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An increasing number of patients infected with nontuberculous mycobacteria (NTM) are observed worldwide. However, it is
challenging to identify NTM lung diseases from pulmonary tuberculosis (PTB) due to considerable overlap in classic
manifestations and clinical and radiographic characteristics. This study quantifies both cavitary and bronchiectasis regions in
CT images and explores a machine learning approach for the differentiation of NTM lung diseases and PTB. It involves 116
patients and 103 quantitative features. After the selection of informative features, a linear support vector machine performs
disease classification, and simultaneously, discriminative features are recognized. Experimental results indicate that
bronchiectasis is relatively more informative, and two features are figured out due to promising prediction performance (area
under the curve, 0:84 ± 0:06; accuracy, 0:85 ± 0:06; sensitivity, 0:88 ± 0:07; and specificity, 0:80 ± 0:12). This study provides
insight into machine learning-based identification of NTM lung diseases from PTB, and more importantly, it makes early and
quick diagnosis of NTM lung diseases possible that can facilitate lung disease management and treatment planning.

1. Introduction

Nontuberculous mycobacteria (NTM) is a major cause of
morbidity and mortality in progressive lung diseases; unfor-
tunately, an increasing number of patients with NTM lung
disease (NTM-LD) are witnessed worldwide [1, 2]. As the
etiologic agents, NTM have been found in a variety of envi-
ronmental sources, and the clinical relevance of NTM-LD
indicates the geographical heterogeneity in distribution
and pathogenicity [3, 4]. Due to similar manifestations, it
is difficult to recognize the lung infection caused by NTM
or by pulmonary tuberculosis (PTB) for early diagnosis
[5–9]. In clinic, as the first choice, microscopic examination
of sputum smear for acid-fast bacillus (AFB) is used to
screen mycobacterial lung infections; however, the presence
of pulmonary mycobacterial infection could also be traced

by AFB-positive [10–13]. Besides elaborate safety precau-
tions, a definite diagnosis of NTM based on bacterial cul-
ture and strain identification lasts for about two months
each time [6, 14]. Once being suspected of PTB with posi-
tive sputum AFB, a patient will take empirical anti-TB
medicine for treatment when the test is ongoing to identify
the bacteria. That means a part of patients receive poten-
tially unnecessary treatment. It might cause the patients
the risk of drug adverse reaction and thus nonessential
healthcare cost [14]. Therefore, early diagnosis of NTM-
LD can improve patients’ life quality and facilitate disease
treatment, and in particular, it benefits developing countries
with resource-poor healthcare systems [1–3].

One challenging task is to differentiate NTM-LD from
PTB lung disease (PTB-LD). Clinical manifestations are first
considered, such as chronic cough, sputum production, and
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appetite loss. Moreover, clinical and radiographic character-
istics are investigated, such as age, history of smoking, and
previous TB treatment, since these characteristics are more
frequently found in patients with NTM-LD than those with
PTB-LD. However, considerable overlaps exist in classic
manifestations, clinical characteristics, and radiographic
features, making the diagnosis subjective and unstable
[7–10, 14–19]. According to the radiographic features of
cavities and bronchiectasis, NTM-LD can be generally
classified into two distinct subtypes. One is characterized
by cavities with areas of increased opacity and usually
located in the upper lobes, and the other is by bronchiectasis
and bronchiolar nodules which are predominant in the mid-
dle lobe and/or lingual. In comparison to PTB-LD patients
with cavities or bronchiectasis, CT findings indicate that
radiographic changes of NTM-LD could lead to subtle differ-
ences, such as thin-walled cavities and less bronchogenic but
more contiguous spread of disease [14, 16, 17]. However,
these observed differences are qualitative or subtle, which
are not sufficient or discriminative to differ the NTM-LD
from PTB-LD patients.

Some studies have explored machine learning methods
for PTB screening. An artificial neural network (ANN) was
used for the prediction of PTB infection [20]. The study
examined blood samples of 115 PTB-LD patients and 60
normal subjects. Based on 39 features, the accuracy of two-
hidden-layered ANN was up to 93.93%. An approach incor-
porating a fuzzy logic controller and an artificial immune
recognition system was proposed [21] which utilized 20 fea-
tures to represent each of 175 data samples and resulted in
high accuracy, sensitivity, and specificity. A convolutional
neural network (CNN) was designed for PTB examination
[22]. The network enabled an end-to-end training from
images to labels and required no objective-specific manual
feature engineering. Its classification performance was larger
than 0.85 (AUC (area under the curve)) on three real data
sets [22]. Transferred learning, deep network, data augmen-
tation, and radiologist involvement were considered, and
high performance of PTB diagnosis was achieved [23]. These
machine learning approaches are advancing the techniques
for PTB-LD diagnosis [24].

