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Abstract

Personalized medicine is being realized by our ability to measure biological and environmental 

information about patients. Much of these data is being stored in electronic health records yielding 

big data that presents challenges for its management and analysis. We review here several areas of 

knowledge that are necessary for next-generation scientists to fully realize the potential of 

biomedical big data. We begin with an overview of big data and its storage and management. We 

then review statistics and data science as foundational topics followed by a core curriculum of 

artificial intelligence, machine learning, and natural language processing that are needed to 

develop predictive models for clinical decision making. We end with some specific training 

recommendations for preparing next-generation scientists for biomedical big data.

Personalized and Precision Medicine

Personalized medicine and precision medicine are used interchangeably to describe the 

process of tailoring medical treatment to the individual characteristics of a given patient and 

the creation of new targeted pharmaceuticals [1–3]. In order to tailor medical treatments to 

individual patient characteristics, researchers have focused on designing ‘meaningful patient 

subgroups’. These ‘meaningful’ subgroups would all be similar with respect to a particular 

patient characteristic. For example, this could be a particular ethnicity, gender or sexual 

identity, socioeconomic group (low or high income), or even disease status (e.g., asthma). 

Patients can also be similar to each other with respect to their allergy status. For example, all 

patients with egg allergies is a meaningful patient subgroup that requires tailored treatment 

regimens that are important for clinicians to be aware of – for instance they must receive 

their flu vaccination in a split dose [4] rather than a single dose.

Some patient subgroups are already known, such as the previously described food allergies. 

However, other patient subgroups are not known. Informatics methods have been designed 

to identify subgroups of patients based on physiological signals in the electronic health 
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record (EHR) [5], temporal changes in laboratory value states (e.g., controlled vs 

uncontrolled diabetes) [6], adverse drug reactions due to genetic factors such as CYP 

mutations [7], and cancer types [8]. Further informatics methods are required to identify and 

stratify patient populations into meaningful subpopulations to enable precision medicine. 

This remains a challenging area, as each individual patient contains a complex constellation 

of disease phenotypes and symptomology [9].

Biomedical Big Data

The best definition of ‘big data’ is data that is of a size that challenges your current 

computational workflow thus limiting your ability to perform analysis and/or interpret 

results. Computational challenges could come in the form of data storage capacity, network 

bandwidth for moving data from one storage device to another, or the compute cycles 

necessary to process and analyze the data. In addition, it is often the case that the 

computational results generated might exceed the volume of the data itself. More formally, 

big data is often described according to the four Vs that were originally defined by IBM, Inc. 

in a widely available infographic. The first V is the volume of the data. This, of course, 

refers to storage capacity needed to manage the data and is the first challenge anyone thinks 

about when discussing big data. The second V is velocity. The data might be arriving from 

some measurement system such as a wearable device faster than your computational 

infrastructure can cope with it. The third V is variety. Big data is not always uniform and is 

often a heterogeneous mix of data types from different measurement sources. Electronic 

health record data is a perfect example of this. The fourth V is veracity. How clean is the 

data? Can you trust the data? Big data is often messy, biased, and plagued with missing 

values. This creates enormous challenges for trying to get a data set ready for analysis and 

could impact reproducibility. These are the most common Vs that are discussed. However, 

there are at least two others could be included in this list. The first is vexedness or 

complexity. For example, data that is hierarchical, high dimensional, and/or longitudinal 

adds complex dimensions to data that can be especially problematic when combined with all 

the other Vs. This is especially true in the era of new technologies such as smart watches and 

other mobile devices that can monitor measures of health in real time. Not only does data 

like this have high volume and velocity but it can be quite complex with discontinuous 

measures over time. This kind of data is being integrated into electronic health records along 

with data from social media, for example. Social media data from Facebook, Twitter, and 

other sources bring natural language into the picture that adds its own layer of complexity. 

Finally, some might be concerned with the value of the data. Is the data being collected 

worth all the trouble to put in place massive data storage and high-performance computing? 

Big data is not always the answer and some have argued that more focused small data 

approaches might make more sense for some scientific questions [10].

