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Abstract

Sickle Cell Disease (SCD) is a hereditary disorder of red blood cells in humans. Complications 

such as pain, stroke, and organ failure occur in SCD as malformed, sickled red blood cells passing 

through small blood vessels get trapped. Particularly, acute pain is known to be the primary 

symptom of SCD. The insidious and subjective nature of SCD pain leads to challenges in pain 

assessment among Medical Practitioners (MPs). Thus, accurate identification of markers of pain in 

patients with SCD is crucial for pain management. Classifying clinical notes of patients with SCD 

based on their pain level enables MPs to give appropriate treatment. We propose a binary 

classification model to predict pain relevance of clinical notes and a multiclass classification 

model to predict pain level. While our four binary machine learning (ML) classifiers are 

comparable in their performance, Decision Trees had the best performance for the multiclass 

classification task achieving 0.70 in F-measure. Our results show the potential clinical text 

analysis and machine learning offer to pain management in sickle cell patients.
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I. Introduction

Sickle cell disease (SCD) affects nearly 100,000 people in the US1 and is an inherited red 

blood cell disorder. Common complications of SCD include acute pain, organ failure, and 

early death [1]. Acute pain arises in patients when blood vessels are obstructed by sickle-

shaped red blood cells mitigating the flow of oxygen, a phenomenon called vaso-occlusive 

crisis. Further, pain is the leading cause of hospitalizations and emergency department 

admissions for patients with SCD. The numerous health care visits lead to a massive amount 

of electronic health record (EHR) data, which can be leveraged to investigate the 

relationships between SCD and pain. Since SCD is associated with several complications, it 
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is important to identify clinical notes with signs of pain from those without pain. It is equally 

important to gauge changes in pain for proper treatment.

Due to their noisy nature, analyzing clinical notes is a challenging task. In this study, we 

propose techniques employing natural language processing, text mining and machine 

learning to predict pain relevance and pain change from SCD clinical notes. We build two 

kinds of models: 1) A binary classification model for classifying clinical notes into pain 
relevant or pain irrelevant; and 2) A multiclass classification model for classifying the pain 
relevant clinical notes into i) pain increase, ii) pain uncertain, iii) pain unchanged, and iv) 

pain decrease. We experiment with Logistic Regression, Decision Trees, Random Forest, 

and Feed Forward Neural Network (FFNN) for both the binary and multiclass classification 

tasks. For the multiclass classification task, we conduct ordinal classification as the task is to 

predict pain change levels ranging from pain increase to pain decrease. We evaluate the 

performance of our ordinal classification model using graded evaluation metrics proposed in 

[2].

II Related Work

There is an increasing body of work assessing complications within SCD. Mohammed et al. 

[1] developed an ML model to predict early onset organ failure using physiological data of 

patients with SCD. They used five physiologic markers as features to build a model using a 

random forest classifier, achieving the best mean accuracy in predicting organ failure within 

six hours before the incident. Jonassaint et al. [3] developed a mobile app to monitor signals 

such as clinical symptoms, pain intensity, location and perceived severity to actively monitor 

pain in patients with SCD. Yang et al. [4] employed ML techniques to predict pain from 

objective vital signs shedding light on how objective measures could be used for predicting 

pain.

Past work on predicting pain or other comorbidities of SCD, has thus, relied on features such 

as physiological data to assess pain for a patient with SCD. In this study, we employ purely 

textual data to assess the prevalence of pain in patients and whether pain increases, decreases 

or stays constant.

There have been studies on clinical text analysis for other classification tasks. Wang et al. [5] 

conducted smoking status and proximal femur fracture classification using the i2b2 2006 

dataset. Chodey et al. [6] used ML techniques for named entity recognition and 

normalization tasks. Elhadad et al. [7] conducted clinical disorder identification using named 

entity recognition and template slot filling from the ShARe corpus (Pradhan et al., 2015) [8]. 

Similarly, clinical text can be used for predicting the prevalence and degree of pain in sickle 

cell patients as it has a rich set of indicators for pain.

III. Data Collection

Our dataset consists of 424 clinical notes of 40 patients collected by Duke University 

Medical Center over two years (2017 – 2019). The clinical notes are jointly annotated by 

two co-author domain experts. There are two rounds of annotation conducted on the dataset. 

In the first round, the clinical notes were annotated as relevant to pain or irrelevant to pain. 
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In the second round, the relevant to pain clinical notes were annotated to reflect pain 
change. Figure-1 shows the size of our dataset based on pain relevance and pain change. 

As shown, our dataset is mainly composed of pain relevant clinical notes. Among the pain 
relevant clinical notes, clinical notes labeled pain decrease for the pain change class 

outnumber the rest. Sample pain relevant and pain irrelevant notes are shown in Table-I.

