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Abstract

A high-angular momentum giant impact with the Earth can produce a Moon with a silicate 

isotopic composition nearly identical to that of Earth’s mantle, consistent with observations of 

terrestrial and lunar rocks. However, such an event requires subsequent angular momentum 

removal for consistency with the current Earth-Moon system. The early Moon may have been 

captured into the evection resonance, occurring when the lunar perigee precession period equals 1 

year. It has been proposed that after a high- angular momentum giant impact, evection removed 

the angular momentum excess from the Earth-Moon pair and transferred it to Earth’s orbit about 

the Sun. However, prior N-body integrations suggest this result depends on the tidal model and 

chosen tidal parameters. Here, we examine the Moon’s encounter with evection using a 

complementary analytic description and the Mignard tidal model. While the Moon is in resonance, 

the lunar longitude of perigee librates, and if tidal evolution excites the libration amplitude 

sufficiently, escape from resonance occurs. The angular momentum drain produced by formal 

evection depends on how long the resonance is maintained. We estimate that resonant escape 

occurs early, leading to only a small reduction (~ few to 10%) in the Earth-Moon system angular 

momentum. Moon formation from a high-angular momentum impact would then require other 

angular momentum removal mechanisms beyond standard libration in evection, as have been 

suggested previously.

Plain Language Summary

A canonical giant impact with the Earth by a Mars-sized impactor can produce the Moon and the 

current Earth-Moon angular momentum. However, such an impact would produce a planet and 

protolunar disk with very different proportions of impactor-derived material, likely leading to 
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Earth-Moon compositional differences that are inconsistent with observed Earth-Moon isotopic 

similarities. Alternatively, a high-angular momentum impact could form a disk with a silicate 

composition similar to that of the Earth, but with a postimpact angular momentum much higher 

than in the current Earth-Moon system. As the early Moon tidally receded from the Earth, its 

perigee precession period lengthened. When this period equaled 1 year, the Moon may have been 

captured into the evection resonance with the Sun. It has been proposed that evection removed the 

angular momentum excess from the Earth- Moon pair, but the appropriate degree of angular 

momentum removal appears sensitive to tidal models. In this work, we use an analytical model to 

examine the Moon’s evolution in evection and find that escape from formal resonance occurs 

early, with limited angular momentum reduction. Thus, in order for a high-angular momentum 

giant impact to be consistent with the current Earth-Moon system, additional mechanisms that do 

not involve standard resonance occupancy appear required.

1. Introduction

The leading theory for lunar origin proposes that the Moon formed from material ejected 

into circumterrestrial orbit by a Mars-sized impactor colliding obliquely with the early Earth 

(Cameron & Ward, 1976). The impact theory became favored primarily for its ability to 

account for the Moon’s depletion in iron and the angular momentum (AM) of the current 

Earth-Moon system, LEM = 3.5 × 1041 g cm2 s−2, with the latter implying an Earth day of 

about 5 hr when the Moon formed close to the Earth.

In what is sometimes referred to as the “canonical” case, a low-velocity, oblique impact of a 

Mars-sized body produces an Earth-disk system with an AM close to LEM (e.g., Canup, 

2004a, 2004b, 2008; Canup & Asphaug, 2001). Disks produced by canonical impacts are 

derived primarily from material originating in the impactor’s mantle. The isotopic 

composition of the impactor would have likely differed from that of the Earth (Kruijer & 

Kleine, 2017; Melosh, 2014; Pahlevan & Stevenson, 2007). Thus, a disk derived from the 

impactor would nominally yield a Moon whose composition differed from that of the 

Earth’s mantle.

Instead, the Moon and the silicate Earth have essentially identical isotopic compositions 

across all nonvolatile elements, including oxygen, chromium, titanium, silicon, and tungsten 

(e.g., Armytage et al., 2012; Kruijer et al., 2015; Lugmair & Shukolyukov, 1998; Touboul et 

al., 2007; Touboul et al., 2015; Wiechert et al., 2001; Zhang et al., 2012). Thus, a canonical 

impact appears to either require a low-probability compositional match between the 

impactor and Earth (e.g., Kruijer & Kleine, 2017), or that the disk and the postimpact Earth 

mixed and compositionally equilibrated after the impact but before the Moon formed (Lock 

et al., 2018; Pahlevan & Stevenson, 2007).

Alternatively, certain types of high AM impacts can directly produce a protolunar disk 

whose silicate composition is essentially identical to that of the Earth’s mantle (Canup, 

2012; Ćuk & Stewart, 2012), accounting for nearly all Earth-Moon isotopic similarities 

without requiring an Earth-like impactor. Recent works on high-AM impacts in general 

suggest that due to the high energy of such events, the collisional aftermath can consist of a 

hot, pressure supported planet rotating uniformly out to its corotation limit, while beyond 
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that the structure progressively transitions to a disk with a Keplerian profile (Lock et al., 

2018; Lock & Stewart, 2017). It is argued that such structures, termed “synestias,” may have 

intermittently existed during the planetary accretion process and would have facilitated the 

formation of moons with compositions similar to that of their host planet via mixing and 

equilibration. However, all high-AM impacts leave the Earth-Moon system with a 

substantial AM excess compared to its current value, so that relevancy to lunar origin 

requires a reliable mechanism(s) to subsequently reduce the system AM.

Tidal interactions between the Earth and Moon conserve AM, but other processes can 

remove AM from the pair. Consider an initial lunar orbit that lies within the Earth’s 

equatorial plane and a lunar spin axis normal to that plane. The energy, E, and scalar AM, L, 
of the Earth-Moon system are

E = 1
2Cs2 + 1

2Cmsm2 − GMm
2a , (1.1)

L = Cs + Cmsm + m(GMa)1/2 1 − e2 1/2 . (1.2)

where M = 5.97 × 1027 g and m = 7.34 × 1025 g are the Earth and lunar masses, (C, s) and 

(Cm, sm) are their principal moments of inertia and spin rates, respectively, and the final 

terms are the energy, Eorb, and AM, Lorb, of the lunar orbit, with a and e being its semi-

major axis and eccentricity (see Table 1 for variable definitions). Over the age of the solar 

system, L has decreased due to a slowdown in the Earth’s spin caused by direct solar tides. 

Additionally, late-veneer impacts could stochastically change the AM of the Earth-Moon 

system (Bottke et al., 2010), and/or escaping material can remove AM as the Moon accretes 

(e.g., Kokubo et al., 2000; Salmon & Canup, 2012). However, these processes are thought to 

induce only small changes (by a few to 10%) insufficient to reconcile a high-AM impact 

with the current Earth-Moon.

The solar influence on the Earth-Moon system is not necessarily limited to its tides, and 

another AM removal process involves a resonance with the Sun. As the early Moon’s orbit 

expands due to tidal interaction with the Earth, it can be captured into the evection 

resonance, which occurs when the precession frequency of the Moon’s perigee, ϖ̇ , equals 

that of the Earth’s solar orbit, Ω⊙ = 1.99 × 10−7s−1 (e.g., Brouwer & Clemence, 1961; Kaula 

& Yoder, 1976; Touma & Wisdom, 1998). Capture into evection excites the Moon’s orbital 

eccentricity and drains AM from the Earth-Moon pair, transferring it to Earth’s heliocentric 

orbit. Once the lunar eccentricity becomes sufficiently high, there is a phase during which 

the lunar orbit temporarily contracts due to the effects of lunar tides. Touma and Wisdom 

(1998) modeled capture of the Moon in evection for an initial terrestrial rotation period of 5 

hr, assuming a lunar rotation synchronous with its mean motion and the Mignard tidal 

model, in which the tidal distortion forms some fixed time after the tide raising potential (see 

section 4.1). In their simulations, the Moon’s residence in evection is brief, with escape 

occurring soon after the lunar semi-major axis begins to contract, leading to only minor AM 

modification by a few percent of LEM (e.g., Canup, 2008).
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A key development was the work of Ćuk and Stewart (2012, hereafter CS12), who argued 

that if the original magnitude of L was substantially greater than at present, prolonged 

capture in evection could have reduced the Earth-Moon system AM by a factor of two or 

more. This would make it viable for a high-AM impact to have produced the Moon. CS12 

utilized an ersatz tidal model intended to approximate a constant lag angle/constant-Q 
model, and considered an initial terrestrial day of only 2 to 3 hr, which shifts the position of 

evection outward in orbital radius relative to the cases in Touma and Wisdom (1998). The 

CS12 simulations showed a protracted residence of the Moon in evection that persisted even 

as the Moon’s orbit contracted and that during the contraction phase, large-scale AM 

removal comparable in magnitude to LEM occurred. In their simulations, the final system 

AM when the Moon escapes from resonance depends on the relative strength of tidal 

dissipation in the Moon compared with that in the Earth, with the final AM achieving a 

minimum value close to LEM across a relatively narrow range of this ratio. Their results thus 

implied that for certain tidal parameters, a final AM ≈ LEM would be the limiting 

postevection system value, independent of the starting AM.

Considering the importance of this issue to the origin of the Moon and that AM removal due 

to evection depends on the Moon’s tidal evolution, it is imperative to understand the 

robustness of AM removal for other tidal models. Wisdom and Tian (2015) demonstrated 

that substantial differences in the AM removed compared with CS12 occur when a full 

constant-Q Darwin-Kaula model is applied (Kaula, 1964). They instead identified a “limit 

cycle” in which the system circulates around the stationary points associated with evection 

and appropriate AM can be lost even though the evection resonance angle is not librating, 

although this again appeared to require a relatively narrow range of tidal parameters (Tian et 

al., 2017; Wisdom & Tian, 2015). Further work that included the effects of tidal heating 

within an eccentrically orbiting Moon on the lunar tidal dissipation properties concluded that 

the evection resonance proper does not remove substantial AM, but that the limit cycle can 

(Tian et al., 2017).

