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Abstract

“Radiomics”, as it refers to the extraction and analysis of large number of advanced quantitative 

radiological features from medical images using high throughput methods, is perfectly suited as an 

engine of effectively sifting through the multiple series of prostate images from before, during, and 

following radiotherapy (RT). Multiparametric (mp) MRI, planning CT and cone beam CT 

(CBCT), routinely acquired throughout the RT and radiomics pipeline, are developed for 

extraction of thousands of variables. Radiomics data are in a format that is amicable for building 

descriptive and predictive models relating image features to diagnostic, prognostic or predictive 

information. The prediction of Gleason Score, the histop cancer grade, has been the mainstay of 

the radiomic efforts in prostate cancer. While Gleason Score (GS) is still the best predictor for 

treatment outcome, there are other novel applications of quantitative imaging that are tailored to 

RT. In this review, we summarize the radiomics efforts and discuss several promising concepts 

such as delta-radiomics and radiogenomics for utilizing image features for assessment of the 

aggressiveness of prostate cancer and its outcome. We also discuss opportunities for quantitative 

imaging with the advance of the instrumentation of MRI-guided therapies.
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1. INTRODUCTION

Contemporary radiation treatment (RT) of prostate cancer is associated with large-scale 

image acquisition. Multi-parametric magnetic resonance imaging (mpMRI), computed 

tomography (CT), cone beam CT (CBCT) are acquired at multiple steps of the course of RT, 

starting from patient diagnosis, treatment planning, delivery and follow-up. The sheer 

amount of data requires automated ways for extraction of quantitative imaging features and 

analysis for informing clinical decisions. Radiomics, as it refers to the extraction and 
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analysis of advanced quantitative information, converts imaging data into a high dimensional 

mineable feature space using a large number of automatically extracted data-characterization 

algorithms.1 The main hypothesis behind the radiomics effort is that the imaging features 

capture distinct phenotypic differences of the tumors and may have diagnostic, prognostic, 

and predictive power.2 Among the chief questions in the treatment of the prostate cancer are 

the choice of the RT fractionation schedule (hypo- or conventional fractionation) and the 

use, timing and duration of androgen deprivation therapy (ADT). Depending on the risk 

category, a considerable number of patients treated with RT present biochemical failure 

suggesting that additional strategies are needed for defining and treating patients based on 

improved risk stratification.

mpMRI has emerged as a major tool for prostate cancer detection and risk stratification.3,4 

An mpMRI exam is incorporated at all stages of the disease management, including 

screening, improving diagnostic accuracy, risk stratification, guiding treatment and post-

treatment evaluation. The evaluation of the multiple sequences in the mpMRI is not trivial 

and there is large variability among radiologists in their detection of clinically significant 

prostate cancer.5 To standardize the evaluation and reporting of mpMRI, the European 

Society of Urogenital Radiology (ESUR) published guidelines based on expert consensus in 

2012, termed PI-RADS.6 This reporting system utilizes a 1–5 score for each mpMRI 

sequence (T2-weighted (T2w) MRI, Dynamic Contrast Enhanced (DCE-MRI) and Diffusion 

Weighted Imaging (DWI)) and provides an overall score to each region of interest (ROI), 

with higher scores relating to a higher risk of aggressive cancer. For the relatively short time 

of its existence, the system has undergone several modifications (PI-RADS (v2)7 and PI-

RADS(v2.1)8) and admittedly, there is still significant inter-reader variability related to 

reader’s experience.9 PI-RADS was not designed for 3D tumor volume delineation and with 

respect to RT, PI-RADS has limited application in defining volumes (Gross Tumor Volume 

(s) (GTV(s)) for radiotherapy boost. Furthermore, the system is not defined for “irradiated” 

prostate and there is lack of quantitative assessment of imaging post-RT. Finally, the five-

score system does not tap into the wealth of quantitative imaging information contained in 

the multiple sequences of mpMRI, nor does it elucidate inter- and intra-lesional spatial 

heterogeneity of prostate cancer. In contrast, the radiomics approach extracts large amounts 

of advanced quantitative mpMRI features in a format that is amicable for building 

descriptive and predictive models relating image features to gene-protein signatures or 

radiotherapy outcomes.10

The most widely used imaging modality in radiation oncology is CT, which assesses tissue 

density. In RT, the CT Hounsfield units are calibrated to electron density that allow for 

precise dose calculation. Consequently, CT images are of key use in RT planning. The 

radiomics features from CT also can have diagnostic and predictive power.11,12 CBCT 

images are commonly used to check patient alignment prior to receiving treatment dose and 

important quantitative imaging information can be extracted from them.13–15

In this review, we discuss the impact of the radiomics efforts in RT of prostate cancer. First, 

the two main imaging modalities for prostate imaging, mpMRI and CT, are described. Then, 

the individual elements of the radiomics pipeline as tailored for RT are reviewed. The 

developments in prostate cancer radiomics for assessment of the aggressiveness of prostate 
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cancer are summarized. Finally, we review promising applications of radiogenomics, delta-

radiomics, and the opportunities for serial image analysis from MRI-guided radiotherapy 

(MRIgRT) for prognostic assessment and treatment management.