The EHR is a modern example of an important source of big data and has been implemented 

widely across academic medical centers worldwide as their value for tracking patient data 

and information along with improved billing has been realized. The adoption of EHRs has 

been enabled by computing technology such as inexpensive data storage and databases that 

can handle big data efficiently. These EHR databases integrate an impressive range of 

different patient data including demographics, laboratory tests, imaging, medication history 
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and use, and clinical notes that include comments from both the clinician and patient in free 

text. Additional data from genomics and wearable or smart devices are increasingly being 

captured and integrated into the EHR. These new big data sources create challenges around 

data management and their use for clinical decision making. An important question is how 

to process these big data streams and turn them into actionable information that a busy 

clinician can use. An additional issue that needs to be addressed is that patients are 

increasingly generating their own big data through direct-to-consumer marketing. It is 

conceivable in the near future that each patient will have many terabytes or even petabytes of 

data and information that will need to be stored and processed as part of patient care. These 

data serve as the raw materials for both personalized and precision medicine that will be 

enabled by the concepts and methods outlined below.

Data Management and Integration

If data are the bricks of personalized medicine research and practice, then databases are the 

scaffold that ensures the integrity of the science of personalized medicine. Databases provide 

the structure within which data are maintained and made available for future use. Database 

systems provide the computational mechanisms one needs to store, manipulate, and retrieve 

data, typically through graphical interfaces and query languages. The predominant 

architecture of biomedical databases is relational, in that data are stored in tables that 

represent a specific domain, such as demographics. More recently, there has been growing 

interest in graph databases, where rather than tables, data are represented as nodes in an 

undirected graph, and relationships between the nodes are represented as links [11,12]. More 

specifically, nodes contain properties, or attribute-value pairs, and each node is labeled to 

indicate its identity. The links also contain properties, which express the semantics between 

two or more nodes. For example, links indicate the direction of a relationship between 

nodes, and this directionality, in concert with such properties as possession (such as an “Is-

A” relationship) or the strength of a relationship. In either database architecture, one can 

manipulate the data through queries using a language specific to the architecture. Regardless 

of the database architecture, all databases are designed and implemented using a data model, 
which defines the characteristics of the database and provides a map for database personnel.

There is an embarrassment of riches when it comes to biomedical data and the databases that 

store them. One now has the capability of integrating or linking, seemingly disparate 

databases to provide a more complete landscape of a clinical problem. For example, in 

assessing the reason why a patient’s HbA1C is out of control, data obtained by persistent 

monitoring of physical activity by means of a personal fitness device such as a Fitbit, could 

be added to the patient’s clinical data. This could help the clinician to personalize a patient’s 

physical activity to enhance his or her total diabetes control program. With the burgeoning of 

new types of data resources, there has been increasing interest in developing new methods of 

record linkage while recognizing the challenges associated with linkage [13,14].

While there is an increasing diversity of data resources, such as one finds in EHRs, 

environmental monitoring, and administrative claims data, there is a corresponding 

heterogeneity of data representation, even within the same biomedical domain. For example, 

units of measurement may differ from one database to another, where one uses metric 
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weight and another avoirdupois. The diversity of such data representation constitutes a major 

challenge to effective and accurate data linkage and integration. In order to address this 

challenge, one must turn to the epistemological dimensions of biomedical data, as 

represented in syntax and semantics, both of which are needed to achieve data 

harmonization, which is in turn essential for data integration. Increasingly, informatics 

professionals are turning to ontologies to effect the data harmonization process, in order to 

map concepts and the relationships between them in a graphical format. As such, ontologies 

can be considered a type of data model. An example of a graphical approach to the 

integration of multi-omics data with existing biological knowledge found in a study by Kim 

et al. [15]. In this study, the authors proposed and evaluated an “intermediate integration” 

method that incorporated genomic, epigenomic, and transcriptomic data that included 

pathway, motif and gene ontology knowledge sources in order to predict an ovarian cancer 

phenome. This phenome was characterized on three dimensions: survival, tumor stage, and 

grade.

Another pressing issue in data management and integration is assuring the quality of data. A 

major reason for poor data quality is that it is frequently missing. Laboratory reports might 

not find their way into the medical record, or a component of a physical examination might 

not be completed. In order to make effective inferences from data, there needs to be a regime 

for handling missing data, which might include various methods of imputation such as hot 

deck or multiple imputation as well as deep learning [16]. Kim et al. applied a novel 

integrative framework for predicting censored survival time, itself a form of missing data 

[17].