In this paper, we examine the Moon’s evolution in evection using the Mignard tidal model as 

in Touma and Wisdom (1998), but we apply it to the higher AM systems considered in CS12 

and consider the Moon’s potentially nonsynchronous rotation. All common tidal models 

have approximations and uncertainties. A strength of the Mignard model is its 

straightforward analytic form, whose tidal acceleration varies smoothly near synchronous 

orbit and for highly eccentric orbits in a physically intuitive manner. For the postgiant 

impact, fluid-like Earth (e.g., Zahnle et al., 2015), it seems reasonable that the position of 

the terrestrial equilibrium tide would reflect a characteristic time for the tide to form in the 

presence of internal dissipation, as assumed in the Mignard model, rather than a 

characteristic fixed angle relative to the Moon’s position, as assumed in the constant-Q tidal 

model. However, it is also the case that for the current Moon, the lunar tidal Q value does 

not display the inverse frequency dependence consistent with a time delay model, but instead 

varies weakly with frequency (e.g., Williams et al., 2014; Wisdom & Tian, 2015). In any 

case, the Mignard model permits a detailed examination of Earth-Moon-Sun interactions 

during the tidal evolution of the evection resonance to test whether the behavior first 

described in CS12 occurs with this model as well, and in so doing, to better understand the 

likelihood of large-scale modification of the Earth-Moon system AM.
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2. Evection

We assume the Moon forms interior to the evection resonance on a low eccentricity orbit and 

then tidally evolves outward until it reaches the resonance site, ares, where the lunar apsidal 

precession rate equals the frequency of the Earth’s orbit. Because the lunar precession rate is 

a function of the Earth’s oblateness, which is in turn a function of Earth’s spin rate, the 

resonance location depends on Earth’s spin rate when the Moon formed. For an initial Earth-

Moon AM, Lo, equal to that in the current Earth-Moon system (LEM), evection is first 

encountered at ares ~ 4.6R, where R is the Earth’s radius (e.g., Touma & Wisdom, 1998). An 

initial high-AM system with Lo ~ 2LEM leads to ares ~ 7R (e.g., CS12).

2.1. Lagrange Equations

We consider Earth on a circular orbit with zero obliquity and that the initial lunar inclination 

is negligible, so that the terrestrial and lunar orbits are coplanar. The disturbing function of 

the Sun acting on the Moon up to the second order Legendre polynomial and including only 

the oscillating term due to evection is (e.g., Brouwer & Clemence, 1961; Frouard et al., 

2010)

Φ⊙ = − aΩ⊙
2 1

4 + 3
8e2 + 15

8 e2cos2ϕ , (2.1)

where ϕ ≡ ϖ − λ⊙ is the resonance phase angle,ϖ is the Moon’s longitude of perigee, and 

λ⊙ is the solar longitude. The secular part of the potential for the Earth’s quadrupole field is 

(e.g., Efroimsky, 2005),

Φ⊕ = − 1GMJ2(R/a)2

2 a 1 − e2 3/2 , (2.2)

where J2 is the second order gravity coefficient. From Lagrange’s equations,

de
dt = 1 − e2 1/2

na2e
∂Φ⊙
∂ϖ = 15

4 e 1 − e2 1/2Ω⊙
Ω⊙
n sin2ϕ, (2.3)

dϖ
dt = − 1 − e2 1/2

na2e
∂

∂e Φ⊕ + Φ⊙ = 3
2nJ2(R/a)2

1 − e2 2 + 3
4 1 − e2 1/2Ω⊙

Ω⊙
n (1

+ 5cos2ϕ),
(2.4)

where n = GM /a3 is the lunar mean motion. The apsidal precession rate is dominated by 

the Earth’s quadrupole and increases with the lunar eccentricity. In the vicinity of evection, 

ϖ̇ approaches Ω⊙ and the phase angle, ϕ, changes slowly. The potential is stationary in a 

reference frame rotating with the Sun, so that in the absence of tides, an integral of the 

motion is given by the Jacobi constant (Appendix A in the supporting information),
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J = Eorb + Φ⊕ + Φ⊙ − Ω⊙Lorb = m −GM /2a + Φ⊕ + Φ⊙
− Ω⊙ GMa 1 − e2 .

(2.5)

2.2. Normalized Forms

We normalize energy to MR2Ω⊕
2 , AM to CΩ⊕, where Ω⊕ ≡ (GM/R3)1/2 = 1.24 × 10−3s−1 is 

the orbital frequency at the surface of the Earth, and the semimajor axis to Earth radii. In 

these units, a scaled Earth spin AM of unity corresponds to rotation at approximately the 

stability limit. Equations (1.1) and (1.2) become

E′ = λ
2 s′2 + κ λ

2 s′m2 − μ
2a′ , (2.6)

L′ = s′ + κsm′ + γa′1/2 1 − e2 1/2, (2.7)

where s′ ≡ s/Ω⊕, sm′ ≡ sm/Ω⊕, and a′ ≡ a/R. Here γ ≡ μ/λ = 0.0367, μ ≡ m/M= 0.0123 is 

the Moon-Earth mass ratio, and λ ≡ C/MR2 = 0.335 is Earth’s gyration constant. The 

quantity κ ≡ Cm/C = 1.07 × 10−3 is the ratio of maximum principal moments of inertia of 

the two bodies, while the final term of (2.7) is the normalized orbital AM of the Moon, 

Lorb′ ≡ γa′1/2 1 − e2 1/2. The equations for ė and ϕ̇ = ϖ̇ − Ω⊙ take the nondimensional forms

de
dτ = 15

4 χe 1 − e2 1/2a′3/2 Ω⊙
Ω⊕

sin2ϕ, (2.8)

dϕ
dτ = χ Λ2s′2

a′7/2 1 − e2 2 − 1 + 3
4 1 − e2 1/2a′3/2 Ω⊙

Ω⊕
(1 + 5cos2ϕ) . (2.9)

Here, we set J2= J* s′2 to approximate the effect of the Earth’s spin on its oblateness, 

defined Λ ≡ [(3/2) J*Ω⊕/Ω⊙]1/2 and χ ≡ Ω⊙tT and introduced a normalized time, τ ≡ t/tT, 

referenced to a tidal timescale, tT, that will depend on the tidal model. Numerical values are 

Ω⊙/Ω⊕ = 1.61 × 10−4, J* = 0.315, and Λ = 54.2.

The Jacobi constant can also be written in a nondimensional form. The solar terms alter e 
and ϕ but do not change the energy of the Earth-Moon system, so that the Moon’s semimajor 

axis and the spin of the Earth are constants in the absence of tides. We scale J by mR2Ω⊕
2 , 

and then rearrange terms that do not depend on e or ϕ to define 

J′ ≡ − J /mR2Ω⊕
2 + 1/2a′ Ω⊕/Ω⊙ /a′1/2 − Ω⊙/Ω⊕ a′3/2/4, which will be a constant in the 

absence of tides. This constant is given by
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J′ = 1
3

Λ2s′2

a′7/2 1 − e2 3/2 + 1 − e2 1/2 + 3Ω⊙
8Ω⊕

a′3/2e2(1 + 5cos2ϕ) . (2.10)

Since the equations of motion depend on the square of the eccentricity, we introduce the 

variable ε = e2, as well as the angle, θ ≡ ϕ − π/2, which is the libration angle relative to the 

positive y-axis in the direction of the negative x-axis (with the Sun positioned along the 

positive x-axis), so that θ = 0, π correspond to the stable points for evection (see below). 

Finally, we define the quantities.

η ≡ Λs′/a′7/4; α ≡ α0a′3/2; αo ≡ (3/8)Ω⊙/Ω⊕ (2.11)

with αo = 6.04 × 10−5. The evolution equations due to evection and the related Jacobi 

constant simplify to

ε̇ = − 20χαε(1 − ε)1/2sin2θ, (2.12)

θ̇ = χ η2/(1 − ε)2 − 1 + 2α(1 − ε)1/2(1 − 5cos2θ) , (2.13)

J′ = η2/ 3(1 − ε)3/2 + (1 − ε)1/2 + αε(1 − 5cos2θ) . (2.14)

2.3. Stationary States

Stationary points of the resonance occur where ε̇ = θ̇ = 0. The value ε̇ vanishes at θ = 0, π/2, 

π, and 3π/2, while θ̇ = 0 occurs when

(1 − ε) 1 − 2α(1 − 5cos2θ)(1 − ε)1/2 1/2 = η . (2.15)

When the resonance is fully developed, there are four stationary points at (ε, θ) = (εs,0), 

(εs,π) and (εsx, ± π/2). Finally, ε = 0 is also a stationary point since it implies ε̇ = 0, 

although in this case, the angle θ is degenerate.

2.4. Expansion to O e4

We now expand the governing expressions to O e4 = O ε2 , a reasonable approximation for 

ε < 0.4 (i.e., e ≤ 0.6) that provides sufficient accuracy to capture the relevant behavior (e.g., 

Murray & Dermott, 1999; Touma & Wisdom, 1998). The variable α is small, of order few × 

10−4 to 5 × 10−3 for 3 < a′ < 20. Expanding equation (2.15) to lowest order in α gives ε ≈ 1 

− η − α(1 − 5cos2θ)η3/2, and by further neglecting O αε  terms (that will typically be 

smaller than O(ε2) terms), we find approximate expressions for the stationary points 

(Appendix B in the supporting information),
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εs = ε* + 5α; εsx = ε* − 5α, (2.16)

whose average is

ε* ≈ 1 − η − α, (2.17)

which in turn implies 1 − η2 = 1 − 1 − ε* − α 2 ≈ 2(1 − η) − ε*
2. Expanding equation (2.14) 

and rearranging gives

J′ − 1 − η2/3 = 5η2 − 1 ε2/8 − 1 − η2 − 2α + 10αcos2θ ε/2 ≡ J . (2.18)

Consistent with O ε2  accuracy, we further simplify (2.18) by setting η → 1 in the 

coefficient of ε2, 1 − η2 ≈ 2(1 − η) in the ε coefficient, and defining

β ≡ 1 − η − α(1 − 5cos2θ) ≈ ε* + 5αcos2θ, (2.19)

so that

J ≈ (ε − 2β)ε/2; ε = β ± β2 + 2J , (2.20a,b)

where the first expression gives the Jacobi constant to O ε2 , and the second gives the 

solutions for ε(θ) from this quadratic equation. The rates of change for the eccentricity and 

resonance angle that are compatible with this approximation become.

