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Abstract

The objective of quantitative ultrasound (QUS) is to characterize tissue microstructure by 

parametrizing backscattered radiofrequency (RF) signals from clinical ultrasound scanners. 

Herein, we develop a novel technique based on dynamic programming (DP) to simultaneously 

estimate the acoustic attenuation, the effective scatterer size (ESS), and the acoustic concentration 

(AC) from ultrasound backscattered power spectra. This is achieved through two different 

approaches: (1) using a Gaussian form factor (GFF) and (2) using a general form factor (gFF) that 

is more flexible than the Gaussian form factor but involves estimating more parameters. Both DP 

methods are compared to an adaptation of a previously proposed least-squares (LSQ) method. 

Simulation results show that in the GFF approach, the variance of DP is on average 88%, 75% and 

32% lower than that of LSQ for the three estimated QUS parameters. The gFF approach also 

yields similar improvements.

I. Introduction

Despite all the advantages of ultrasound (US) imaging including being real-time and 

portable, an US image describes tissue mostly qualitatively. Therefore, accurate tissue 

classification based on ultrasound remains an elusive task. Additionally, ultrasound is highly 

operator- and system-dependent. Quantitative ultrasound (QUS) deals with the afore-

mentioned problems by providing estimates of the acoustic properties of tissue. It commonly 

investigates radiofrequency (RF) signals to estimate the acoustic attenuation and backscatter 

coefficient. The effective scatterer size (ESS, the correlation length of subwavelength 

variations of acoustic impedance) and acoustic concentration (AC, product of the number 

density of scatterers and the mean square acoustic impedance variation) are two important 

acoustic features associated with tissue microstructure [1]. These two parameters can be 

obtained by fitting form factor models to the experimental form factor derived from the 
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backscatter coefficient. The form factor is the Fourier transform of the spatial correlation 

function of the relative impedance between scatterers and their surrounding [2,3]. It 

indicates the frequency dependence of backscattered signals and is related to the geometry 

of the scatterers [2,3]. Estimates of ESS and the AC have been shown to be potentially 

useful for distinguishing malignant from benign tumors [4], monitoring osteoporotic 

rheumatic treatment [5], guiding prostate biopsies [6], diagnosing nonalcoholic fatty liver 

disease [7], and characterizing breast tumors [8], among other applications.

We recently proposed a novel method to estimate attenuation and parameters from a power-

law fit to the backscatter coefficient with improved precision. This method is based on a 

regularized cost function and optimized using Dynamic Programming (DP) [9,10]. Recent 

work by other groups has also shown that more accurate QUS parameters can be estimated 

using regularized cost functions [11–14].

Herein, we build on that work to include the use of form factor models to obtain a 

regularized estimate of ESS, AC, and the effective attenuation. We intend to involve scatterer 

characterization in backscattering formulas to accurately and precisely estimate AC and ESS 

in addition to effective attenuation. In the following two sections, we outline two different 

approaches based on DP for estimating QUS parameters. In both approaches, we exploit the 

reference phantom method (RPM) to have a system independent algorithm. In the last 

section, we present our results and compare them to the LSQ method.

II. Methods

The general formula of attenuation is:

A(f, z) = exp( − 4αfz) (1)

where A is the total attenuation, f is the frequency, z is the depth and α is the effective 

attenuation coefficient (average attenuation from intervening tissues). A general model for 

parametrizing the backscatter coefficients is:

B(f) = B0G(f) (2)

where B0 is the magnitude and G(f) is the frequency dependence of backscatter coefficients. 

Under the condition of weak scattering, the following equation defines G(f) in terms of a 

form factor model (F(f, aeff)):

G(f) = f4F f, aeff (3)

A. Gaussian form factor

As the microstructure of real tissue is often modeled using scatterers with spherically-

symmetrical, Gaussian impedance correlation functions [3], a Gaussian form factor model 

has been selected as follows:
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F f, aeff = exp −0.827 kaeff
2

(4)

where k is wave number and aeff is ESS. By substituting (4) in (3), and (3) in (2), we have:

B(f) = B0f4exp −0.827 kaeff
2 . (5)