The present study explores to build a machine learning
model for the differentiation of NTM-LD and PTB-LD by
using CT images. To the best of our knowledge, there are
no machine learning models available to this challenging
task. The contribution of this study is manifold. First, a
machine learning approach is designed. It involves 116
patients, and to each patient case, 103 quantitative features
are analyzed. Second, the effectiveness of different regions
(cavities, bronchiectasis, and their combination) is investi-
gated. Third, experimental results indicate that bronchiecta-
sis is more informative, and two discriminative features are
figured out. In addition, a simple and interpretable machine
learning model is built which achieves promising classifica-
tion performance. This study provides insight into machine
learning-based differentiation of NTM-LD and PTB-LD
patients, and most importantly, it provides some feasible
clues on the early and quick diagnosis of lung diseases,
benefiting disease management and treatment planning.

2. Material and Methods

2.1. Data Collection. From January 2019 to January 2020, a
total of 1291 AFB smear-positive sputum specimens of previ-
ously untreated cases were retrospectively retrieved in Tian-
jin Haihe Hospital, Tianjin University, China. The sputum
test is required to be conducted at least twice to show varying
degrees of AFB smear positive. After being cultured and
strain-identified, the smear-positive sputum was tested. The
test result verified that 287 specimens were NTM, and 1004
were PTB. Details of PTB and NTM diagnosis are as follows.
In order to find the mycobacteria in a tissue section, an AFB
stain is done for all sputum samples. Based on PCR assays, a
TB polymerase chain reaction (PCR) was performed with in-
house IS6110. Mycobacterium culture was carried out using
Löwenstein-Jensen Medium. Specifically, PTB diagnosis was
in accordance with mycobacteria culture results and guide-
lines from the Chinese Medical Association, and NTM was
based on mycobacterial culture results and guidelines of
the American Thoracic Society (ATS) [25].

The chosen patients were with reliable CT imaging data,
and CT scan images were reviewed independently by three
experienced radiologists (XZH, WL, and ZS) who were blind
to patients’microbiology results. With regard to the chest CT
findings, the final decisions were determined by consensus.
As shown in Figure 1, after an independent review of CT
images, 116 cases (57M. tuberculosis and 59 NTM) with lung
cavities and/or with bronchiectasis were identified for retro-
spective analysis.

In addition, clinical characteristics of patients in both
groups are shown in Table 1. It indicates that most patients
show similar symptoms, including cough, sputum produc-
tion, and fever. It is also found that some patients are
smokers and some are with diabetes mellitus. Most impor-
tantly, no significant difference in symptoms is found
between the two groups of patients.

2.2. CT Image Acquisition. All chest CT examinations were
performed within 3 months of the AFB smear test by using
a helical CT scanner (Aquilion Prime 128, Canon Medical
Systems, Otawara, Japan). Patients were scanned from the
lung apices to the adrenal glands during full inspiration,
and the procedure was repeated during full expiration. The
CT scanning parameters were as follows: 64 × 0:5mm colli-
mation, 120 kV automatic tube current modulation, and
0.5 s gantry rotation time. Contiguous inspiratory CT images
were obtained with a thickness of 5.0mm, at 5.0mm inter-
vals. Images were exported in DICOM format and forwarded
to observers. In addition, CT scans were interpreted at win-
dow settings that were optimal for lung parenchyma (recon-
struction kernel, FC 52; window level, -600HU; window
width, 1500HU) and soft tissue (reconstruction kernel, FC
30; window level, 400HU; window width, 40HU).