Large-scale clinical data warehouses provide a possible avenue to creating and maintaining 

data resources that serve a wide variety of users and stakeholders in the personalized 

medicine domain. During the extract-transfer-load process that is the hallmark of the data 

warehouse paradigm, procedures can be implemented to ensure data quality, to integrate data 

from a variety of sources, and to provide a secure platform for analysis of de-identified data. 

These warehouses could provide researchers with the capability of intelligent cohort 

identification and extraction, and for precision medicine practitioners with the means to 

address a given patient’s phenotype at the point of care.

Statistical Analysis

Statistical analysis is the area of mathematics that uses models for the data to summarize and 

draw conclusions. The boundary between statistical analysis and machine learning (the field 

of artificial intelligence that enables computer systems to learn from data) is therefore blurry 

and a common subject of debate. Each of these two disciplines emphasizes a different aspect 

of the task of extracting conclusions from the data: machine learning focuses on making 

accurate predictions from the data, while statistical analysis can be utilized to assess the 

validity of a model for the data and for making inferences. Thus, statistical analysis and 

machine learning are complementary in many aspects. Many of us strongly believe that, as 

the communities of applied mathematics and computer science continue to interact, the two 

disciplines will be merged into a single field, sometimes called statistical learning [18]. It is 

our responsibility to train and prepare the next generation of scientists to lead this 
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transformation, presenting them with the tools of statistical analysis in ways that foster this 

transformation.

The importance of statistical analysis for biomedical applications is notable. By putting the 

focus of study in the model for the data, and making the modeling assumptions explicit, 

statistical analysis allows for interpretable and justifiable statements. This becomes critical 

in the clinical setting, where decisions that affect the health of patients need to be justified in 

precise, rational, and arguable ways to fulfill the common ethical and legal requirements. 

Probability and statistical inference, the two components of statistical analysis, precisely 

allow biomedical researchers to quantify statements about the data in terms of likelihoods or 

frequencies of occurrence relative to a model. Using the tools of statistical inference, 

researchers can test multiple models or hypotheses and determine those that better explain 

the data. By framing the inference process in terms of probability distributions, they can 

quantify the uncertainty in their conclusions as a consequence of stochastic factors, such as 

measurement errors, and missing data. In the era of big data, these aspects become of 

paramount importance, as the difficulties inherent in testing large numbers of hypotheses or 

optimizing complex models can lead to misinterpretation of the data. Statistical analysis thus 

complements machine learning and artificial intelligence approaches to biomedical data 

analysis in essential ways, and it is critical that the next generation of scientists is equipped 

with a solid and modern background in statistical analysis to be able to produce meaningful 

and defensible predictions from large biomedical datasets.

Data Science

Data science refers broadly to integrating statistical and computational techniques with 

domain knowledge to gain insights from big data. As a data-driven discipline, data science is 

able to address pre-specified questions, as well as discover novel hypotheses in an unbiased 

fashion. In the case of biomedical data, data science can be applied to gain novel insights 

and uncover biologically actionable knowledge for transforming the way we diagnose, treat, 

and prevent disease.

Statistics, as described in a previous section, is an essential foundation of data science. 

Knowledge of statistical theory alone, however, is not sufficient for the analysis of large and 

real-world datasets. Computing and informatics skills are crucial to data science, as the size 

of datasets has increased, requiring the use of computers to store, query, and analyze datasets 

effectively. The computing skills necessary for effective data science are applied, however, 

rather than theoretical in nature. A background in computer science can be helpful to a data 

scientist, but only if an individual is able to apply programming skills to wrangle with and 

analyze data. The most commonly used programs by data scientists for analysis of data are 

Python and R. For large datasets, use of various other programs written in languages such as 

C is necessary, while storing of large datasets requires the use of databases such as SQL.