ε̇ = − 20χαεsin2θ; θ̇ = 2χ ε − ε* − 5αcos2θ = 2χ(ε − β) (2.21a,b)

where in the last expression, we have dropped a term χ ε*
2 − ε 4ε* − 3ε ; because for an 

eccentricity similar to that of the stationary point, i.e., ε ~ ε* ± 5α, ε*
2 − ε 4ε* − 3ε  is O αε . 

We utilize equations (2.21a,b) to describe the effects of evection on the system evolution in 

sections 5 and 6.

3. Evection Level Curves

Given a terrestrial spin rate and lunar semimajor axis (which define η and α), the Jacobi 

constant defines the set of allowed (ε, θ) combinations. Using the O ε2  expressions in 

equations (2.19) and (2.20), we set

ε
5α =

ε*
5α + cos2θ ±

ε*
5α + cos2θ

2
+ 2J

(5α)2

1/2
. (3.1)

Figure 1 shows the resulting level curves with x = − ε/5αsinθ and y = ε/5αcosθ for 

constant J /(5α)2 values for several ε*/5α values. The radial distance from the origin is equal 

to ε/5α (and thus proportional to e), while θ is the angle from the y-axis in the direction of 

the negative x-axis.
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The external solar torque is found from equation (2.1) with T = − m∂Φ⊙/∂θ, viz.,

T = (15/4)m aΩ⊙
2εsin2θ; T′ = 10γχαa′1/2εsin2θ (3.2a,b)

the latter being its normalized version, i.e., T′ ≡ T/(CΩ⊕/tT) = T/(CΩ⊕Ω⊙/χ). All level 

curves in Figure 1 have reflection symmetry across the y-axis, and the value of ε at θ = θ0 is 

equal to that at θ = − θ0. Thus, the solar torque at θ = θ0 will be of equal magnitude but 

opposite sign to that at θ = − θ0 due to the sin2θ term in (3.2), and the net solar torque (and 

thus the change in Earth-Moon AM) over a libration cycle is zero in the absence of tides.

3.1. Separatrix

At the stationary points θ̇ = 0, and so from (2.21b), εs= εsx = β. Jacobi values at the 

stationary points are Js = − εs2/2 and Jsx = − εsx2 /2. The partial derivative of J with respect 

to ε is simply ∂J / ∂ε = ε − β and vanishes at the stationary points, while ∂2J / ∂ε2 = 1 is 

positive, indicating a relative minimum. On the other hand, while ∂J / ∂θ = 10αεsin2θ also 

vanishes, ∂2J / ∂θ2 = 20αεcos2θ is positive on the y-axis (when θ = 0, π) but negative on the 

x-axis (when θ = ± π/2). Accordingly, on the y-axis, the stationary points are absolute 

minima and stable (εs; Figure 1, filled markers), while on the x-axis, they are unstable 

saddle points (εsx; Figure 1, open markers). Note that J is always zero at the origin and (per 

equation 2.20a) along the trajectory ε = 2β, provided that β > 0.

The level curve passing through the saddle points (Figure 1, dashed curve) is a separatrix 

that partitions resonant trajectories, which librate about the stable stationary points, from 

nonresonant trajectories that circulate around the origin. The value of ε along the separatrix 

can be found by setting J = Jsx in equation (2.20b) to give

ε± = ε* + 5αcos2θ ± ε* + 5αcos2θ 2 − εα2
1/2 . (3.3)

where ε+ (ε−) denotes the radially outer (radially inner) curve. The maximum and minimum 

ε± occur at θ = 0, π/2:

ε± εs ± εs2 − εsx2 1/2 = εs ± 2 5αε* . (3.4)

3.2. Resonance Domains

As ε*/5α increases from initially negative (precapture) values to positive values, different 

domains emerge on the level curve diagrams. Let ϒ1 refer to the domain area where the level 

curves circulate the origin in the counter-clockwise direction. When ε*/5α < − 1, this is the 

only domain that exists (Figure 1a). This is precapture behavior where J must be positive 

because β < 0 in this domain. In this stage both εs and εsx are negative and so es and esx are 

undefined.

A smaller s′ and/or larger a′ increases ε*. When −1 < ε*/5α < 1, the stable stationary points 

εs first appear at the origin (Figure 1b). With increasing ε*, the stationary points εs move 

outward along the y-axis (Figures 1c and 1d). The Jacobi constant can then take on negative 
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values down to Js = − εs2/2, which is an absolute minimum, while the level curve for J = 0, 

viz., ε = 2β, becomes a boundary that separates trajectories that still circulate the origin (in 

domain ϒ1) from a new class that librate about the stable stationary point within a new 

domain ϒ2. We refer to this initial stage in resonance in which only domains ϒ1 and ϒ2 exist 

as shallow resonance.

For ε*/5α > 1, the minimum value of J along the x-axis is no longer at the origin but occurs 

at new stationary points at (ε, θ) = (εsx, −π/2) and (εsx, π/2). These are the saddle points 

where the two branches of the Jsx = − εsx2 /2 curve connect. Trajectories for J < Jsx still 

librate about the stationary points on the y-axis in domain ϒ2. For J > Jsx, trajectories 

beyond the outer separatrix boundary circulate the origin counterclockwise, but within the 

lower separatrix boundary, there is now a new, lens-shaped domain ϒ3, where nonresonant 

trajectories circulate the origin in a clockwise sense (Figures 1e–1f). We refer to this stage as 

deep resonance, whose structure above the x-axis is illustrated schematically in Figure 2.

4. Tidal Friction

The level curve patterns are set by the Earth’s spin rate and the lunar semimajor axis through 

ε* and α, which evolve due to tidal friction between the Earth and Moon.

Earth-Moon tides exchange AM between the objects’ spins and the lunar orbit but do not 

change the total Earth-Moon AM. We represent the semimajor axis and eccentricity rates of 

change due to tides raised on the Earth by the Moon as ȧ⊕′  and ε̇⊕, while ȧm′  and ε̇m denote 

corresponding rates for tides raised on the Moon by the Earth. Tides alter the respective 

spins of the Earth and Moon at rates

ṡ′ = − (γ /2)a′1/2(1 − ε)1/2 ȧ′⊕/a′ − ε̇⊕/(1 − ε) , (4.1)

ṡ′m = − (γ /2κ)a′1/2(1 − ε)1/2 ȧ′m/a′ − ε̇m/(1 − ε) (4.2)

In these expressions, the time derivatives use the afore mentioned time variable τ = t/tT, to 

be specified below. Conservation requires that the change in the Moon’s orbital AM due to 

tides is L̇′orb, T = − ṡ′ − κṡ′m or

L̇′orb, T = L′orb ȧ′/a′ − ε̇T /(1 − ε) /2 (4.3)

where ȧ′ = ȧ⊕′ + ȧ′m and ε̇T = ε̇⊕ + ε̇m are the total rates of change from both Earth and lunar 

tides.

The equations of motion derived in section 2.4 (equation 2.21a,b) must be modified to 

include tidal changes, with

ε̇ = − 20χα(τ)εsin2θ + ε̇T ; θ̇ = 2χ ε − ε*(τ) − 5α(τ)cos2θ . (4.4a,b)
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As a result, a time independent first integral (Jacobi constant) no longer exists, with

J̇ = ε − ε* − 5αcos2θ ε̇T − ε̇* + 5α̇cos2θ ε, (4.5)

and system trajectories on a level curve diagram are not closed. Since both ε* and α vary 

with time, so do εs and εsx, although on a tidal timescale much longer then a libration 

period, i.e., they are quasi-stationary states.

4.1. Mignard Tidal Model

We employ the model of Mignard (1980), in which the rise of the equilibrium tidal distortion 

is delayed by a fixed time relative to the tide raising stress. We define the tidal time constant, 

tT ≡ 6kTμΩ⊕
2 Δt −1

, where kT is the Earth’s second degree tidal Love number and Δt is the 

terrestrial time delay; for the current Earth, Δt ≈ 12 min, and tT 4 × 10−4kT
−1 years. The 

constant time delay results in a frequency-dependent lag-angle between the tide and the line 

connecting the Earth-Moon centers, δ = (s − n)Δt, where δ varies smoothly as frequencies 

approach and pass through the s = n case (i.e., a spin synchronous with the lunar mean 

motion). This is a key advantage of the Mignard model compared with the Darwin-Kaula 

constant lag-angle tidal model (e.g., Kaula, 1964), in which the lag angle has discontinuities 

near commensurabilities (e.g., Kaula, 1964; Tian et al., 2017).