2.3. Label Annotation. Both cavitary and bronchiectasis are
labeled by using the software 3D Slicer (version 3.10.2,
http://www.slicer.org/). Seven radiologists participated in
this task. To ensure the accuracy, six radiologists (1 to 3
years’ experience) were trained in a trial-and-error manner.
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Furthermore, to ensure the consistency, after training and
case annotation, a senior radiologist with 10 years’ experience
performed the label verification without clinical information.
Meanwhile, the senior radiologist performed as a supervisor
and summarized the errors and cautions in label annotation
and further gave the junior radiologists a second chance to
rectify their errors. As shown in Figure 2, the whole proce-
dure involves 2-round training, 2-round case labeling, 2-
round modification, 2-round summarization, and 3-round
verification until the labels can be used for the follow-up
analysis.

Figure 3 shows representative examples of cavity (red)
and bronchiectasis (yellow) from NTM-LD and PTB-LD
patients. In CT images, both cavity and bronchiectasis are
well-defined [26]. A cavity is a gas-filled space which is seen
as a lucency or low-attenuation area, within pulmonary con-
solidation, a mass, or a nodule, and notably, no content is in a
cavity. A thin-walled purification cavity is with a basically
uniform wall thickness less than 3mm and a thick-walled
purification cavity is with a substantially uniform wall thick-
ness greater than or equal to 3mm, while a wall-less cavity is

a gas density stove with no walls and smooth inner edges and
located in the consolidated lung tissue. In addition, cavitary is
a cavity that can be clearly imaged on the basis of consolida-
tion. Whether a thick or thin wall, it is always marked as a
cavity, and the outer wall of the lesion edge is the boundary
mark. Morphological criteria of bronchiectasis consider
bronchial dilatation with respect to accompanying pulmo-
nary artery (signet ring sign), lack of tapering of bronchi,
and identification of bronchi within 1 cm of the pleural
surface. There are three types of labeling for bronchiectasis:
(1) saccular: the inner diameter of the bronchus greater than
1.5 times the diameter of the accompanying artery. (2)
Columnar: dilated bronchi with the same proximal and distal
ends of the bronchi, longer than 2 cm. (3) Varicose veins:
dilated bronchus with an uneven wall and tortuous course.
The inner wall was marked as the boundary.

2.4. Feature Extraction. The open-source package Pyradio-
mics (https://pyradiomics.readthedocs.io) was used in this
study, and 103 features were extracted regarding annotated
bronchiectasis and cavity in original-resolution CT images.

From Jan. 2019 to Jan. 2020, a total of 1291 AFB smear-positive sputum
specimens were picked up from untreated cases in Tianjin Haihe Hospital

287 NTM-LD

276 NTM-LD11 cases with pulmonary edema

9 cases with interstitial LD

208 cases with no cavity nor
bronchiectasis on CT images

267 NTM-LD

59 NTM-LD

1004 PTB-LD

583 PTB-LD

577 PTB-LD

559 PTB-LD

57 PTB-LD

421 cases with different scanner

6 cases with pulmonary edema

18 cases with interstitial LD

502 cases without cavity or
bronchiectasis on CT images

Figure 1: The procedure of data collection. After review of CT images, 116 cases remain for analysis.

Table 1: Clinical characteristics of patients.

NTM-LD (n = 59) PTB-LD (n = 57) Chi-squared test p value

Cough 27 (45.76%) 36 (63.16%) 3.535 0.060

Sputum production 25 (42.37%) 31 (54.39%) 1.676 0.196

Fever 17 (28.81%) 20 (35.09%) 0.525 0.469

Chest pain 3 (5.08%) 8 (14.04%) 2.706 0.100

Hemoptysis 7 (11.86%) 7 (12.28%) 0.005 0.945

Fatigue 4 (6.78%) 1 (1.75%) 0.766 0.382

Emaciation 4 (6.78%) 2 (3.51%) 0.141 0.707

Shortness of breath 1 (1.69%) 4 (7.02%) 0.910 0.340

Smoker 15 (25.42%) 14 (24.56%) 0.011 0.915

Diabetes mellitus 9 (15.25%) 8 (14.04%) 0.034 0.853

COPD 5 (8.47%) 5 (8.77%) 0.000 1.000

COPD stands for chronic obstructive pulmonary disease; p < 0:05 indicates significant difference.
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The features consist of 14 shape features, 21 first-order fea-
tures, 22 Gray-Level Cooccurrence Matrix (GLCM) features,
16 Gray-Level Run Length Matrix (GLRLM) features, 16
Gray-Level Size Zone Matrix (GLSZM) features, and 14
Gray-Level Differential Matrix (GLDM) features. These fea-
tures have been widely used for data representation and dis-
ease diagnosis [27, 28].