Domain expertise is indispensable in data science to ensure questions posed of data are 

reasonable and to guide the interpretation of results. Data scientists do not passively analyze 

data. Rather, critical choices are made in the selection and/or transformation of variables, 

appropriateness of methods to answer specific questions, and subsequently, how to best 
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communicate and interpret findings using effective visualization techniques. Indeed, many 

data scientists collect their own data to answer questions of their choice, driving scientific 

areas, rather than serving as analysts in service of others’ questions.

The fusion of expertise in statistics, computing, informatics, and domain knowledge yields 

practical skills necessary for data science, including the ability to retrieve and clean data, 

perform exploratory analyses, build models to answer scientific questions, and present 

informative and visually appealing results. The process of data analysis is not linear; cycles 

are often required before “final” results are obtained. That is, after performing exploratory 

analyses or building initial models, features of the data and/or models used may need to be 

adjusted in accordance with the topic matter at hand. In various cases, data scientists develop 

their own methods and tools, inspired by needs encountered during analyses of real datasets.

To ensure the results of the research enterprise yield maximum benefit, many data scientists 

have led reproducible research efforts. This includes the creation of open-source software 

packages that are widely distributed, sharing specific steps followed to obtain results in 

publications, and the sharing of data necessary to reproduce findings [19–23]. A variety of 

technologies are available to promote the transparency and reproducibility of methods 

applied to big datasets. RStudio is an integrated development environment that greatly 

enhanced R’s usability and popularity among data scientists, for reasons that include 

improving workflow and facilitating the creation of R Markdown documents that can be 

converted into a variety of formats (e.g., HTML, PDF) for reporting of results [22]. More 

broadly, laboratory notebooks such as Jupyter and Apache Zepplin provide interactive, web-

based computing environments and support the use of open-source software and computer 

programming languages, including Python, R, Scala, Groovy, and SQL. Data scientists can 

leverage these notebooks for data wrangling, analytics, visualization, and collaboration. For 

example, a data scientist using Python can clean and pre-process data with pandas, analyze 

data with scikit-learn, and visualize data with Altair. These notebooks also support big data 

processing and computing technologies such as Hadoop, Spark, and Hive. Version control 

systems such as Git provide effective means of tracking large projects over time. GitHub, a 

web-based platform that hosts projects using Git for version control, has become a widely-

used repository where code, small datasets, and results of analyses are shared. More 

recently, containers such as Docker and Singularity provide a user-friendly means of sharing 

code with pre-installed software dependencies and user-restricted processes that can also 

help with reproducibility [24]. Container orchestration software (e.g., Kubernetes, 

OpenShift) supports scalable application build, management, and deployment at an 

enterprise level. The rise of accessible cloud computing has enabled many of these tools and 

approaches to be leveraged for big data [25]. Academia and industry alike are leveraging 

these powerful technologies to support data science efforts that seek to improve health.

Artificial Intelligence

Fundamentals

The term ‘artificial intelligence’ (AI) is one that has evolved to have a meaning that is more 

general, interdisciplinary, and encompassing, than when it was first coined. As a subfield of 

computer science, AI is often used interchangeably with the term ‘machine learning’, which 
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itself is more accurately a subfield of AI dealing with the broader concept of inductive 
reasoning. However, a wealth of key prerequisite topics that focus on deductive reasoning 
align with the bulk of biomedical informatics applications being actively utilized today.

These founding principles of AI and their intersection with biomedical informatics 

applications [26] are essential for those hoping to fully exploit big data for personalized 

medicine and other applications in healthcare [27]. These principles also serve to inform a 

deeper understanding of the popular topic of machine learning and the future of AI research. 

In summary, AI fundamentals focus on how biomedical data can be organized, represented, 

interpreted, searched, and applied in order to derive knowledge, make decisions, and 

ultimately how to make predictions.

According to a popular AI textbook, training should begin with a historical overview of the 

development of artificial intelligence as a field, surveying definitions, key advancements, 

applications, and ethical considerations [28]. This should be followed by topics in logic (i.e. 

propositional and first order logic) describing the common formal language for data and 

knowledge allowing for an interface between person and machine. Next are frameworks for 

data representation including frames, rules, trees, ontologies, and semantic networks. 

Representation is an essential topic connecting both deductive and inductive reasoning.