2 IMAGING MODALITIES FOR PROSTATE CANCER RT

2.1 Multiparametric MRI of the prostate

With its superior soft tissue contrast over x-ray based imaging methods, mpMRI has become 

routinely used in the radiation oncology clinical workflow for pre-treatment planning and 

follow-up assessment.16 Diagnostic MRI scanners can utilize functional MRI methods that 

are sensitive to tumor biology, which are increasingly employed for tumor detection and 

delineation.17 mpMRI combines functional (perfusion via DCE-MRI and diffusion via 

DWI)18–20 and anatomical information (T2w-MRI)21 that enhances diagnostic reliability. An 

Apparent Diffusion Coefficient (ADC) map is calculated on the MRI scanner’s console. In 

mpMRI, T2w provides clear delineation of prostatic zonal anatomy. DCE takes advantage of 

vascular differences between malignant lesions and surrounding prostatic tissue to facilitate 

target identification. ADC is associated with the density of diffusion barriers and exploits the 

higher cellular density and more complex intracellular microstructure in relative benign 

prostatic tissue to differentiate malignant lesions.

The correlation of radical prostatectomy histopathology with the mpMRI’s sequences is 

illustrated in Figure 1. There is no other imaging modality that has demonstrated the same 

sensitivity and specificity for distinguishing intraprostatic cancer of higher grade (Gleason 

Score (GS) 7 or above).22,23

There is a burgeoning literature on the use of external beam radiotherapy to treat the 

dominant intraprostatic lesion (DIL) mpMRI directed RT,24–26 including favorable 

preliminary toxicity results from the FLAME, a randomized clinical trial.27 For effective 

treatment, the areas of most aggressive disease need consistent and objective identification in 

3D. Prostate cancer exhibits spatio-temporal heterogeneity that can confound imaging 

interpretation and selection of boost volume. Over 70% of prostate cancers are multi-focal,28 

and neither large volume, nor multifocality are necessarily inherent features of 

aggressiveness.29 Therefore, targeting dominant nodules can still miss the most aggressive 

disease, causing misinformed treatment decisions.30

Tumor heterogeneity can be elucidated by mapping sub-regions of the lesion with 

differential imaging characteristics, called habitats.31–33 Delineating tumor habitats in vivo 
is important for determining prognosis and providing effective treatment. Simply detecting 

tumors may not be enough; the full degree of tissue heterogeneity must also be understood.

We proposed the prostate tumor habitat risk scoring (HRS) system that scores the voxels in 

the prostate by level of aggressiveness.34 HRS is using referenced DCE sequences and ADC 

maps to generate a 10-point heat map for automatic delineation of GTVs. First, a 

quantitative DCE-MRI analysis, based on unsupervised pattern recognition35 assigns to each 

pixel a score, related to aggressiveness.36 The algorithm uses a normalization of the tumor’s 

DCE signal to muscle (Gluteus Maximus).35 Second, a quantitative ADC score is also 
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assigned to each pixel, based on identified optimal Apparent Diffusion Coefficient (ADC) 

thresholds for automatic delineation and risk assignment of prostatic lesions.37 The 

quantitative DCE and ADC analyses were combined and optimized by referencing to 

prostatectomy GSs and lesion volumes. The HRS contours are implemented in the radiomics 

pipeline (Figure 2) and migrated to the planning CT for boost volume generation. The 

details for HRS construction and implementation an imaging analysis platform, MIM (MIM 

software, Cleveland, OH) are given in Stoyanova et al.34

2.2 CT of the prostate

CT images are widely used in RT for dose calculation using the CT Hounsfield units. MRI 

units are not directly related to electron density and although attempts have been made to 

generate dose calculations from MRI by generating synthetic CT images,38–41 CT continues 

to be the standard modality for RT dose calculation. CT depicts in 3D the patient anatomy 

and CT-based radiomics models have been extensively used in lung, for example.42 

Recently, the modality is used to extract radiomic features in prostate cancer.