4.1.1. Earth Tides—Considering the second harmonic in the tidal potential, the Mignard 

equations for the evolution of a′ and ε vs. τ = t/tT due to Earth tides are

ȧ⊕′ /a′ = (1 + μ) s′a′3/2f1(ε) − f2(ε) /a′8 (4.6a)

ε̇⊕ = (1 + μ)ε s′a′3/2g1(ε) − g2(ε) /a′8 (4.6b)

with f1, f2, g1 and g2 given by

f1(ε) = f1(ε)/(1 − ε)6; f2(ε) = f2(ε)/(1 − ε)15/2 . (4.7a,b)

g1(ε) = g1(ε)/(1 − ε)5; g2(ε) = g2(ε)/(1 − ε)13/2 . (4.7c,d)

where f1, f2, g1, and g2 are polynomials in ε (Table 2) found by orbit averaging the tidal 

forces. Combining these with equation (4.1), the de-spin rate of the Earth is

ṡ′ = − γ(1 + μ)
2a′15/2 s′a′3/2 f1 − εg1

(1 − ε)11/2 − f2 − εg2
(1 − ε)7 . (4.8)

4.1.2. Lunar Tides—The corresponding evolution expressions due to satellite tides are
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ȧ′m/a′ = (1 + μ)A s′ma′3/2f1(ε) − f2(ε) /a′8, (4.9a)

ε̇m = (1 + μ)Aε s′ma′3/2g1(ε) − g2(ε) /a′8, (4.9b)

where

A ≡ km
kT

Δtm
Δt

M
m

2 Rm
R

5
≈ 10 km

kT

Δtm
Δt (4.10)

is a ratio of physical parameters of the two bodies that scales the relative strength of tides on 

the Moon to tides on the Earth, with Rm, km, and Δtm referring to the Moon’s radius, tidal 

Love number and tidal time delay (Mignard, 1980). For the current Earth and Moon, A ≈ 
unity. However, when the early Moon encountered evection, the post-giant impact Earth 

would have still been fully molten, with a tidal response akin to that of a fluid body with a 

small Δt, while the Moon would have likely cooled sufficiently to yield a dissipative state 

with a much larger Δtm, implying A ≫ 1 when the Moon encountered the resonance (Zahnle 

et al., 2015).

Combining equations (4.9a), (4.9b), and (4.10) with equation (4.2), the change in the lunar 

spin rate is

ṡm′ = − γ
2κ

A(1 + μ)
a′15/2 sm′ a′3/2 f1 − εg1

(1 − ε)11/2 − f2 − εg2
(1 − ε)7 (4.11)

Because the Moon-Earth mass ratio μ is small, we set (1+μ) ≈ 1 in all subsequent tidal rate 

expressions.

4.1.3. Lunar Rotation—For a synchronously rotating satellite, s′ma′3/2= 1, and the 

above equations would simplify to ȧ′m/a′ = A f1 − f2 /a′8, ε̇m = Aε g1 − g2 /a′8, and ṡm′ = 0. 

However, there is a contradiction here. For an eccentric orbit with ε > 0, equation (4.2) 

shows that the satellite’s spin will not remain at a constant value of s′ma′−3/2 if subject to 

tidal rates given in equation (4.9a,b). Instead there will be a nonzero torque on the satellite 

spin that will move it away from synchronicity until

s′ma′3/2 = (1 − ε)f2 − εg2
(1 − ε)f1 − εg1

, (4.12)

which is only unity for a circular orbit (ε = 0), implying nonsynchronous rotation for an 

eccentrically orbiting satellite. Synchronous rotation can be maintained in an eccentric orbit 

if an additional torque is exerted on a permanent triaxial figure of the Moon (e.g., Aharonson 

et al., 2012; Goldreich, 1966; Goldreich & Peale, 1966a, 1966b). The original Mignard 

equations that assumed synchronous rotation did not include this permanent figure torque. 

Appendix D in the supporting information develops expressions to include this torque’s 

effects on a and ε for cases in which synchronous lunar rotation is assumed.
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4.2. Resonance Encounter

During the initial precapture expansion of the lunar orbit, ε* is negative but increasing. 

Shallow resonance is first established when ε* =−5α and s′ = a′7/4(1+4α)/Λ. Assuming that 

prior to that the Moon’s orbit was circular, its spin synchronous, and the system AM, Lo′, 
conserved, yields the constraint

L′o = 1 + 4αoa′res
3/2 a′res

7/4/Λ + κ/a′res3/2 + γa′res
1/2

(4.13)

for the resonance encounter distance as displayed in Figure 3. For Lo′ equal to the current 

system value, LEM′ = 0.346, a′res = 4.61 and s′res = 0.267. For a high-AM state with L′o ≈ 

2L′EM, one obtains a′res = 7.30 and s′res = 0.596. For a low-AM state with 

Lo′ < 0.190 0.549LEM , evection would lie interior to the Roche limit and would not be 

encountered as the Moon’s orbit tidally expanded.

Capture into resonance requires that tidally driven changes in the stationary point occur 

slowly compared to the resonant libration timescale. To understand the condition required to 

maintain the resonance, we differentiate equation (2.21b) (in the limit of no tides) and then 

use both (2.21a,b) to eliminate ε̇ and θ̇ to yield,

θ̈ = − 40χ2α ε* + 5αcos2θ sin2θ ≈ − 80χ2αεsθ, (4.14)

where the final version assumes small θ. This is the equation for a harmonic oscillator of 

frequency ω = 4χ 5αεs that is librating about a stable equilibrium point. The libration 

frequency increases with εs. When in the shallow resonant regime, if the time it takes to 

execute a half cycle around the stationary point, ~π/ω, is comparable to or shorter than the 

time for that point to reach a given εs value viatides, εs/ ε̇s , capture into region ϒ2 can 

occur. This condition requires that εs ≥ πε̇s/(4χ 5α) 2/3. For slow tides  small ε̇s , this can 

be satisfied for small εs, but the needed εs value increases for faster tidal evolution. On the 

other hand, once εs ≥ 10α (i.e., once ε*/5α ≥ 1) the saddle points, εsx, appear, and an 

increasing portion of phase space becomes occupied by the inner nonresonant region ϒ3 

(e.g., Figure 2), causing the resonant region ϒ2 to radially narrow. This makes the adiabatic 

condition for resonance stability more stringent as ε*/5α increases further, because smaller 

tidally driven changes in εs during a libration cycle can cause the trajectory to pass directly 

from ϒ1 to ϒ3, avoiding resonance capture.

5. Evolution: Damped Libration

We first construct a baseline evolutionary track by restricting the Moon’s resonance behavior 

to one of zero libration amplitude, for which the eccentricity equals that of the stable 

stationary state (i.e., we set ε = εs, θ = 0, and ignore equations (4.4a,b) associated with 

libration about the stationary state). While obviously idealized, the damped libration solution 

reveals how AM drain occurs and when in the evolution it would be most significant if the 

resonance is maintained. In section 6, we expand on this baseline evolution to estimate when 

libration amplitude growth and resonance escape is expected.
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It is uncertain whether the Moon would have had a permanent triaxial moment when it 

encountered evection. Our nominal damped libration cases consider a nonsynchronously 

rotating moon without a permanent figure. An example case assuming a triaxial moon in 

synchronous rotation is presented in Appendix E in the supporting information (Figure 

SA3). For nonsynchronous cases, we assume that the lunar spin state rapidly reaches the 

steady state value from (4.12). That s′m would, in the absence of permanent figure torques, 

rapidly reach this value can be seen from equations (4.8) and (4.11), where for an initial s′ 

m~ s′, the rate of change of the lunar spin is larger than the rate of change of the Earth’s spin 

by a factor of A/κ, which is ≥ 103 for A ≥ 1.

5.1. AM Loss

To estimate the rate at which the evection resonance could drain AM from the Earth-Moon, 

equation (2.7) is differentiated with respect to time,

L̇′ = ṡ′ + κṡ′m + L̇′orb = ṡ′ + κṡ′m + (γ /2)a′1/2 1 − εs
1/2 ȧ′

a′ − ε̇s
1 − εs

. (5.1)

Note that the R.H.S. applies only once εs ≥ 0 (post-resonance capture), because for εs < 0 

(pre-capture), the stationary eccentricity is undefined. Spin rates and the Moon’s semimajor 

axis are affected only by tides, and since tides alone would conserve system AM, it follows 

that

ṡ′ + κṡm′ = − (γ /2)a′1/2 1 − εs
1/2 ȧ′

a′ − ε̇T
1 − εs

= − L̇′orb, T . (5.2)

Substituting into (5.1), we confirm that

L̇′ = L̇′ orb − L̇′ orb, T = (γ /2)a′1/2 ε̇T − ε̇s / 1 − εs
1/2, (5.3)

which again applies only once εs ≥ 0. Thus, the change in AM reflects the difference 

between the rate at which tides change the lunar orbit eccentricity and the rate of change of 

eccentricity imposed by evection. The rate due to tides, ε̇T = ε̇⊕ + ε̇m, is given by equations 

(4.6b) and (4.9b), whereas ε̇s can be found by differentiating equation (2.16),

ε̇s ≈ η 7ȧ′
4a′ − ṡ′

s′ + 6α ȧ′
a′ . (5.4)

The latter rate is determined primarily by the tidal changes of a′ and s′, instead of ε̇T . The 

above utilizes the expansion to O ε2  from section 2.4; however, including higher-order 

terms does not substantially alter the overall behavior so long as α is small.

5.2. Tidal Evolution in Resonance With no Libration

Figure 4 illustrates a zero-libration evolution for an initial AM Lo = 2LEM and A = 10. 

Additional evolutions for varied Lo and A values are presented in Appendix E in the 
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supporting information (Figures SA1 and SA2). Before resonance capture, the semimajor 

axis (Figure 4a) grows at a rate that decreases with distance, while the eccentricity (Figure 

4b) remains zero and the total AM constant (Figure 4d). Once the Moon’s orbit is captured 

in evection (εs ≥ 0), its eccentricity rises (gray regions in Figures 4a, 4b, and 4d), decreasing 

L′orb somewhat even though the outward migration temporarily speeds back up. The 

eccentricity eventually reaches a critical value, εc, at which outward orbit migration stalls 

and the orbit begins to contract due to the effect of satellites tides. Soon after, the 

eccentricity begins to decline as well (the times at which ȧ and ė vanish are slightly 

different), and the Moon enters a prolonged contraction phase. If the resonance is 

maintained with zero libration throughout the evolution, the system would ultimately reach a 

co-synchronous end-state, s = sm = n, with zero eccentricity. However, libration amplitude 

growth and escape from resonance is predicted long before that state is achieved (see section 

6).

