reduced to about 80Hz; and (3) low frequency (LOW) setting, with the 

frequency further reduced to about 30Hz. During INT and LOW conditions only the 

frequency of the stimulation was altered from that of the CDS condition, with all other 

parameters such as stimulation amplitude, pulse width, etc. being unchanged. Note, PD 

subjects had to discontinue antiparkinsonian medications at least 12 hours before 

participating in the clinical evaluations.

To assess gait, both PD and healthy subjects were asked to wear six small, light-weight 

sensors in the following regions: Sternum, Lumbar, Left-Ankle, Right-Ankle, Left-Wrist, 
Right-Wrist. Acccelerometer data was collected at a frequency of 128Hz. These sensors 

were connected to a data logger that the subjects wore. The setup did not affect a subject’s 

walking patterns. The gait protocol consisted of walking along a 30 meter straight path, 

turning around, and continuing to walk along the same path. Each subject carried out this 

protocol 1-2 times in each trial. Note, for all subjects the gait trials were collected in all three 

frequency settings with the first setting always being CDS. However, the order of data 

collection in INT and LOW settings was randomized.

V. EXPERIMENTS

Data Preparation:

For both datasets described in Section IV, the time-series signals were zero-centered and 

normalized to have unit standard-deviation. Next, non-overlapping frames of length 250 

time-steps were extracted from each time-series signal. Note, the source dataset consists of a 

single wrist worn accelerometer sensor; whereas the target dataset uses a different 

accelerometer sensor and consists of six sensors placed at different parts of the body. Thus, 
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the data collection protocol and data distribution is completely different between the two 

datasets.

Feature Extraction:

Using the pre-trained source autoencoder model we explore two variants to extract latent 

feature representations for the target dataset. For the first variant we do not constrain the 

length of latent representations obtained from the encoder block. The length of each latent 

representations after being vectorized is 48000 (6 sensors × 250 time-steps × 32 filters). This 

is too big to be directly used as input to the MLP classification model. Instead we use 

Principal Component Analysis (PCA) and bring down the length to a 1600 dimensional 

feature representation, allowing us to retain 98-99% of the variance exhibited by the data. 

The total number of non-overlapping frames in the target dataset was equal to 1786. For this 

reason we decided to set the number of PCA components to 1600. In the second variant we 

constrain the size of latent representations by using a global-average-pool layer after the 

encoder. The length of each feature after being vectorized is 192 (6 sensors × 32 filters).

We also evaluate the performance of two other baseline methods: (1) A 19-dimensional 

feature vector consisting of different statistics is calculated over each frame [22]; (2) 

Original normalized time-series signal. The 19-dimensional feature vector includes mean, 
variance, root-mean-square (RMS) value of the raw accelerations on each of X, Y and Z 
axes, pearson correlation coefficients (ρ) between X-Y, Y-Z and X-Z time series, difference 
between maximum and minimum accelerations on each axis denoted by dx, dy, dz, and 

dx2 + dy2, dy2 + dz2, dx2 + dz2, dx2 + dy2 + dz2. As for the original time-series signal, 

vectorizing each frame will result in a 4500 dimensional feature representation (6 sensors × 

250 time-steps × 3 axis). Here too we use PCA to bring down the feature length to 1,600. 

For all three feature representations we use the same MLP architecture (described in Section 

III) as our target classification model.

Evaluation:

We randomly select equal number of subjects from each class for the training and test sets. 

Classifying gait patterns into Parkinson’s disease and healthy subjects is a non-trivial 

problem, especially when working with limited data. Also, gait patterns from the two groups 

share similar statistical summaries as seen in Table I. Subject-bias was avoided by making 

sure that data samples from the same subject were not present across the training and test 

splits.

The binary classification results averaged over three random subject splits is shown in Table 

II. The table shows the mean±std values for accuracy, precision, recall and F1-score. In 

addition to using the MLP model, we also evaluate the above features using a Linear Support 

Vector Machine (Linear-SVM) classifier. PCA representations of the original time-series 

signal perform the worst in both classification models. This is followed by the 19-

dimensional hand-engineered feature. Both variants of the proposed method do better than 

the two baseline approaches. The constrained variant of the proposed method has a slightly 

better average performance than the unconstrained version. However, we also observe a 

larger standard-deviation. We also notice that the proposed method shows similar 
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classification results on both SVM and MLP classifiers. The choice of source dataset used to 

train the autoencoder model does affect the proposed method’s stability, as seen from the 

standard deviation values.

The classification results in Table II were obtained using all six sensors in the target dataset. 

Using the MLP classifier, we also examine the influence each feature representation has 

when using each of the six sensors individually. For this analysis we only consider the 

unconstrained variant of the proposed method due to its lower standard deviation. Figure 2 

displays the error bar information of the F1-Score performance w.r.t. each individual sensor. 

The All Sensors entry in this figure corresponds to MLP classifier’s F1-Score entry in Table 

II. Except for Lumbar and Left-Wrist sensors, the proposed feature representation does 

comparatively better than the baseline features on all other sensors. The following 

interesting observations can be made with respect to the Wrist, Ankle sensors – (1) the Left-
Ankle sensor does better than the Right-Ankle sensor; (2) the Right-Wrist sensor does better 

than the Left-Wrist sensor; (3) the Left-Ankle sensor does surprisingly better than the Right-
Wrist sensor. With regards to the third observation, one would expect to see better results 

using the Wrist sensors since the source dataset consisted of a wrist-worn accelerometer 

sensor. This could be due to difference in sensor device used and the protocol followed 

during data collection.

VI. CONCLUSION

In this paper we explore the use of unsupervised pre-trained autoencoder models to extract 

feature representations from gait data for Parkinson’s disease classification. We trained two 

different autoencoder models using a larger source dataset comprising of only healthy 

subjects. We evaluated the impact the choice of source dataset had on the final target 

(binary) classification task. Our findings indicate that it is indeed possible to adapt models 

from a very different domain and label-set to another with robust performance. The source 

and target datasets used in our experiments came from different data distributions and were 

collected in different environments. This study opens new possibilities into the use of 

existing public data-sources of time-series from wearables to learn and adapt features for 

very specialized low-data use-cases. For instance, in this paper we leveraged data from 

ADLs, to learn robust features that can be adapted for use in Parkinson’s disease assessment, 

despite both applications having little in common in terms of signal characteristics or class-

labels. Possible extensions to this work include: explore the binary-classification ability of 

pre-trained models under different DBS frequency conditions; use of unsupervised pre-

trained models across sensor platforms, like accelerometer to gyroscope and vice versa.
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Fig. 1. 
Distribution of activity classes in the source dataset, collected using the GENEactiv sensor 

[22].
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Fig. 2. 
Illustration of the error bar plot of the F1-Score binary classification performance when 

using different sensors in the target gait dataset. The MLP classification model was used to 

get these results.
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