2.5. A Machine Learning Approach. A simple and interpret-
able machine learning approach is desirable. Given the data,
to simplify the retrieval of informative features, Gini impor-
tance is used to measure the feature importance, since it
defines dependence and independence of variables [29]. Fur-
ther, to reduce the computation burden, several important
features are considered in the follow-up analysis. Due to lim-
ited patient cases, to retrieve a few discriminative features is
reasonable. At last, for good interpretability, linear SVM
[30] performs the differentiation of the NTM-LD and the
PTB-LD patients.

Figure 4 shows the flow chart which attempts to build a
machine learning approach for interpretable diagnosis. The
dashed lines indicate offline feature ranking. Features are
sorted in terms of Gini importance. Assuming k features
are extracted from each data sample, a resultant vector <f1,
f2,⋯, f k > stands for the indexes of the most to the least
important features (1). Then, i top most important features
are kept (2), and all combinations of feature subsets using 2
or 3 features are provided (3).

Potential feature subsets are prepared, and the optimal
one is selected by comparing classification performance as
shown in solid lines in Figure 4. For instance, if a subset of
features is selected, the patient cases were randomly grouped
into the training and the testing set (4). Using the training set,
the parameters of the linear SVM classifier are experimen-

tally determined (5). Once the model is trained, the testing
set is fed into the model (6), and the performance is evaluated
with classification metrics (7).

2.6. Experiment Design. Four experiments are conducted, and
three are shown in Table 2. For each experiment, the number
of patient cases, sex, and ages are reported. The first (TA), the
second (TB), and the third (TC), respectively, use the cavity,
the bronchiectasis, and both for retrieving the most discrim-
inative features in an automated fashion. It should be noted
that the fourth experiment is used to verify the effectiveness
of the combination of retrieved features from TA and TB
for disease classification.

With regard to each experiment, a total of 100 times of
data splitting are conducted at random, and nearly 80% of
cases are portioned into the training set and the rest into
the testing set. After each time of data splitting, all feature
subsets are used one by one for machine learning-based dis-
ease classification.

2.7. Performance Evaluation and Statistical Analysis. Four
metrics are used to evaluate the classification performance,
and they are the area under the curve (AUC), accuracy
(ACC), sensitivity (SEN), and specificity (SPE). To figure
out the best performance, i.e., the subset with the most dis-
criminative features, statistical analyses were conducted
using SPSS 17.0 software for Windows (SPSS Inc., Chicago,
IL, USA), and performance metrics were compared by a
paired t-test.

3. Results

3.1. Gini Importance-Based Feature Importance Ranking.
Table 3 lists the top 10 most important features with regard
to different forms used for lung disease analysis. The indexes
of features that are derived from intensity statistics, shape
representation, and texture analysis are, respectively,
highlighted in italic, bold, and underline. Analysis of the
cavitary form identifies 6 intensity statistics features and 4
texture analysis features, and analysis of the bronchiectatic
form figures out 4 shape representation features and 6 texture
analysis features, while analysis of the combined form
indicates that all features are from the bronchiectatic form
(feature indexes larger than 103), including one intensity sta-
tistics feature, three shape representation features, and six
texture analysis features.

3.2. Cavity-Based Lung Disease Differentiation. Based on the
cavity analysis and automated retrieval of discriminative fea-
tures, three subsets achieving superior performance are listed
in Table 4. It shows that the subset using the 22nd and the 99th

features (in bold) obtains the best or competitive result in
terms of four metrics, while no significant difference is found
(p value > 0.23). The 30th feature is also recognized as impor-
tant; however, no improvement is observed in disease classi-
fication. As to the discriminative features, one (the 22nd)
quantifies the intensity distribution, and the other (the 99th)
shows the texture analysis of the cavity.