The rates ȧ′/a, ε̇T  and ε̇s during the evolution in Figure 4 are shown in Figure 5a, while 

Figure 5b displays ṡ′, L̇orb′  and L̇′. The slowdown of the Earth’s spin continues throughout 

the evolution. The maximum decay rate of L′orb occurs near the start of lunar contraction, 

but quickly diminishes to a small value. Throughout the rest of the evolution, the orbital AM 

remains relatively constant in spite of continued changes in a′and εs. As a result, L̇′ and ṡ′
become nearly equal (equation 5.1), i.e., the AM drained from the system by evection is 

nearly completely reflected in the concomitant slowdown in the Earth’s spin. We now 

examine each evolutionary stage in greater detail.

5.2.1. Outward Migration—For a Moon in an initially circular orbit outside the Earth’s 

co-rotation radius ṡ′ is negative, while the lunar orbital AM, Lorb′ , increases to compensate so 

that dL′/dτ = 0. After resonance capture the Moon’s orbit continues to expand due to tides 

ȧ′ > 0 , while evection increases the Moon’s eccentricity (ε̇s > 0; gray area Figure 4) per 

equation (5.4). Concentrating on just the rate of change of the orbital AM, L̇′ orb, given by 

the last term of (5.1) once εs > 0, we can write

L̇′ orb = L′ orb/2 ȧ′/a′ − ε̇s/ 1 − εs ≈ L′ orb/2 −3ȧ′/4a′ + ṡ′/s′ (5.5)

Both terms in the final bracket are negative during this phase, and the AM of the Moon’s 

orbit decreases with time (Figure 4d) even though its semimajor is increasing.

As evection increases the Moon’s eccentricity, it eventually reaches a critical value, εc, at 

which there is a balance between the rates at which Earth and lunar tides alter the Moon’s 

semimajor axis ȧ⊕′ ≈ − ȧm′ , and the Moon’s orbital expansion stalls at a′ = ac′. If the Moon 

had a very small eccentricity when first captured into resonance at ares′ , the change in its 

orbital AM during its migration from there to ac′ would be 

ΔLorb,evec′ = γ a′c1/2 1 − εc
1/2 − a′res

1/2 . For very small initial eccentricity, η = Λs′a′7/4 ≈ 1 

and the Earth’s spin upon capture is a′res
7/5/Λ; while at a′ = ac′, η = Λsc′ /a′c7/4 ≈ 1 − εc

(neglecting small terms proportional to α0) so that the corresponding change in the Earth’s 

Ward et al. Page 15

J Geophys Res Planets. Author manuscript; available in PMC 2020 October 09.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



spin AM is Δsevec′ ≈ a′c7/4 1 − εc − a′res
7/4 /Λ. By comparison, the changes in the absence of 

evection would be simply ΔLorb, T′ = − ΔsT′ = γ a′c1/2 − a′res
1/2 . For the A = 10, Lo = 2LEM case 

shown in Figure 4, ares′ ≈ 7.30, ac′ ≈ 9.8, εc ≈ 0.43 and we find, ΔLorb,evec′ ≈ − 0.012, and 

Δsevec′ ≈ − 0.027 for a total loss of ΔLevec′ ≈ − 0.039. Compared to the initial AM of the 

Earth-Moon system in this case L0′ = 0.69 , this is only a modest, ~6% reduction. In general, 

if evection is active only during the Moon’s outbound phase, as was found by Touma and 

Wisdom (1998), the resulting AM change is small, consistent with prior assumptions of 

canonical giant impact models (e.g., Canup, 2008).

5.2.2. Inward Migration—Subsequent to stalling, the lunar orbit begins to contract. 

Provided the resonance condition is maintained and evection continues to control the 

Moon’s eccentricity (as assumed in the zero libration evolution here), ε soon begins to 

decrease as well. Earth tides further drain s as long as, 1 − εs
−1ε̇s < ȧ′ ⊕/a′ (equation 4.1). 

It is during this secondary contraction phase that substantial AM may be lost, as was seen in 

the simulations of CS12.

The contraction of the lunar orbit occurs relatively slowly because the magnitude ȧm′ < 0 of 

due to lunar tides is only somewhat larger than the opposing action ȧ′ ⊕ due to Earth tides. 

The result is a prolonged period during which AM that is removed from the Earth’s spin by 

Earth tides can be transferred by the resonance to the Earth’s orbit, with s′̇ T ′ (as seen in 

Figure 5b where s′̇ L′˙ ). The changes in the components of the Earth-Moon AM during this 

phase would be ΔL′ orb evec = γ a′esc
1/2 1 − εesc

1/2 − a′c1/2 1 − εc
1/2  and 

Δs′ evec = a′esc
7/4 1 − εesc − a′c7/4 1 − εc /Λ, where a′esc, εesc are the semimajor axis and 

eccentricity (squared) at the time of resonance escape. For the particular evolution shown in 

Figure 4 (with A = 10, L0 = 2LEM), the system AM decreases to that of the current Earth-

Moon system L′EM = 0.35 at Time/tT = 1.4 × 106. For resonance escape to occur at this point 

implies aesc′ = 4.7 and εesc = 0.06.

From Figure 4d (and also Figures SA1–SA3 in Appendix E in the supporting information), it 

can be seen that the longer the Moon remains in resonance, the greater the reduction in L, so 

that the final AM achieved via formal evection will be set by the timing of resonance escape. 

Escape can occur if the adiabatic condition is violated (so that the timescale for tidally 

driven changes in ε becomes short compared to the resonant libration timescale), or if the 

libration amplitude grows and exceeds the maximum amplitude of π/2 consistent with 

resonant libration. If escape never occurred, evection would drain the system’s AM until the 

dual synchronous state is achieved. The limiting final AM in this case is found by setting s′, 

sm′ = ssync′ = a′−3/2 and εs = 0, viz.,

Lsync′ = (1 + κ)/a′sync
3/2 + γa′sync

1/2 , (5.6)

where async′  is the final semimajor axis. This will be right at the inner boundary of the 

resonance where εs can go to zero and is obtained by setting 
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Λssync′ /a′sync 
7/4 = ηsync = 1 + 4αsync, and then solving for async′ ≅ Λ4/13 = 3.416. Equation (5.6) 

then gives Lsync′ = 0.226, which is substantially less than that of the current Earth-Moon 

(LEM′ = 0.35). In addition to being inconsistent with the Earth-Moon AM, a dual synchronous 

state would also be unstable, because further slowing of the Earth’s spin by direct solar tides 

would eventually cause synchronous orbit to drift beyond the Moon, which would then 

tidally evolve inward. Clearly, this full evolution in evection never occurred for the Earth-

Moon pair, and indeed in section 6, we predict much earlier resonance escape.

5.3. Tidal Stationary States

The above baseline evolution adopts the stationary state eccentricity in the absence of tides. 

If tides are included as in equations (4.4a,b), equation (4.14) describing libration about the 

stationary state is replaced by

θ̈ = − 40χ2α ε* + 5αcos2θ sin2θ + 2χ ε̇T − ε̇* − 5α̇cos2θ (5.7)

and the angle, θs, for which θ̈ vanishes satisfies,

20χα ε* + 5αcos2θs sin2θs = ε̇T − ε̇* − 5α̇cos2θs . (5.8)

The angle θs represents an offset from the y-axis of the stationary state around which stable 

libration occurs that is due to the effects of tides. If the tidal rates are small enough that the 

offset angle is small and cos2θs ~ 1, sin2θs ≈ ε̇T − ε̇* − 5α̇ /20χα ε* + 5α ; if instead tidal 

rates are fast and the offset is large so that cos2θs is small, sin2θs ≈ ε̇T − ε̇* /20χαε*. 

However, since the maximum value of |sin2θs| is unity when θs = ± 45°, there can be no 

stationary angle (and thus no stable libration) if ε̇T − ε̇* > 20χαε*.

Using the low cos2θs approximation and neglecting terms proportional to α and ȧ, equation 

(4.4a) becomes ε̇ ≈ − ε̇T − ε̇* ε/ε* + ε̇T , and differentiating yields

ε̈ ≈ [ − ε̇ + (ε̇ * /ε * )ε] ε̇T − ε̇ * /ε * + (1 − ε/ε * )ε̈T + (ε/ε * )ε̈ * . (5.9a)

Ignoring ε̈T , ε̈*, using the ε̇ expression above equation (5.9a) and requiring ε̈ 0 to suppress 

oscillations, results in

ε/ε* − 1 ε̇T − ε̇* ε̇T /ε* ≈ 0. (5.9b)

Assuming nonzero tidal rates (ε̇T ≠ 0), satisfying this condition implies εs ≈ ε*, vs. εs ≈ ε*

+5α found in the O ε2  expansion in section 2.4. Thus, the stationary eccentricity is 

relatively unaffected by an increasing stationary offset angle imposed by tides. Note that 

substituting these state parameters into equations (4.4a,b) will not give zero values for ℰ̇S
and θ̇S because they are now slowly changing quasi-steady states.
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6. Evolution: Finite Libration and Resonance Escape

Until now, the orbit evolution has been artificially constrained to zero libration. On the other 

hand, Touma and Wisdom (1998) found that the Moon escapes evection soon after it reaches 

the distance where ȧ = 0. At this point, they found that the resonance libration amplitude 

begins to rapidly increase until the system leaves resonance. Escapes were also reported by 

CS12, although much later in the evolution during the orbital contraction phase. In this 

section, we explore how tides affect the libration behavior, libration amplitude growth, and 

the expected timing of resonant escape.