To estimate ESS and AC, we use the RPM strategy based on normalizing the power 

spectrum S of the sample (s) by a power spectrum from a reference phantom (r), both of 

which are estimated from RF signals from a clinical scanner. The spectral ratio can be 

modeled as:

SS
Sr

= BS(f)AS(f, z)
Br(f)Ar(f, z)

=
B0Sf4exp −0.827 kSaS

2 exp −4αSfz
B0rf

4exp −0.827 krar
2 exp −4αrfz

(6)

We assume that the media has a constant sound speed with the frequency dependence of 

attenuation near f1. In addition, in order to use RPM, the sample and the reference phantom 

must have similar sound speed, so ks = kr. After taking the natural logarithm from both sides 

of (6), and substituting X1 = log
Ss
Sr

, B = log
B0s
B0r

, a = as2 − ar2, and α = αs − αr, we have:

X1 = B − 0.827k2a − 4αfz (7)

This equation is summed over the frequency range from f1 to f2. The goal is to estimate B, a, 

and α using DP. Then, using the following equations, B0s, as, and αs can be obtained:

B0s = exp(B)B0r, as = a + ar2 , αs = α + αr (8)

B. General form factor

According to [15], for Gaussian scatterers and other form factors over a limited range of 

frequency, F(f, aeff) and ka ⩽1.2 can be considered as follows:

F f, aeff = exp −Afn (9)

where bold A is related to the ESS of tissue by 0.827 2π
c a

n
, c is sound speed within tissue 

which is assumed to be 1540 m/s , and n~2. After taking the ratio of power spectra of echo 

signals of sample and reference phantoms in (10), and taking the natural logarithm, we have:
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Ss
Sr

=
B0sf

4exp −Asfn exp −4αsfz
B0rf

4exp −Arfn exp −4αrfz
(10)

X2 = B − Afn − 4αfz (11)

For the rest of this work, we first assumed n=2, and estimated three parameters B, A, and α. 

This equation is summed over the frequency range from f1 to f2. Then, we considered n as a 

parameter that should be estimated. In both approaches, once B0s and as (in approach 1) and 

As (in approach 2) are estimated, AC (Nγ2) can be obtained using the following equation:

B0s = 2π
c

4
as6

Nγ2

9 (12)

As a first approximation to assess the accuracy and precision of the proposed DP method, 

we simulated sample and reference power spectra adding white Gaussian noise to B, a, and 

α and to B, a, n, and α in equations (7) and (11), respectively. Spectra were simulated to 

come from a layered phantom having a central layer with α=0.7787 dB·cm−1MHz−1, 

B=0.3222e-5 cm−1-sr−1 MHz−n, α=31 μm, A=13.0269 μmn μsn m−n, n=3.1263 sandwiched 

between two layers with α=0.5101, B=0.1600e-5, a=35, A=11.3917, n=3.5190 and 

α=0.5196, B=0.1600e-5, a=35, A=15.7979, n=3.5190. The values for the reference phantom 

are α=0.5101, B=0.1599e-5, a=35, A=10.3917, n=2. All of these values are used for two 

simulation approaches. Twenty independent realizations of the power spectra were simulated 

for each approach through the following equations: Data for approach 1:

X1 = log
B0s
B0r

+ ηBi − 0.827k2 as2 − ar2 + ηai − 4 αS − αr + ηαi fz, i = 1,

…20
(13)

Data for approach 2:

X2 = log
B0s
B0r

+ ηBi − As − Ar + ηA f ns − nr + ηni − 4 αs − αr + ηαi fz, i

= 1, …20
(14)

where i refers to an instance of noise and η indicates noise for each variable shown as a 

subindex. DP and LSQ were applied to the simulated spectra within a frequency range from 

f1 = 3.7 MHz to f2 = 7 MHz similar to the experimental analysis bandwidth in our laboratory 

and using the following search ranges for both approaches:

as−min − 5 2 − ar2 < a < as−max + 5 2 − ar2
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αs−min − αr − 0.5 < α < αs−max − αr + 0.5

log 0.1
Bs_min

Br
< B < log 10 

Bs_min
Br

ns−min − nr − 2 < n < ns−max − nr + 2

As−min − Ar − 2 < A < As−max − Ar + 2

The general form of cost function contains two terms, data term, D, and regularization term, 