Our dataset is highly imbalanced, particularly, among the pain relevance classes. There are 

significantly higher instances of clinical notes labeled pain relevant than pain irrelevant. To 

address this imbalance in our dataset, we employed a technique called Synthetic Minority 

Over-sampling TEchnique (SMOTE) [9] for both classification tasks.

We preprocessed our dataset by removing stop words as well as punctuations, and performed 

lemmatization.

IV. Methods

The clinical notes are labeled by co-author domain experts based on their pain relevance 
and pain change indicators. The pain change labels use a scale akin to the Likert scale from 

severe to mild. Our pipeline (Figure-2) consists of data collection, data preprocessing, 

linguistic/topical analysis, feature extraction, feature selection, model creation, and 

evaluation. We use linguistic and topical features to build our models. While linguistic 

analysis is used to extract salient features, topical features are used to mine latent features. 

We performed two sets of experiments: 1) Binary Classification for pain relevance 
classification, and 2) Multiclass Classification for pain change classification.

A. Linguistic Analysis

To infer salient features in our dataset, we performed linguistic analysis. We generated n-

grams for pain-relevant and pain-irrelevant clinical notes and clinical notes labeled pain 
increase, pain uncertain, pain unchanged, or pain decrease. In our n-grams analysis, we 

observe there are unigrams and bigrams that are common to different classes (e.g., common 

to pain relevant and pain irrelevant). Similarly, there are unigrams and bigrams that are 

exclusive to a given class. Table-II shows the top 10 unigrams selected using χ2 feature 

selection for our dataset based on the classes of interest.

B. Topical Analysis

While n-grams analysis uncovers explicit language features in the clinical notes, it is equally 

important to uncover the hidden features characterizing the topical distribution. We adopt the 

Latent Dirichlet Allocation (LDA) [10] for unraveling these latent features. We train an LDA 

model using our entire corpus.

To determine the optimal number of topics for a given class of clinical notes (e.g., pain 
relevant notes), we computed coherence scores [11]. The higher the coherence score for a 

given number of topics, the more intepretable the topics are (see Figure-3). We set the 

number of words characterizing a given topic to eight. These are words with the highest 

scores in the topic distribution. We found the human-interpretable optimal number of topics 

for each of the classes of the clinical notes in our dataset to be two. This is interpreted as 
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each class of the clinical notes is a mixture of two topics. Table-III shows words for the two 

topics for pain relevant and pain irrelevant clinical notes. As can be seen in the table, pain 
relevant notes can be interpreted to have mainly the topic of pain control, while pain 
irrelevant notes to have primarily the topic of home care. Similarly, Table-IV shows the 

distribution of words for the topics for each of the pain change classes (underscored words 

are exclusive to the corresponding class for Topic-1). Further, pain appears in each of the 

topics for pain change classes and, as a result, is not discriminative. While a common word 

such as pain in the topic distribution can be considered as a stop word and not helpful for 

pain change classification, we did not remove it since pain helps with interpretation of a 

given topic regardless of other topics.

C. Classification

The language and topical analyses results are used as features in building the ML models. 

Our classification task consists of two sub-classification tasks: 1) pain relevance 
classification; 2) pain change classification, each with its own sets of features. The pain 
relevance classifier classifies clinical notes into pain-relevant and pain-irrelevant. The pain 
change classifier is used to classify the pain-relevant clinical notes into 1) pain increase, 2) 

pain uncertain, 3) pain unchanged, and 4) pain decrease. We trained and evaluated various 

ML models for each classification task. We used a combination of different linguistic and 

topical features to train our models. Since linguistic and topical features are generated using 

independent underlying techniques, which make them orthogonal, concatenation operation is 

used to combine their representations. We split our dataset into 80% training and 20% 

testing sets and built logistic regression, decision trees, random forests, and FFNN for both 

classification tasks. Table-V shows the results of the pain relevance classifier while Table-

VI shows pain change classification results. For the ordinal classification, we considered the 

following order in the severity of pain change from high to low: pain increase, pain 
uncertain, pain unchanged, pain decrease.

V. Discussion

For pain relevance classification, the four models have similar performance. For pain 
change classification, however, we see a significant difference in performance across the 

various combinations of features and models. Decision trees with linguistic and topical 

features achieve the best performance in F-measure. While random forest, and FFNN offer 

better precision, each, than decision tree, they suffer on Recall, and therefore on F-measure. 

Further, most models perform better when trained on topical features than pure linguistic 

features. A combination of topical and linguistic features usually offers the best model 

performance. Thus, latent features obtained using LDA enable an ML model to perform 

better.

Evaluation of the multiclass classification task is conducted using the techniques used by 

Gaur et al. [2] where a model is penalized based on how much it deviates from the true label 

for an instance. Formally, the count of true positives is incremented when the true label and 

predicted label of an instance are the same. Similarly, false positives’ count gets incremented 

by an amount equal to the gap between a predicted label and true label (when predicted label 
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is higher than true label). False negatives’ count is incremented by the difference between 

the predicted label and true label (when predicted label is lower than true label). Precision, 

and recall are then computed following the implementations defined in ML libraries2 using 

the count of true positives, false positives, and false negatives. Finally, F-measure is defined 

as the harmonic mean of precision and recall.