At the turn-around point of a level curve, ∂J / ∂ε Θ = 0. From equation (2.20a), this implies 

that

εΘ = ε* + 5αcos2Θ (6.1)

where εΘ denotes the eccentricity at turn-around, and we have assumed ȧ is small during a 

libration cycle. Substituting into J then leads to

εΘ
2 = − 2J; cos2Θ = −2J − ε* /5α . (6.2a,b)

6.1. Libration Amplitude Variation

To examine the behavior of the libration amplitude on an oscillation timescale, we wish to 

integrate equation (5.7) including eccentricity variations over a libration cycle. We consider 

a case where the libration amplitude is small and retain only terms linear in θ to find,

θ̈ + ω2θ ≈ 2χ ε̇T − ε̇s ≡ ℱ, (6.3)

where again ω2 ≡ 80χ2αεs. As in equation (4.14), this resembles a harmonic oscillator of 

frequency ω, but now with an additional forcing term, ℱ, due to tides. The solution to 

equation (6.3) has two parts: a homogeneous solution, θh = Θsinωτ, equal to that of the 

unforced equation, and a particular solution,

θp = − cosωτ
ω ∫ ℱ(τ)sinωτd τ + sinωτ

ω ∫ ℱ(τ)cosωτd τ . (6.4)

The ℱ(τ) term has an oscillating part through its ε dependence over a libration cycle and can 

be expanded to lowest order around its value ℱs ≡ ℱ a′, s′, εs  at εs, i.e.,

ε̇T ≈ ε̇T εs + ∂ε̇T
∂ε ε − εs + ⋯; ε̇s ≈ ε̇s εs + ∂ε̇s

∂ε ε − εs + ⋯, (6.5a)

implying

ℱ a′, s′, ε ≈ ℱs + ∂ℱ
∂ε εs

ε − εs + ⋯ . (6.5b)
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The lead term results in a particular solution, θs = ℱs/ω2 that reduces to the tidal stationary 

angle of section 5.3. However, the second term produces a time-varying particular solution 

describing libration.

The linearized version of equation (2.21a) for small θ and ε ≈ εs reads ε̇ ≈ − 40χαεsθ, and 

utilizing the homogeneous solution for θ integrates to

ε − εs ≈ 40αεs(χ /ω)Θocosωτ, (6.6)

where Θo represents the libration amplitude at the start of a given cycle when ωτ = − π/2. 

Substituting equations (6.5b) and (6.6) into equation (6.4) and integrating, we get the time-

varying particular solution,

θp = 20αεs
χ ∂ℱ
ω2∂ε

Θoτsinωτ . (6.7)

Combining and arranging terms gives the variation of θ with respect to the tidal stationary 

offset angle θs,

θ − θs = θℎ + θp ≈ Θ0 1 + 20αεs
χ ∂ℱ
ω2 ∂ε

τ sinωτ, (6.8)

and it is seen that libration relative to the offset angle will change with time due to the 

∂ℱ/ ∂ε term, i.e., due to the variation in ε̇T − ε̇s  during a libration cycle due to small 

changes in ε. There is a resulting change, ΔΘ = 40παεs χ /ω3 (∂ℱ/ ∂ε)Θ0, in the oscillation 

amplitude after a complete cycle, Δτ = 2π/ω. This updated value then applies to the next 

cycle, etc., implying,

1 dΘ
Θ dτ = 20αεs

χ ∂ℱ
ω2 ∂ε

= 40αεs
χ
ω

2 ∂ε̇T
∂ε − ∂ε̇s

∂ε = 1
2

∂ε̇T
∂ε − ∂ε̇s

∂ε , (6.9)

where the last step uses the ω definition.

Thus, whether the libration amplitude grows or damps depends on the sign of 

∂ε̇T / ∂ε − ∂ε̇s/ ∂ε . For example, if both ∂ε̇T / ∂ε and ∂ε̇s/ ∂ε are positive (as occurs during the 

initial phase of expansion in resonance, see Figure 6a), then the libration amplitude will 

damp if the rate of change in the Moon’s eccentricity due to tides increases more slowly 

with e (i.e., ε) than does the rate of change of the stationary eccentricity. Conversely, once 

∂ε̇T / ∂ε > ∂ε̇s/ ∂ε (which occurs near the stagnation point, ȧ = 0), the libration amplitude 

increases with time (e.g., Figure 6a).

The partial derivatives depend on the specific tidal model employed. For the model of 

Mignard (1980) used here
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a′8∂ε̇T
∂ε = s′ + Asm′ a′3/2 1 + ε

g1

∂g1
∂ε + 5ε

1 − ε g1 − (1 + A

) 1 + ε
g2

∂g2
∂ε + 13ε/2

1 − ε g2,
(6.10)

∂ε̇s
∂ε ≈ 7η

4 + 6α ∂
∂ε

ȧ′
a′ − η∂s′̇

s′∂ε , (6.11)

while taking the derivatives of a′̇ /a′ and s′̇ gives

a′8 ∂
∂ε

ȧ′
a′ = s′ + Asm′ a′3/2 1

f1

∂f1
∂ε + 6

1 − ε f1 − (1 + A

) 1
f2

∂f2
∂ε + 15/2

1 − ε f2,
(6.12)

∂s′̇
∂ε = − 1

2γa′1/2 ∂
∂ε (1 − ε)1/2 ȧ⊕′

a′ − 1
(1 − ε)1/2 ε̇⊕

= 1
2γa′1/2 1

2(1 − ε)1/2
ȧ⊕′
a′ + ε̇⊕

1 − ε − (1 − ε)1/2 ∂
∂ε

ȧ⊕′
a′ − 1

1 − ε
∂ε̇⊕
∂ε ,

(6.13)

where the f and g polynomials and their derivatives (Table 2) are to be evaluated for ε = εs. 

Setting A = 0 in equations (6.10) and (6.12) provides the Earth-only tidal expressions needed 

for ∂ṡ′/ ∂ε. Analogous expressions for the case of synchronous lunar rotation maintained by 

a permanent figure torque are provided in Appendix D in the supporting information.

Figure 6 displays the partial derivative behaviors and Θ−1dΘ/dτ for the baseline evolution 

shown in Figure 4 (with A = 10, Lo = 2LEM). Figure 7 shows Θ−1 dΘ/dτ for varied A values 

for Lo = 2LEM, and for varied Lo with A = 10, all for a nonsynchronously rotating Moon. 

Figure 8 contrasts Θ−1dΘ/dτ for synchronous vs. non-synchronous rotation cases, both with 

A = 10 and Lo = 2LEM. Across all parameter choices, libration amplitude growth (i.e., Θ
−1dΘ/dτ > 0) is predicted for Mignard tides during the lunar orbital contraction phase.

Before estimating when libration amplitude growth would lead to resonance escape with 

Mignard tides (section 6.2 below), we briefly consider application of equation (6.9) to the 

constant lag angle/constant-Q tidal model utilized in Wisdom and Tian (2015). Figure 9 

shows the predicted behavior of Θ−1dΘ/dt for a baseline evolution (i.e., with ε = εs and θ = 

0) that adopts the tidal expressions for a synchronously rotating Moon as given in Wisdom 

and Tian’s equations (21) through (40), with A now defined in their eqn. (12). It can be seen 

that for the A = 1.7 and 2.0 cases (light blue curves in Figure 9), equation (6.9) predicts an 

extended period of libration amplitude damping that persists even as the Moon’s orbit 

contracts, implying resonance stability. This is consistent with protracted resonance 

occupancy, decreasing libration amplitude, and large AM modification seen for these A 
values in both the simplified models and full integrations of Wisdom and Tian (e.g., their 

Figures 2, 3, 5, and 9). However, outside this narrow range of A, equation (6.9) predicts 
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libration amplitude excitation even prior to lunar orbit contraction (darker blue curves in 

Figure 9), suggesting limited resonance stability. For this regime, Wisdom and Tian indeed 

found minimal or no formal resonance occupancy with constant-Q tides.

Predictions from the idealized solutions developed here thus appear qualitatively consistent 

with results of more complete integrations with regards to formal resonance occupancy 

(although our methods do not allow us to assess the nonlibrating “limit cycle” behavior seen 

in Wisdom and Tian, a point we return to in section 7). That constant-Q model evolutions 

find prolonged damped libration in resonance for a narrow range of A values (Figure 9; 

Wisdom & Tian, 2015), while evolutions with Mignard tides do not (Figures 7 and 8 and 

section 6.2), thus appears to be due to differences in the tidal models themselves rather than 

to other differences between this work and that of Wisdom and Tian (e.g., different evolution 

methods, inclusion of finite terrestrial obliquity, and/or lunar inclination in their integrations, 

etc.). As the Moon’s orbit contracts, ∂ε̇T / ∂ε and ∂ε̇s/ ∂ε are negative for both the constant-Q 

and Mignard models. However, for constant-Q tides with A = 1.7 and 2.0, 

∂ε̇T / ∂ε > ∂ε̇s/ ∂ε  for an extended period during orbit contraction, implying damping, while 

for Mignard tides ∂ε̇T / ∂ε < ∂ε̇s/ ∂ε , implying excitation (e.g., Figure 6a). Beyond this 

narrow range of A, both the constant-Q and Mignard models have ∂ε̇T / ∂ε < ∂ε̇s/ ∂ε  during 

contraction, implying libration amplitude excitation. Differences in evolution rates (i.e., de/

dt, da/dt) between the constant-Q and Mignard tidal models are most pronounced for high-

eccentricity orbits, and so it is not surprising that the divergent outcomes occur for low A 
cases in which the peak eccentricities are highest. It is also for high-e orbits that the 

assumption of a constant lag-angle (inherent to the constant-Q model) is perhaps most 

suspect.