R, as follows:

C = D + R (15)

where D and R for the first and second approaches are defined as follows:

D1 = ∑
f1

f2
X1 − B + 0.827k2a + 4αfz 2

(16)

D2 = ∑
f1

f2
X2 − B + Afn + 4αfz 2

(17)

R1 = wα αj − aj − 1 + wB Bj − Bj − 1 + wa aj − aj − 1 (18)

R2 = wα αj − aj − 1 + wB Bj − Bj − 1 + wA Aj − Aj − 1 + wn nj − nj − 1 (19)

where j refers to the jth depth.

III. Results

The results of approach 1 are shown in Fig. 1. These results show that the variance of DP is 

on average 88%, 75% and 32% lower than that of LSQ for α, B, and a, respectively. In 

approach 2, we first set n to 2. The ground truth value of n in our simulations is also 2. 

Results are shown in Fig. 2. Then, we set n to be a variable number and estimate it. The 

results are shown in Fig. 3. These results show that the variance of DP is on average 75%, 

100%, and 100% lower than that of LSQ for α, B, and A, respectively. When estimating four 

parameters, these improvements are 77%, 100% and 100%, 100% respectively for α, B, n 
and A. Since LSQ does not have the regularization term to limit the estimates of parameters, 
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the parameters get a substantially higher variance compared to DP. In addition, in DP, Eq. 

(7) and (11) are summed over the frequency range as well as depth in the recursion step. 

However, considering in LSQ there is no recursion step, the summation is only over the 

frequency range.

IV. Discussion

The estimation results of Fig. 1 (c) can be substantially improved if the frequency range is 

chosen such that ka~1. In our simulations, the frequency for which ka=1 for the two 

scatterer diameters simulated corresponds to 7.662 and 8.651 MHz, whereas the frequency 

range of this work was set to 3.7 to 7 MHz.

V. Conclusions

In this work, we presented two approaches based on RPM to parameterize backscattering in 

terms of form factor models. In the first approach, we assumed the Gaussian form factor and 

proposed DP to estimate ESS and AC. In the second approach, we used a more general form 

factor formulation which is appropriate for any impedance correlation functions. Here, we 

estimated more parameters through DP and LSQ. Besides, in both approaches, we 

simultaneously estimated the attenuation coefficient. We observed DP substantially reduced 

variance of estimations compared to the LSQ.

Acknowledgments

This work was supported by the NSERC Discovery Grant RGPIN 04136, and NIH R01HD072077.

References

[1]. Oelze ML, and Mamou J, “Review of quantitative ultrasound: Envelope statistics and backscatter 
coefficient imaging and contributions to diagnostic ultrasound”, IEEE transactions on ultrasonics, 
ferroelectrics, and frequency control, vol. 63, no 2, pp. 336–351, 2016.

[2]. Insana MF, Wagner RF, Brown DG, and Hall TJ, “Describing small-scale structure in random 
media using pulse-echo ultrasound”, J. Acoust. Soc. Amer, vol. 87, pp. 179–192, 1990. [PubMed: 
2299033] 

[3]. Insana MFand Hall TJ, “Characterising the microstructure of random media using ultrasound”, 
Physics in Medicine and Biology, vol. 35, no. 10, pp. 1373–1386, 1990. [PubMed: 2243842] 

[4]. Oelze ML, and Zachary JF,” Examination of cancer in mouse models using high-frequency 
quantitative ultrasound”, Ultrasound in medicine and biology, vol. 32, no. 11, pp. 1639–1648, 
2006. [PubMed: 17112950] 

[5]. Oo WM, Vasikaran Naganathan MTB,, and Hunter DJ, “Clinical utilities of quantitative ultrasound 
in osteoporosis associated with inflammatory rheumatic diseases”, Quantitative imaging in 
medicine and surgery, vol. 8, no. 11, pp. 100–113, 2018. [PubMed: 29541626] 

[6]. Morris DC, Chan DY, Chen H, Palmeri ML, Polascik T, Gupta RT, and Nightingale K, 
“Quantitative multiparametric ultrasound for prostate cancer targeted biopsy”, The Journal of the 
Acoustical Society of America, vol. 146, no. 4, pp. 2811–2811, 2019.