While we achieved scores on the order of 0.9 for pain relevance classification, the best we 

achieved for pain change classification was 0.7. This is because there is more disparity in 

linguistic and topical features between pain relevant and pain irrelevant notes than there is 

among the four pain change classes. since the price of false negatives is higher than false 

positives in a clinical setting, we favor decision trees with n-grams and topics used as 

features as they achieve the best Recall and F-measure, albeit they lose to other models on 

Precision. Thus, identification of pain relevant notes with 0.98 F-measure followed by a 0.70 

F-measure on determining pain change is impressive. We believe our model can be used by 

MPs for sCD-induced pain mitigation.

VI. Conclusion and Future Work

In this study, we conducted a series of analyses and experiments to leverage the power of 

natural language processing and ML to predict pain relevance and pain change from 

clinical text. specifically, we used a combination of linguistic and topical features to build 

different models and compared their performance. Results show decision tree followed by 

feed forward neural network as the most promising models.

In future work, we plan to collect additional clinical notes and use unsupervised, and deep 

learning techniques for predicting pain. Further, we look forward to fusing different 

modalities of sickle cell data for better modeling of pain or different physiological 

manifestations of SCD.
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Fig. 1. 
Statistics of dataset for Pain Relevance and Pain Change classes
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Fig. 2. 
Sickle Cell Disease Pain Classification Pipeline
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Fig. 3. 
Coherence Scores vs Number of Topics
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TABLE I

Sample Clinical notes

Pain Relevance Sample Clinical Note

YES Patient pain increased from 8/10 to 9/10 in chest.

NO Discharge home
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TABLE II

Top 10 Unigrams

Pain Relevant (Exclusive) Pain Irrelevant (Exclusive) Pain Relevant AND Pain Irrelevant

emar, intervention, increase, dose, 
expressions, chest, regimen, alteration, 
toradol, medication

home, wheelchair, chc, fatigue, bedside, 
parent, discharge, warm, relief, mother

pain, pca, plan, develop, control, altered, 
patient, level, comfort, manage
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TABLE III

Topic distribution based on pain relevance

Pain Relevance Most Prevalent Words in Topic-1 Most Prevalent Words in Topic-2

YES progress, pain, improve, decrease, knowledge, control patient, pain, medication, knowledge, goal, state

NO note, admission, discharge, patient, home, ability pain, goal, admission, outcome, relief, continue
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TABLE IV

Topic distribution based on pain change

Pain Change Most Prevalent Words in Topic-1 Most Prevalent Words in Topic-2

Pain increase pain, progress, medication, management, patient, schedule, 
pca, intervention

pain, patient, give, goal, intervention, dose, button, plan

Pain uncertain pain, patient, goal, continue, plan, improve, decrease, 
develop

outcome, pain, problem, knowledge, regimen, deficit, carry, 
method

Pain unchanged pain, progress, level, control, develop, plan, regimen, pca patient, pain, remain, well, demand, plan, level, manage

Pain decrease pain, progress, patient, decrease, plan, regimen, satisfy, alter pain, patient, improve, satisfy, control, decrease, manage, 
ability
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TABLE V

Pain Relevance Classification

Model Feature Precision Recall F-measure

Logistic Regression Linguistic 0.94 0.93 0.94

Topical 0.98 0.86 0.91

Linguistic + Topical 0.95 0.95 0.95

Decision Trees Linguistic 0.95 0.95 0.95

Topical 0.98 0.98 0.98

Linguistic + Topical 0.98 0.98 0.98

Random Forest Linguistic 0.90 0.95 0.92

Topical 0.95 0.98 0.98

Linguistic + Topical 0.90 0.95 0.93

FFNN Linguistic 0.94 0.94 0.94

Topical 0.98 0.98 0.98

Linguistic + Topical 0.96 0.96 0.94
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TABLE VI

Pain Change Classification

Model Feature Precision Recall F-measure

Logistic Regression

Linguistic 0.75 0.56 0.63

Topical 0.50 0.55 0.52

Linguistic + Topical 0.76 0.58 0.66

Decision Trees

Linguistic 0.76 0.59 0.67

Topical 0.73 0.65 0.68

Linguistic + Topical 0.74 0.68 0.70

Random Forest

Linguistic 0.74 0.49 0.59

Topical 0.94 0.52 0.66

Linguistic + Topical 0.81 0.46 0.59

FFNN

Linguistic 0.71 0.59 0.65

Topical 0.73 0.65 0.68

Linguistic + Topical 0.83 0.51 0.63
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