Modification
(1st round)

Modification
(2nd round)

Summarization
(1st round)

Summarization
(2nd round)

 Verification
(1st round)

 Verification
(3rd round)

 Verification
(2nd round)

 Case labeling
(1st round)

Label training
(1st round)

Label training
(2nd round)

Benchmarks

Figure 2: The procedure of cavitary and bronchiectasis annotation.
Seven radiologists participated in this task. Six radiologists were
trained in a trial-and-error manner (training, labeling, and
modification), and one senior radiologist helped the verification,
summarization, and training of the six radiologists.
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3.3. Bronchiectasis-Based Lung Disease Differentiation.
Table 5 shows three subsets of features that lead to superior
performance with regard to analyzing bronchiectasis. It

suggests that the subset consisting of the 13th and the 87th

features results in the best performance in terms of AUC
and SPE, and the competitive performance in terms of
ACC and SEN. It is worth noting that there is no significant
difference of each performance metric between any two fea-
ture subsets (p value > 0.37). Moreover, the 48th and the 6th

features are identified for their importance in disease differ-
entiation, and adding one of them causes no enhancement.
In the subset of discriminative features, one (the 13th) aims
for shape representation, and the other (the 87th) analyzes
tissue textures.

(a) NTM-LD cavity (b) PTB-LD cavity

(c) NTM-LD bronchiectasis (d) PTB-LD bronchiectasis

Figure 3: Representative examples of annotated cavity and bronchiectasis. Thick-walled, thin-walled, and wall-less cavities are marked as a
cavity, and the outer wall of the lesion edge is the boundary mark, while bronchiectasis annotation should concern bronchial dilatation with
respect to different factors.

NTM : PTB

(4)

(1)

(2)

<f1, f2, ..., fi>

<f1, f2, ..., ..., fk>

(3)

(5)

(4)

(5)

(5)
(7)

(6)

Metrics

Linear SVM

{[1,2]; [1, 3]; ...; [i-1, i]};
{[1,2,3]; [1, 2, 4]; ...; [i-2, i-1, i]};

NTM (train) : PTB (train) NTM (test) : PTB (test)

Figure 4: The framework for machine learning-based differentiation of NTM-LD and PTB-LD patients. The dashed lines indicate offline
processing, and the solid ones stand for the retrieval of discriminative features for accurate disease diagnosis.

Table 2: The number of patient cases, sex, and age in experiment
design.

NTM (male/female/age) PTB (male/female/age)

TA 44 (28/16/60 ± 15) 54 (40/14/48 ± 18)
TB 45 (28/17/62 ± 15) 54 (41/13/49 ± 17)
TC (TA∩TB) 32 (21/11/64 ± 12) 46 (34/12/49 ± 18)
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3.4. Combined Form for Lung Disease Differentiation. Based
on both the cavity and the bronchiectasis, the subsets of fea-
tures with good performance are presented in Table 6. The
subset including the 190th and the 152nd features leads to
the overall best performance in terms of three metrics
(AUC, ACC, and SEN), and no significant difference is
observed between the performance derived from each of the
three subsets (p value > 0.52). Moreover, the 151st feature is
figured out for its importance in disease classification, while
again, no improvement is found. In addition, both discrimi-
native features are from texture analysis.

3.5. Performance Comparison. Table 7 shows the perfor-
mance of lung disease differentiation with regard to different
regions (TA: cavity; TB: bronchiectasis; TC: combined analy-
sis by using automated feature selection; TD: combined anal-
ysis by using retrieved features from TA and TB). It

demonstrates that the subset of retrieved features from the
bronchiectasis (TB) is the most discriminative in comparison
to each of the other retrieved features. It also indicates that
combining feature subsets (TD) does not improve the differ-
entiation performance, and on the contrary, a slight decrease
is observed from each metric. In particular, it is found that
the subset of features retrieved from the cavity results in infe-
rior performance with AUC 0.70 on average.

Error-bar plots in Figure 5 show the performance of lung
disease differentiation by analyzing different regions. In gen-
eral, using bronchiectasis (TB) achieves the highest AUC,
ACC, and SEN and the second best SPE; using combined
subsets of features (TD) obtains comparative performance,
while using the cavity (TA) produces the worst performance
in lung disease differentiation.

ROC curves are shown in Figure 6. Different colors corre-
spond to different methods. The bronchiectasis (TB, red)
results in the best performance (AUC 0.86), followed by both
regions with combined features (TD, green) with AUC 0.82
and both regions using automated feature selection (TC,
blue) with AUC 0.81, and the worst is the cavitary form
(TA, pink) with AUC 0.73.