It is also important to understand the role of an agent as the traditional building blocks of a 

bottom-up AI system such as a deep learning neural network where agents are nodes. This is 

in contrast to top-down AI that attempts to build an artificial brain. Top-down AI is 

premature given we do not fully understand how the human brain works. Another essential 

topic includes an introduction to the basics of problem solving through search algorithms 

including uniformed search (e.g. breadth or depth-first) and heuristic search (e.g. greedy or 

A* search). Search is relevant to common challenges in biomedical information access, and 

is essential to optimization and constraint satisfaction, i.e. problems where constrains on 

certain variables need to be satisfied in order to result in a solution. Training in AI 

fundamentals also extends to an understanding of reasoning with uncertainty and how it ties 

to probabilistic biomedical knowledge. This leads to the topics of conditional probabilities, 

entropy, Bayesian inference, and knowledge engineering, as well as their integration for 

knowledge based systems including rule-based inference, expert systems, and modern 

clinical decision support systems [26]. In other words, how do we take existing knowledge 

and apply it to making decisions through reasoning? Additional topics to explore here could 

include state machines, dynamic models, reinforcement learning, adversarial search (e.g. 

game play), artificial life, and automated discovery. These somewhat advanced AI topics 

have the potential to intersect with the field of biomedical informatics more frequently in the 

future.

It is our position that AI is an essential component of any training program where analysis of 

big biomedical data and/or complex systems are involved. This is particularly true for the 

goal of personalized medicine. We see evidence of this realization at the governmental level. 

For example, China has made substantial investments in AI with a stated goal of being a 

dominant force in this space. Also, Germany has specifically mentioned AI and personalized 

medicine in its Industry 4.0 initiative that comes with specific funding allocations. Other 
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countries are likely to follow suit in the coming years as it becomes clear that AI is a 

necessary part of a comprehensive analytics approach to hard problems in healthcare and 

other areas of societal importance such as finance, manufacturing, and weather forecasting.

It is of course important to establish realistic expectations for AI in these efforts as has been 

pointed out previously [29,30]. Artificial intelligence does have important limitations. For 

example, the use of AI in medicine requires knowledge engineering to encode and make 

available to the computer what we as humans know. Extracting knowledge from humans is a 

very difficult and time-consuming process. Further, the black box nature of AI is a concern 

for those hoping to use the models they generate for developing new drugs or treating 

patients. We need to be able to understand the model to develop basic science or clinical 

experiments to validate the finding. Trust is a related concern for medical applications. 

Clinicians need to be able to trust that AI is generating a result that is both useful and 

grounded in medical evidence. Finally, there are legal and ethical issues related to treating 

patients with AI-generated results. Indeed, the threat of lawsuits prevented the MYCIN AI 

software from being used in the clinic to treat intensive care unit patients with computer-

prescribed antibiotics [31]. Students learning about AI should be aware of its limits and even 

its potential dangers [32,33].

Machine Learning

As mentioned above, machine learning is a subfield of AI dealing with the broader concept 

of inductive reasoning. In particular, we think of it as a set of methods that can extract 

patterns from raw data and use these patterns to predict future data or help other types of 

decision making [26,34,35]. Supervised learning and unsupervised learning are two major 

categories. In supervised or predictive learning, we learn a function that maps an input 

object, represented by a set of features, to an output value [28]. This learning task is called 

classification if the output value is categorical and called regression if the output value is 

continuous. In unsupervised or descriptive learning, we are given just the input data and aim 

to identify interesting patterns in the data, such as clusters, anomalies, and latent factors 

[28]. Cluster analysis aims to group similar objects into clusters. Anomaly detection aims to 

identify outliers in the data. Learning latent factors can help extract compact data 

representations or informative features. Given that many biomedical problems can be 

formulated as these tasks, machine learning offers powerful tools for solving data science 

problems in biomedicine. Existing successful applications include disease diagnosis, 

biomarker discovery, omics study, drug discovery, clinical outcome prediction and patient 

monitoring, personalized treatment, smart electronic health records, epidemic outbreak 

prediction, inferring health status through wearable devices, and image-based decision 

support in radiology, dermatology, ophthalmology and pathology [27,36]. Python, Java, R, C

++, C, JavaScript, Scala and Julia are among the widely used machine learning languages.