6.2. Excitation and Resonance Escape

We now return to libration excitation and the timing of escape for Mignard tides. Per Figures 

6–8, during most of the Moon’s outbound evolution in evection the libration amplitude is 

damped (i.e., Θ̇/Θ < 0) or undergoes only weak excitation. However, as the Moon 

approaches the turn-around point in semi-major axis, there is a transition to increasing 

excitation. For low A, damped libration in the outbound phase rapidly transitions to 

excitation near the stall point (Figures 6 and 7a), reminiscent of the behavior seen in Touma 

and Wisdom (1998), suggesting that escape from resonance is likely to occur near this point, 

depending on the initial libration amplitude following capture. For larger values of A, 
libration amplitude growth past the stall point is more modest (Figure 7a); however, Θ̇/Θ
remains positive throughout the Moon’s subsequent orbital contraction, and its magnitude 

generally increases with time. This implies that resonant escape will occur well before the 

dual-synchronous end state is reached in the high-A cases as well.

It is instructive to consider how cyclic variations in tidal strength lead to amplitude changes 

during a single libration cycle. First consider the lead constant term, ℱs = 2χ ε̇T εs − ε̇s εs , 

in the forcing function from equation (6.5b). A constant ε̇T εs  during a state’s counter-

clockwise traverse of the upper level curve branch tries to push the trajectory across level 

curves. For specificity, on a level curve with turn-around points ±Θo during the orbital 
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contraction phase, ε̇T εs < 0, and the trajectory on the upper branch drifts downward toward 

level curves with more negative J (see Figure 1f). As a result, it encounters a turning point at 

Θ slightly less than Θo. However, over the return, rightward trip on the lower branch, its 

continued downward motion causes the state to drift across level curves of higher J, 

reversing the process. The net result is a trajectory path that resembles a level curve, but 

whose point of symmetry is shifted off the y-axis to an angle ε̇T εs /40χαεs < 0 (see 

equation (5.8) for the case of a small offset angle, and note that we define θ as the angle 

from the y-axis in the direction of the negative x-axis, so that a negative offset angle lies in 

quadrant I of our coordinate system). This same path is repeated on future cycles unless 

there is a change in εs. A similar situation occurs for a constant ε̇s εs < 0 with ε̇T = 0, where 

a level curve with given turn-around points ±Θo migrates down the y-axis; in this case, there 

is a change in the Jacobi value associated with Θo found from equation (6.2b), viz., 

J = − ε * + 5αcos2Θo
2/2.This causes the state’s position to be crossed by level curves with 

larger libration amplitudes, Θ > Θo during its upper counter-clockwise traverse, but by 

curves of Θ < Θo on its rightward lower return. In this case, the trajectory again resembles 

the shape of a level curve shifted off the y-axis by − ε̇s εs /40χαεs > 0. Since during 

contraction, the magnitude of ε̇T  is generally larger than ε̇s (see Figure 5a), their combined 

influence yields the negative stationary state angle. But, for ε̇T  and ε̇s that are constant 

during a libration cycle, there is no net change in libration amplitude.

Now consider the second term in equation (6.5b), 

∂ℱ/ ∂ε εs ε − εs = 2χ ∂ε̇T / ∂ε εs − ∂ε̇s/ ∂ε εs ε − εs , describing cyclic variations of the 

tidal strengths. Figure 6a displays the partial derivatives ∂ε̇T / ∂ε, ∂ε̇s/ ∂ε during the evolution 

shown in Figure 4. Although during most of the orbit contraction phase the magnitude of ε̇T
exceeds that of ε̇s (see Figure 5a), in Figure 6a, we see that ∂ε̇s/ ∂ε > ∂ε̇T / ∂ε  and that both 

derivatives are negative. Thus, the quantity ∂ε̇T / ∂ε εs − ∂ε̇s/ ∂ε εs  is positive during 

contraction, so that when (ε − εs) > 0, there is positive forcing, while when (ε − εs) < 0, the 

libration amplitude is damped. However, the two effects do not exactly compensate because 

(ε − εs) > 0 for proportionally more of the libration cycle, and consequently, a cycle finishes 

with a larger amplitude then when it started.

In the early outbound phase in evection, libration amplitude is typically damped. If there 

were no tidal change in εs in this phase, equation (6.9) would reduce to Θ̇/Θ (1/2)∂ε̇T / ∂ε, 

and when ∂ε̇T / ∂ε < 0 (as implied by damping), the libration amplitude could be driven to a 

vanishing small quantity. However, if ε̇s ≠ 0, there is a limit to this. The eccentricity of the 

upper libration path at the y-axis is εs + εs2 + 2J, implying a path half-width of 

w = εs2 − εΘ
2 , the final form employing equation (6.2a). Assuming Θ is small, cos2Θ ≈ 1 − 

2Θ2 and equation (6.1) reads εΘ ≈ εs − 10αΘ2. Accordingly, w ≈ Θ 20αεs to lowest order in 

Θ. In a like manner to section 4.2, when the distance, πε̇s/ω, the stationary point migrates 

over a half cycle is comparable to w, further decrease of Θ is thwarted by the evolving level 

curves pattern. This implies that the amplitude will not decrease below a characteristic value 
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Θmin ≈ π ε̇s/εs /40χα. This value depends inversely on χ = Ω⊙tT. Thus for slower tidal 

evolution (i.e., larger tidal time constant tT, smaller terrestrial Δt), the libration amplitude 

can be decreased to smaller values during the initial damped outbound phase.

Once excitation begins at time τex, integrating equation (6.9) gives

ln Θ
Θex

= 1
2 ∫

τex

τ
∂ε̇T
∂ε − ∂ε̇s

∂ε dτ, (6.14)

where Θex ≈ Θmin(τex) denotes the amplitude at τex. Thus, the amplitude grows as

Θ(τ) = Θmin τex exp 1
2∫τex

τ ∂ε̇T
∂ε − ∂ε̇s

∂ε dτ . (6.15)

For a given evolution, one can integrate (6.15) to estimate when Θ → π/2 and escape occurs 

as a function of A and the absolute rate of tidal evolution given by χ. For A ≤ 10, L0 = 

2LEM, a nonsynchronously rotating Moon, and 1 × 106 ≤ tT ≤ 2 × 107 (corresponding 

approximately to 80 < (Q/kT) < 1800), escape occurs early when the Earth-Moon system 

AM has been reduced by only about 8% to 9% relative to its starting value. For A = 10, L0 = 

2LEM, and a synchronously rotating moon (including the effects of permanent figure 

torques), the change in AM is even less, about 3% to 5%.

7. Summary and Discussion

We have examined the tidal evolution of the Sun-Moon evection resonance employing the 

tidal model developed by Mignard (1980). This has been motivated by the work of Ćuk and 

Stewart (2012; CS12) who found a large decrease in the Earth-Moon system AM due to this 

mechanism. Although the direct solar tidal torque on the Earth can drain its spin AM, the 

loss is very small over the age of the solar system. In contrast, the evection resonance allows 

the Sun to indirectly drain the Earth’s spin by exerting a torque on the lunar orbit that can 

then be transmitted to the Earth via the much stronger lunar tidal torque. Initial capture of 

the Moon into evection is not guaranteed. However, the case has been made that capture is 

probable given the slow outward tidal evolution rates associated with a fluid-like Earth in the 

aftermath of a Moon-forming giant impact (Zahnle et al., 2015). If the evection resonance is 

then maintained, the loss of AM could potentially be very large.

CS12 utilized a tidal model intended to approximate a constant-Q model, in which the tide is 

assumed to form at a fixed angle ahead or behind the line connecting the centers of the 

tidally interacting objects. In order to avoid discontinuity at the synchronous orbit, they 

multiplied their tidal torque by a smoothing factor. A detailed analysis of the CS12 tidal 

model and its differences from a conventional constant-Q model (Kaula, 1964) is contained 

in Wisdom and Tian (2015). They implemented a true constant-Q model and found that if 

the Moon’s tidal parameters are assumed constant with time, the successful cases identified 

in CS12 remove too much AM. Tian et al. (2017) subsequently demonstrated that tidal 

heating during the high-eccentricity evolution in evection invoked in CS12 would alter tidal 
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dissipation in the Moon and cause rapid exit from formal resonance with little or no AM 

drain, again assuming a constant-Q tidal model.

In this paper, we adopt the Mignard tidal model as was also utilized by Touma and Wisdom 

(1998) but apply it to an Earth-Moon system that initially has a much higher AM than its 

current value, as considered in CS12. Our findings include the following:

1. AM is drained from the Earth-Moon system while the evection resonance is 

maintained. In the limiting case of a moon that remained continually in 

resonance, evection would drive the system to a co-synchronous end state, s = sm 

= n, with a final AM independent of the system’s initial AM. For the Earth-Moon 

system this limiting state was never reached, implying that either the Moon was 

never captured into evection or that it escaped from resonance. In the latter case, 

the timing of escape determines the degree of AM modification due to formal 

evection, with increased AM drain as the time spent in resonance lengthens.

2. During resonance, the Moon’s longitude of perigee librates about the stationary 

state angle (which is approximately ±90° from the Earth-Sun line). Escape from 

resonance requires the resonant trajectory to cross the separatrix boundary, which 

can occur if the libration amplitude, Θ, approaches π/2. Tidal evolution causes 

libration excitation and/or damping if there is a variation in tidal strength over a 

libration cycle.