4. Discussion

The increasing prevalence of NTM-LD is observed world-
wide. Bacterial culture and strain identification remain the
unique way to identify NTM, while the procedure takes a
long time. Early and quick diagnosis of NTM-LD is urgently
important yet challenging. Massive studies investigate the
manifestations, clinical characteristics, radiographic findings,
and clinical relevance. However, due to considerable overlap
of symptoms and subtle difference in CT images, these find-
ings are not sufficient to differentiate NTM-LD from PTB-
LD patient cases. This study is the first work that explores
machine learning to identify the NTM-LD patients from
the PTB-LD ones, and in CT images, both the cavity and
the bronchiectasis regions are delineated for quantitative
analysis. Experimental results suggest that the proposed
machine learning model achieves promising performance
when two features are used to represent the bronchiectasis.

Quantified bronchiectasis plays an important role in the
machine learning model for the differentiation between
NTM-LD and PTB-LD cases. It enables high performance
(AUC, 0:84 ± 0:06; ACC, 0:85 ± 0:06; SEN, 0:88 ± 0:07; and
SPE, 0:80 ± 0:12) which is obviously higher than those corre-
sponding metrics from the quantified cavity (AUC, 0:70 ±
0:07; ACC, 0:71 ± 0:06; SEN, 0:72 ± 0:09; and SPE, 0:68 ±
0:14). Its performance is slightly superior or competitive to
that using both cavity and nodular bronchiectasis. Predomi-
nance of cavities and bronchiectasis is observed in

Table 3: Ten most important features via Gini importance-based feature ranking.

Form Ranked index of features from the most to less important ones

Cavitary form 2 23 80 35 95 60 99 22 30 25

Bronchiectatic form 13 49 58 94 87 7 48 11 67 6

Combined form 123 190 116 152 109 161 197 170 114 151

Table 4: Cavity-based LD differentiation.

Feature subsets AUC ACC SEN SPE

[99, 22] 0:70 ± 0:07 0:71 ± 0:06 0:72 ± 0:09 0:68 ± 0:14
[99, 30] 0:70 ± 0:08 0:70 ± 0:08 0:70 ± 0:10 0:66 ± 0:15
[22, 99, 30] 0:69 ± 0:07 0:70 ± 0:07 0:72 ± 0:09 0:68 ± 0:11
#The 22nd feature, original_firstorder_interquartilerange; the 30th feature,
original_firstorder_robustmeanabsolutedeviation; the 99th feature,
original_gldm_largedependencelowgraylevelemphasis.

Table 5: Bronchiectatic form-based differentiation of lung diseases.

Feature subsets AUC ACC SEN SPE

[13, 87] 0:84 ± 0:06 0:85 ± 0:06 0:88 ± 0:07 0:80 ± 0:12
[13, 87, 48] 0:82 ± 0:07 0:84 ± 0:07 0:89 ± 0:09 0:74 ± 0:13
[13, 87, 6] 0:83 ± 0:07 0:85 ± 0:07 0:89 ± 0:09 0:76 ± 0:10
#The 6th feature, original_shape_leastaxislength; the 13th feature, original_
shape_minoraxislength; the 48th feature, original_glcm_Imc1; the 87th

feature, original_glszm_zoneentropy.

Table 6: Disease differentiation using both the cavity and the
bronchiectasis.

Feature subsets AUC ACC SEN SPE

[190, 152] 0:82 ± 0:08 0:78 ± 0:08 0:76 ± 0:11 0:88 ± 0:13
[190, 116, 152] 0:81 ± 0:10 0:75 ± 0:09 0:75 ± 0:06 0:89 ± 0:16
[190, 116, 151] 0:82 ± 0:10 0:77 ± 0:06 0:75 ± 0:06 0:86 ± 0:15
#The 116th feature, original_shape_minoraxislength; the 151st feature,
original_glcm_Imc1; the 152nd feature, original_glcm_Imc2; the 190th

feature, original_glszm_zoneentropy.
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radiographic findings of NTM-LD cases. One study indicated
that of the 19 patients evaluated, 84.2% cases were with bron-
chiectasis, and 73.7% were with cavities [31]. One study with
34 patients figured out that nodular lesions (100%) and bron-
chiectasis (85.29%) were the most frequent CT features of
Mycobacterium simiae pulmonary infection [32]. A meta-
analysis study reported that 9.3% of NTM-LD patients were
with bronchiectasis [33]. A comparison of CT findings
between NTM-LD and PTB-LD has also been considered.
A study analyzed 95 CT scans from 159 patients with AFB
smear-positive sputum (75 scans from PTB-LD patients
and 20 scans from NTM-LD patients) and claimed that the
presence of bronchiectasis changes in CT scans was strongly
associated with patients with NTM-LD [16]. A study investi-
gated a total of 4167 untreated cases with AFB smear-positive
sputum (124 cases were with NTM-LD, and 210 cases with
PTB-LD were randomly selected from the remaining cases),
and bronchiectasis and thin-walled cavity were identified
independent predictors for NTM-LD diagnosis via multivar-
iate analysis [14]. A cavity analysis study (128 NTM-LD and