There is a broad range of machine learning methods and algorithms [26,34,35]. For 

example, one classic supervised learning method is to learn a decision tree [26,34,35], where 

each internal node describes a test on a feature, each branch corresponds to an outcome, and 

each leaf node represents an output value. Despite being easy to interpret, decision trees are 

high variance estimators: slightly different input data can yield very different tree structures. 
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To overcome this instability, random forest has been proposed by aggregating many decision 

trees trained on random subsets of the data using random subsets of features. This has been 

shown much more robust than decision trees. Other examples of classic learning methods 

[26,34,35] include support vector machines, linear regression, logistic regression, naive 

Bayes, linear discriminant analysis, and k-nearest neighbor. In these classic methods, 

features representing an object are user-specified and may not be optimized for the learning 

task. A new paradigm is to use machine learning to achieve two goals at the same time: (1) 

to learn the mapping from an object representation to an output; and (2) to discover the 

object representation itself by automatically identifying the features suitable for the learning 

task. For example, the deep neural network learning methods [34] belong to this category 

and have been shown highly successful in many machine learning application domains 

including biomedical data science [37–41]. It is important to note that no one machine 

learning method is ideal for all data and choosing the right methods to use can be 

problematic [42,43].

Given the unprecedented scale and complexity of biomedical big data, machine learning is 

still facing major computational and methodological challenges. These include (1) the 

overfitting issue when we fit learning models with many variables to estimate, (2) the model 

selection issue when we have a number of models with different complexities to choose 

from, (3) the optimal search strategy when we don’t have a closed-form solution, (4) the 

hyperparameter optimization issue when we have many parameters to tune, and (5) the 

biomedical interpretation issue when promising results are predicted by complicated models. 

To address these challenges and make machine learning more user-friendly to non-expert 

practitioners, efforts have been made in the field of automated machine learning (AutoML) 

to automate the process of applying machine learning to real-world problems. The existing 

AutoML systems (e.g., AutoWeka [44], AutoSklearn [45], TPOT [46] and PennAI [47]) are 

designed to automate one or more machine learning components such as data preparation, 

task detection, feature engineering, model selection, hyperparameter optimization, pipeline 

selection and so on. In sum, given its high promise in effective analysis of biomedical big 

data, machine learning is an important topic to be included in the curriculum of training 

next-generation biomedical informaticians and data scientists.

Natural Language Processing and Text Mining

Each year, hundreds of thousands of new articles are added to PubMed and other literature 

repositories. Similarly, an important component of EHRs are the many free-text notes that 

clinicians write after patient encounters. An important goal of natural language processing 

(NLP) as a sub-discipline of AI is to automate the curation of documents from the scientific 

literature and from clinical notes to provide an understanding of their content. More 

specifically, this entails automatically extracting keywords and phrases from documents and 

annotating them with meaning. Extracted and annotated content can then be converted to 

structured data that can be integrated with other data in a relational or graph database, for 

example.

Automating extraction is not easy and is an active area of investigation. As an example, it 

might be of interest to extract the drugs that are mentioned from a set of clinical notes. This 
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is not as easy as it sounds and requires the computer to know all the different drug names 

along with their abbreviations, acronyms, and human shorthand. Humans are quite good at 

this task but computers struggle. As Hobbs discusses, a computer can get to 60% of all valid 

extractions relatively easily [48]. However, getting to 90% requires the computer to be aware 

of many rarely used terms, abbreviations, etc. This can require an enormous amount of time 

for programming and algorithm refinement. At the core of the automatic approaches lies 

what is known as “named entity recognition” (NER): the problem of finding references to 

entities (mentions) such as genes, proteins, diseases, drugs, or organisms in natural language 

text, and tagging them with their location and type. This is a basic building block for almost 

all other extraction tasks. Named entity recognition in the biomedical domain is generally 

considered to be more difficult than other domains because of rapid change and inconsistent 

acronyms and abbreviations. On the other hand, since entity names in biomedical text are 

longer on average than names from other domains, it is generally much easier – for both 

humans and automated systems – to determine whether an entity name is present than to 

determine its exact boundaries [49,50]. As an example, a common open source tool to tag 

names of genes in the literature is BANNER [51].