[7]. Lin SC, Heba E, Wolfson T., Ang B, Gamst A, Han A, and Loomba R, “Noninvasive diagnosis of 
nonalcoholic fatty liver disease and quantification of liver fat using a new quantitative ultrasound 
technique”, Clinical Gastroenterology and Hepatology, vol. 13, no. pp. 1337–1345, 2015. 
[PubMed: 25478922] 

Jafarpisheh et al. Page 6

Annu Int Conf IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[8]. Hsu SM, Kuo WH, Kuo FC, and Liao YY, “Breast tumor classification using different features of 
quantitative ultrasound parametric images”, International journal of computer assisted radiology 
and surgery, vol 14, no. 4, pp. 623–633, 2019. [PubMed: 30617720] 

[9]. Vajihi Z, Rosado-Mendez IM., Hall TJ, and Rivaz H, “Low variance estimation of backscatter 
quantitative ultrasound parameters using dynamic programming”. IEEE transactions on 
ultrasonics, ferroelectrics, and frequency control, vol. 65, no. 11, pp. 2042–2053, 2018.

[10]. Nam K, Zagzebski JA, and Hall TJ, “Simultaneous backscatter and attenuation estimation using a 
least squares method with constraints,” Ultrasound Med. Biol, vol. 37, no. 12, pp. 2096–2104, 
2011. [PubMed: 21963038] 

[11]. Deeba F., Hu R, Terry J, Pugash D., Hutcheon JA, Mayer C, and Rohling R, “A Spatially 
Weighted Regularization Method for Attenuation Coefficient Estimation”, in IEEE International 
Ultrasonics Symposium (IUS), 2019, pp. 2023–2026.

[12]. Destrempes F, Gesnik M, and Cloutier G, “Construction of adaptively regularized parametric 
maps for quantitative ultrasound imaging”, in IEEE International Ultrasonics Symposium (IUS), 
2019, pp. 2027–2030.

[13]. Coila AL and Lavarello R, “Regularized spectral log difference technique for ultrasonic 
attenuation imaging”, IEEE Trans. Ultrason Ferroelectr., Freq. Control, vol. 65, no. 3, pp. 378–
389, 2018. [PubMed: 28650811] 

[14]. Gong P, Song P, Huang C, Trzasko J, and Chen S, “System-independent ultrasound attenuation 
coefficient estimation using spectra normalization” IEEE transactions on ultrasonics, 
ferroelectrics, and frequency control, vol. 66, no. 5, pp. 867–875, 2019.

[15]. Bigelow TA, Oelze ML, and O’Brien. WD Jr., “Estimation of total attenuation and scatterer size 
from backscattered ultrasound waveforms,” J. Acoust. Soc. Amer, vol. 117, no. 3, pp. 1431–
1439, 2005. [PubMed: 15807030] 

Jafarpisheh et al. Page 7

Annu Int Conf IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Results of LSQ (blue) and DP (red) methods using approach 1 in a simulated phantom with 

three layers and 20 instances of added zero-mean Gaussian noise. The error bars show the 

standard deviation over the 20 instances of noise for attenuation coefficient (a), backscatter 

coefficient magnitude B (b), ESS a (c), and acoustic concentration (d). The black dashed line 

is the known values.
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Fig. 2. 
Results of LSQ and DP methods using approach 2 where n is fixed to 2 in a simulated 

phantom with three layers and 20 instances of added zero-mean Gaussian noise. The error 

bars in (a-c) show the standard deviation over the 20 instances of noise for attenuation 

coefficient (a), backscatter coefficient magnitude B (b), scaled ESS A (c), and acoustic 

concentration (d). The black dashed line is the known values.
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Fig. 3. 
Results of LSQ and DP methods using approach 2 where n is not fixed to 2 and is estimated. 

The simulated phantom has three layers and 20 instances of added zero-mean Gaussian 

noise. The error bars show the standard deviation over the 20 instances of noise for 

attenuation coefficient (a), backscatter coefficient magnitude B (b), backscatter power law n 
(c), scaled ESS A (d), and acoustic concentration (e). The black dashed line is the known 

values.
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