3. For Mignard tides, resonant libration is damped or minimally excited during 

most of the Moon’s initial outward expansion in resonance. However, as the 

Moon approaches the “stall” point (after which its orbit contracts), libration 

amplitude excitation increases and remains positive throughout the rest of the 

evolution. This is true across a wide range of tidal parameters and for either a 

nonsynchronously rotating moon with no permanent figure torques or a 

synchronously rotating, triaxial moon.

4. We estimate that libration excitation leads to escape from resonance early in the 

evolution, resulting in ≤10% AM loss for an Earth-Moon system with an initial 

AM that is roughly twice that of the current Earth-Moon. This is similar to early 

resonance escape seen in Touma and Wisdom (1998) with Mignard tides for 

lower AM systems.

We conclude that with Mignard tides, formal evection resonance does not appear capable of 

reconciling high-AM giant impact models (Canup, 2012; Ćuk & Stewart, 2012) with the 

current Earth-Moon system. This result augments those of Wisdom and Tian (2015) and 

Tian et al. (2017), who conclude that formal evection is unsuccessful in reproducing the 

Earth-Moon AM for constant-Q tides.

Alternatively, appropriate AM removal to accommodate a high-AM Moon-forming giant 

impact could result from effects other than formal libration in evection. With constant-Q 
tides, Wisdom and Tian (2015) identi-fied an evection-related limit cycle in which large 

amounts of AM can be extracted from the Earth-Moon even though the Moon is not librating 

within resonance; a broadly similar “quasi-resonance” was seen in preliminary integrations 
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using the Mignard model by Ward and Canup (2013) and Rufu and Canup (2019). Such 

effects are not accessible with the methods here. It has also been proposed (Ćuk et al., 2016) 

that an entirely different mechanism could have reduced the early Earth-Moon AM, 

involving an initial Earth with a very high obliquity and a Laplace plane instability as the 

lunar orbit expands. However, the range of successful parameters for this mechanism 

remains unclear.

The analytic developments here include simplifications, notably co-planar dynamics, an 

evolution description limited to fourth order in eccentricity, and an assumption of small 

libration amplitude when assessing how the amplitude varies with time. Ultimately, 

integration of the system’s full evolution in a, s, sm, e, and θ is needed to assess the behavior 

of evection in the context of the Mignard tidal model, which will be a topic of a subsequent 

paper. Additional effects not considered here include the potential time-dependence of the 

tidal parameters during evolution in evection, and the potential for spin-orbit resonances in 

the Moon’s rotation state that differ from the non-synchronous or synchronous rotations 

considered here.
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Key Points:

• Capture of the Moon into the evection resonance with the Sun transfers 

angular momentum from the Earth-Moon to Earth’s heliocentric orbit

• Using the Mignard tidal model, we find that escape from evection occurs 

early with minimal angular momentum loss from the Earth-Moon

• Processes beyond formal evection resonance are needed to reconcile a high-

angular momentum giant impact with the current Earth-Moon
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FIGURE 1. 
Level curves for the evection resonance for different energies. The Sun is in the direction of 

the positive x-axis. (a) ε*/5α = − 4: Pre-resonance where all motion is counter-clockwise 

circulation about the origin. (b) ε*/5α = − 1: First appearance of stable stationary states on 

y-axis. (c) ε*/5α = 0: Shallow resonance where the level curve J = 0 is a separatrix dividing 

counter-clockwise libration about the stationary point from level curves circulating the 

origin. (d) ε*/5α = 1: First appearance of unstable saddle points on the x-axis. (e) ε*/5α = 2: 

Deep resonance with a separatrix composed of two branches emanating from the saddle 

points. Below the lower branch are level curves circulating the origin in the clockwise 

direction. (f) ε*/5α = 4: Still further into deep resonance, with the saddle points farther 

apart.
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FIGURE 2. 
Schematic of level curve domains in deep resonance (location of outer ϒ1 domain not shown 

to scale).
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FIGURE 3. 
(a) The initial system angular momentum, Lo, (assuming an initial near circular orbit of the 

Moon at three Earth radii) that would result in evection resonance location ares. Also shown 

(dashed curve) is the Earth spin, s′res, at resonance encounter. The current Earth-Moon 

angular momentum, LEM, as well as twice its value are shown for comparison (dotted lines).
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FIGURE 4. 
Tidal evolution of the Earth-Moon system in evection with damped libration for A = 10 and 

starting angular momentum Lo = 2LEM. (a) Scaled lunar semi-major axis, a′, as a function 

of time. (b) The stationary state eccentricity squared, εs ≡ es2, vs. time. (c) The stationary 

state eccentricity squared vs. lunar semimajor axis during the evolution. (d) Time variation 

of the system angular momentum, L, the Earth and Moon spin rates, s, sm, the angular 

momentum of the lunar orbit, Lorb and its mean motion, n. The gray region represents the 

stage where eccentricity is increasing.
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FIGURE 5. 
(a) Time variations of the semimajor-axis derivative, ȧ′/a′, stable eccentricity, ε̇s, and 

eccentricity derivatives due to lunar and earth tides, ε̇T ; the gray area represents the stage 

where eccentricity is increasing, ε̇s > 0.(b) Time variations of the orbital AM, L̇′orb, Earth’s 

spin, ṡ′ and total AM, L̇′, for the evolution in Figure 4. Before resonance capture, the 

increase in orbital AM is compensated by the decrease in the planet’s spin; hence, the total 

AM is constant (L̇′ = 0) During the outward phase after the resonance capture, the total AM 

decreases as both the orbital AM and spin rate decrease. During the inward migration stage, 

ε̇s < 0, the orbital AM remains relatively constant, while the total AM decreases due to the 

slowdown of Earth’s spin, L̇′ s′̇.
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FIGURE 6. 
(a) Partial derivatives of ∂ε̇s/ ∂ε (solid red) and ∂ε̇T / ∂ε (dashed dark red) of the evolution 

depicted in Figure 4. (b) Rate of change for the libration amplitude, Θ̇/Θ. during most of the 

outward migration (gray area) the libration amplitude decreases, maintaining formal 

resonance. Near the turnaround point, the libration amplitude increases, promoting 

resonance escape.
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FIGURE 7. 
The evolution of the rate of change of libration amplitude (Θ̇/Θ) for (a) varied A values for 

L0 = 2LEM and (b) With larger A values, the transition between varied L0/LEM values for A 
= 10. With larger A values, the transition between libration amplitude damping and 

excitation is more gradual. With larger initial AM values, the libration amplitude damping 

stage, which promotes resonance occupancy, is longer.
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FIGURE 8. 
Evolution of the rate of change of libration amplitude (Θ̇/Θ) for synchronous rotation 

maintained by a permanent figure torque with Lo = 2LEM and A = 10 (gray line), with non-

synchronous rotation case shown for comparison (black line). The libration amplitude 

excitation for the synchronous rotation case is more gradual compared to the 

nonsynchronous case; hence, the resonance escape is delayed. Note that the AM removal 

rate in the synchronous case is lower than the nonsynchronous case (see Figure A3); hence, 

despite this delay, the overall amount of AM removed by evection is reduced.
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FIGURE 9. 
Evolution of the rate of change of libration amplitude (Θ/ Θ) using the constant-Q tidal 

model for a synchronously rotating moon, with tidal expressions and associated tidal A 
constant defined by eqns. (12) and (21) to (40) in Wisdom and Tian (2015), for Lo = 2LEM, 

Q⊕ = 400, and varied A values. With a constant-Q model and A = 1.7 and 2, equation (6.9) 

predicts an extended period of libration amplitude damping (Θ/ Θ < 0) even as the Moon’s 

semi-major axis contracts (orbit contraction for these cases commences at t ≤ 15 [104 year]). 

This implies protracted resonance occupancy, consistent with simulations of Wisdom & Tian 

for this narrow range of A values (e.g., their Figures 2 and 9). In contrast, for A ≥ 3 (darker 

blue lines) increasingly strong amplitude excitation is predicted, suggesting limited 

resonance occupancy. Wisdom & Tian found minimal or no libration in formal evection for 

constant-Q tides and these larger A values.
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Table 1

Some Variable Definitions

Semimajor axis, mean motion, and eccentricity of moon a, n, e

Earth mass and radius M, R

Lunar mass and radius m, Rm

Mass ratio m/M μ

Earth spin rate, lunar spin rate s, sm

Angular momentum of Earth-Moon system LEM

Angular momentum of lunar orbit Lorb

Measure of the strength ratio of lunar to Earth tides A

Maximum principal moments of inertia of Earth, Moon C, Cm

Ratio of principal moments Cm/C κ

Gyration constant for Earth λ

Ratio of μ/λ γ

Circumterrestrial orbital frequency at R Ω⊕

Earth’s orbital frequency about the Sun Ω⊙

Tidal lag times, lag angle, and Love numbers for Earth, Moon Δt, Δtm, δ, kT, km

Tidal evolution time constant tT

Normalized tidal evolution time χ = Ω⊙tT

Libration amplitude Θ
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Table 2

Tidal Polynomials and their Derivatives

f1(ε) = 1 + 15
2 ϵ + 45

8 ε2 + 5
16ε3

; 
∂f1(ε)

∂ε = 15
2 + 45

4 ε + 15
16ε2

f2(ε) = 1 + 31
2 ϵ + 255

8 ϵ2 + 185
16 ϵ3 + 25

64ϵ4
; 

∂f2(ε)
∂ε = 31

2 + 255
4 ε + 555

16 ε2 + 25
16ε3

g1(ε) = 11
2 + 33

4 ε + 11
16ε2

; 
∂g1(ε)

∂ε = 33
4 + 11

8 ε

g2(ε) = 9 + 135
4 ε + 135

8 ε2 + 45
64ε3

; 
∂g2(ε)

∂ε = 135
4 + 135

4 ε + 135
64 ε2
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