The next step in text extraction complexity is that of extracting relationships among two (or 

more) entities. Various extraction systems have been developed for extracting different kinds 

of relationships. For example, consider the Pharmspresso tool that was developed to find 

mentions of genes and drugs and their relationships in full text articles [52]. The goal here is 

to help the computer understand the gene-drug relationships as they were communicated by 

the authors of the papers. This extracted knowledge can then be used in biomedical research 

for tasks such as drug-repurposing that has the goal of identifying new indications for drugs 

already on the market [53].

Bridging NLP with the rest of the knowledge acquisition pipeline is a final key component 

for data integration in a biological context. This is called normalization. This is the problem 

of determining unique identifiers for the entities recognized in text [54]. For example, for 

genes, the name mentioned in text would have to be mapped to its corresponding Entrez 

Gene identifier. Not only is it key for integration, but automating this process has many 

potential applications in both information extraction and database curation systems. This 

problem inherits the difficulties of NER, and is particularly hard-hit by ambiguities [55]. 

The normalization task includes four basic activities. The first is finding a lexicon to which 

mentions in text will be mapped. The second is identifying and labelling the mentions of the 

entities of interest in text. This might include handling of prefixes, suffixes, and lists or 

ranges of entities. The third is matching mentions in the text against the lexicon. This is 

usually not a one-to-one match, as several “candidate matches” have to be weighted or 

assigned “confidence levels”. Finally, post-processing is needed to remove false positives 

due to ambiguity.

Finally, for both biomedical and clinical texts alike, a critical component in reducing false 

positives in the knowledge acquisition pipeline is determining the context of an entity’s 

mention within the text. This is called assertion. The entities and their contexts described 

within biomedical texts differ from those within clinical texts [56,57]. Additionally, there 

can be general and specific contexts for each entity. For example, in biomedical texts, genes 
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can be described as on or off; in clinical texts, symptoms can be described as affirmed or 

negated. The accurate representation of entities, their relationships, and their assertions can 

have critical implications for understanding how biological pathways explain patient clinical 

profiles and ultimately the discovery of actionable knowledge from population studies.

Future Perspective

Advances in personalized and precision medicine are dependent on our ability to define the 

unique characteristics of individuals or small groups of people that require specific disease 

prevention and treatment strategies. Before we can realize this in clinical practice, we must 

first determine what the important characteristics are for each disease. This naturally relies 

on our ability to measure as many different internal and external biological processes and 

exposures as possible. This creates big biomedical data that requires special technology and 

informatics methods for its storage, management, analysis, and interpretation. We have 

reviewed here some of the key disciplines and topical areas that are important for the 

scientist of the future to be familiar with to have an impact on personalized and precision 

medicine with big data. We have put an emphasis on AI including machine learning and 

natural language processing. These computational methods are critical to extracting useful 

information from complex patterns in big data and require complementary training in data 

management and integration, statistics, and data science in addition the requisite domain 

expertise to understand the data and the research questions.

We propose a curriculum for training next-generation scientists for biomedical big data that 

includes specific coursework or equivalent training opportunities that give students a solid 

background in 1) data management and integration including database experience, 2) 

statistical analysis including basic concepts and methods in probability and inference, 3) 

data science including computer programming and methods for improving reproducibility, 

and 4) artificial intelligence including courses or modules that AI fundamentals, machine 

learning, and natural language processing for unstructured data. This would be 

complemented by a course in personalized and precision medicine that provides the 

motivation for using big data along with appropriate domain knowledge courses from the 

biomedical sciences. These could be formal courses offered through an in person or online 

graduate training program or could be intensive short courses that leave students with a 

fundamental understanding of the area and some hands-on experience.

The most fruitful instruction will occur in graduate courses that can cover the material in 

some depth in a classroom setting that allows for direct interaction with other students and 

instructors. This is important because many of the topics presented here will be foreign to 

students coming from a variety of different backgrounds. Further, learning AI is about more 

than becoming comfortable with certain computer algorithms, software, and technology. 