128 PTB-LD patients with matched age and gender) discov-
ered that the major cavities in NTM disease generally have
thinner and more even walls than those in PTB cases [17].
Thus, to investigate cavity and bronchiectasis in CT images
for lung disease differentiation is reasonable. Most impor-
tantly, the current study points out that the quantified bron-
chiectasis seems more informative than the cavity in differing
the NTM-LD from PTB-LD cases.

The machine learning model is well built, and it is simple
and interpretable. It makes use of two quantitative features
for the representation of bronchiectasis in CT images. In
the original images, one feature describes the minor (sec-
ond-largest) axis length of shape, and the other is the zone
entropy of GLSZM texture which describes the randomness
in the distribution of zone sizes and gray levels. Interestingly,
both features have been reported in related clinical studies.
For instance, the minor axis length of shape is important in
the detection of clinically significant prostate cancer in multi-
parametric MR images [34], and the zone entropy of GLSZM
reflects the areas with different gray intensities within the

Table 7: LD differentiation using selected features with regard to different regions.

Retrieved features AUC ACC SEN SPE

TA [99, 22] 0:70 ± 0:07 0:71 ± 0:06 0:72 ± 0:09 0:68 ± 0:14
TB [13, 87] 0:84 ± 0:06 0:85 ± 0:06 0:88 ± 0:07 0:80 ± 0:12
TC [190, 152] 0:82 ± 0:08 0:78 ± 0:08 0:76 ± 0:11 0:88 ± 0:13
TD [99, 22]+[13, 87] 0:81 ± 0:09 0:83 ± 0:07 0:85 ± 0:08 0:78 ± 0:18
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Figure 5: The performance of disease differentiation via analyzing different regions (TA, cavity; TB, bronchiectasis; TC, combined analysis
using automated feature selection; TD, combined analysis using retrieved features from TA and TB). It shows that using bronchiectasis (TB)
achieves overall best performance.
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nodules for lung cancer detection [35]. However, it should be
noted that both features cannot be perceived directly, and
thus, accurate segmentation of the bronchiectasis regions
becomes indispensable. Moreover, the model utilizes an
interpretable classifier of linear SVM, which is widely used
in knowledge discovery. It is worth noting that SVM with a
nonlinear kernel could map data samples into high-
dimension space, and the classification performance might
be further improved. In addition, this simple model supports
good generalization and evolving, and it can avoid the curse
of dimensionality in high-throughput feature analysis.

There are several limitations to the current study. First,
the number of patient cases should be increased, and a
multi-institution study would be better, as it can make the
results more convincing, generalizable, and applicable.
Therefore, our future work will focus on data collection
and multicenter collaboration. Second, advanced techniques
[23, 24, 27, 28] could be used to improve the diagnosis per-
formance, and the hybrid techniques [36–38] that integrate
manifestations and clinical and radiographic features are
feasible. Third, automated annotation and quantification of
bronchiectasis and cavity are also appealing. For instance,
the thickness of cavity walls is helpful, since cavity walls of
NTM-LD patients are found significantly thinner and more
even than those of PTB-LD [17]. However, it requires
advanced algorithms for accurate and objective quantifica-
tion. In the end, this study involves a single hospital and a
limited number of cases. For further verification of our find-
ings, a large-scale experiment should be conducted.

5. Conclusion

The increasing incidence and prevalence of NTM-LD have
become a major public health problem. This study explores
a machine learning approach, and both bronchiectasis and
cavity are delineated for differing NTM-LD patients from

PTB-LD patients. Bronchiectasis is found more informative,
and two quantitative features are identified discriminative
for disease differentiation. The built machine learning model
makes early and quick diagnosis of NTM-LD possible, and it
could further facilitate disease management and treatment
planning and improve patients’ life quality.
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