There is an art and a philosophy to working with data that is important and best presented in 

person in the classroom. Anecdotes and personal experiences are best shared in person and 

difficult to capture in a condensed setting or in online material. Thus, there is an 

apprenticeship aspect to learning AI and related topics such as machine learning and natural 

language processing. One model that might be effective is the flipped classroom where the 

students study the basic material online on their own time and then come to class to ask 
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questions and benefit from discussions with the instructor. Indeed, there are a number of 

studies showing that the flipped classroom mode might be more effective than online or 

classroom only [58–61].

In addition to covering each of these areas, we recommend that optimal training will occur 

through a curriculum that is integrated such that each of the courses closely complements all 

the others through terminology, examples, and perhaps an integrated computational platform 

where the students can work with big data, carry out analyses, evaluate results, and even 

design virtual clinical decision support tools that a clinician might use to deliver 

personalized care. An integrated learning platform that would serve as the basis for each 

course is possible given the wide range of open-source software tools that are freely 

available. For example, there are several open-source EHR systems, including OpenMRS 

[62] that are actively being used in developing countries to manage patient data. These could 

be adopted locally for free and integrated with a data warehouse and open-source data 

analysis tools such as R and scikit-learn for data science and machine learning. Designing 

integrated training programs like this is a challenge but there might be an opportunity for 

new graduate programs that are in the planning stages for launch within the next few years. 

Retooling an existing program for this kind of tightly coordinated curriculum is possible but 

could be prohibitive for some.

Students receiving the kind of training we have outlined here who also have a working 

knowledge of biomedical science will be in a very strong position to serve as the leaders of 

scientific projects. This is in contrast to the early days of these quantitative disciplines where 

computer scientists, data scientists, informaticians, and statisticians were seen as consultants 

or collaborators who were brought in to address a very specific data management or analysis 

need with direct involvement in the formulation of the question or the study design. In fact, 

the next-generation scientist outlined here will be in a strong position to ask more impactful 

scientific questions because they will have the computational skills to look across disciplines 

to synthesize information and knowledge in a way that many disciplinarians are not able to. 

This approach to biomedical research has been called no-boundary thinking [10,63].

Executive Summary

• Biomedical big data has arrived and is growing by the day as we measure more 

and more of our internal and external biological ecosystems.

• The motivation to personalize care is also here and could greatly benefit from 

scientists receiving the kind of training we have outlined here.

• We propose a curriculum for training next-generation scientists for biomedical 

big data that includes coursework or equivalent training opportunities that give 

students a solid background in the areas outlined below.

Data management and integration

• Relational and graph databases are needed to store big data for rapid retrieval. 

Each type of database has strengths and weaknesses for different types of data 

and analysis objectives.
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• Data integration is important for bringing diverse data types together prior to 

analysis.

Statistical analysis

• A basic understanding of probability is essential for describing data and is the 

basis for many AI and machine learning methods.

• Statistical inference including familiarity with basic parametric approaches such 

as linear regression is necessary to complement AI and machine learning.

Artificial intelligence - Foundations

• A historical overview of the development of artificial intelligence as a field is 

necessary to provide a foundation for modern developments in AI.

• Equally important are topics in logic describing the common formal language for 

data and knowledge allowing for an interface between person and machine as 

well as frameworks for data representation including frames, rules, trees, 

ontologies, and semantic networks. Representation is an essential topic 

connecting both deductive and inductive reasoning.

Artificial intelligence – Machine learning

• Machine learning is a subfield of AI dealing with the broader concept of 

inductive reasoning. In particular, we think of it as a set of methods that can 

extract patterns from raw data and use these patterns to predict future data or 

help other types of decision making.

• Supervised learning and unsupervised learning are two major categories. In 

supervised or predictive learning, we learn a function that maps an input object, 

represented by a set of features, to an output value. In unsupervised or 

descriptive learning, we are given just the input data and aim to identify 

interesting patterns in the data, such as clusters, anomalies, and latent factors.

Artificial intelligence – Natural language processing and text mining

• An important goal of natural language processing (NLP) as a sub-discipline of 

AI is to automate the curation of documents from the scientific literature and 

from clinical notes to provide an understanding of their content. More 

specifically, this entails automatically extracting keywords and phrases from 

documents and annotating them with meaning.
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