3. RADIOMICS PIPELINE OF PROSTATE CANCER RT

The steps in the radiomic pipeline for RT of prostate cancer are shown in Figure 2 and 

discussed in detail in our previous reviews.32,43 The radiomic process starts with image 

acquisition as discussed above. For illustration, the input images from the same patient: 

mpMRI, CT, and CBCT are displayed. For mpMRI, the T2w, DWI at high b-value (1000 

s/mm2), ADC and the early enhancing image in the DCE-MRI are shown.

The segmentation of volumes of interest (VOI) is a key process because it specifies the 

region which radiomic data will be extracted. In the prostate, the transition zone (TZ) and 

peripheral zone (PZ) are segmented, because the zones have different imaging characteristics 

in mpMRI and are often analyzed separately (Figure 2, second panel). Automated or 

partially automated delineations for the prostate and its zone are being explored in current 

research.44,45 Further, the heat map of the HRS, depicting the pixels with HRS ≥ 6 is 

displayed. The area of the tumor is clearly depicted and further delignated by the contour of 

HRS6. The volume, defined by pixels with HRS = 6 was in good agreement with radical 

prostatectomy lesion volumes34 and we chose HRS = 6 to serve both as VOI for extraction 

of radiomics variables as well as for automatic segmentation of volumes for GTV for RT 

dose boost. Finally, the regions of normal appearing PZ and TZ (NAPZ, NATZ) are 

automatically determined by subtracting the HRS6 contour from PZ and TZ.

Radiomics feature extraction, which follows volumes segmentation, are discussed in detail 

in our previous work.43 In general, they can be categorized into: (i) morphological, (ii) 
semantic, (iii) statistical, and (iv) transform-based radiomic features. Briefly, morphological 

features describe the form and structure of the VOI, which can range from geometrical 

descriptions that are simple, such as volume, to metrics that are complicated, such as fractal 

dimensions.46–48 Semantic features are quantitative descriptors derived empirically by the 

radiologist when assessing mpMRI for improved detection, location, and risk stratification in 

patients with prostate cancer, such as those defined in PI-RADS.7 First order statistical 

features are related to the intensity histogram of the VOI, whereas higher order statistical 
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features are first encoded into different matrix types describing how collections of grey 

levels within the VOI relate to one another.49–52 Transform-based features are features 

extracted following a kernel transformation of the VOI, which includes but is not limited to 

the Fourier transform, Gabor transform, wavelet transform, Laplacian transforms of 

Gaussian bandpass filters.53–55 Of a note, HRS as a construct of ADC intensities and DCE-

curves can be considered a lower dimensional radiomics score.

Data integration and application in RT are the remaining steps in the radiomics pipeline, 

(Figure 2, fourth and fifth panel, respectively). Examples will be further explored in the 

remaining sections of the paper. Data integration refers to the practice of combining 

radiomics data with other available biomarkers. The hope is that assimilation of more 

biomarkers will result in models that are more complete. Many applications in RT of 

prostate may be possible including aiding and improving diagnostic establishment, patient-

individualized treatment, predictive accuracy, and prognostic accuracy.

4. OVERVIEW OF RADIOMICS EFFORTS FOR PROSTATE CANCER

The radiomics publications in prostate cancer are summarized in Table 1; this summary is 

updated from our 2016 and 2018 radiomics reviews.32,43 The publications are further 

presented in Figure 3 per year and per imaging modality from which the radiomic features 

were extracted. There is a sharp increase in the publications per year from 2017 to 2019. At 

the time of writing of this review, we are only partially through the year and the number of 

publications is already nearly equal to the previous year.

A variety of radiomics features are considered in assessing the prostate cancer 

aggressiveness. Figure 4 demonstrates that proportion of these publications according to the 

five categories of radiomics features discussed earlier. Often studies are not limited to a 

single category of radiomics features. Statistical features were used alone in 45% of these 

publications with 91% of them considering statistical radiomics features in some form. 

Consequently, statistical radiomics features are by far the most commonly used category.

The majority (86%) of the radiomics approaches used GS as an analysis endpoint. 

Comparison between the GS studies is not straightforward because a variety of thresholds 

are considered as an end-point. In some studies, GS is used in combination with another 

analysis endpoint. Varghese et al.56 and Osman et al.11 used GS in combination with tumor 

grade and PSA for risk stratification. Cuocolo et al.57 used GS in combination with max 

cancer core length an analysis endpoint. Algohary et al.58 used PI-RADS score and biopsy 

positivity as analysis endpoints. Shiradkar et al.59 and Bourbonne et al.60 used biochemical 

recurrence (BCR) as analysis endpoints.

MRI-based radiomic features were used in model building of 91% of studies that assessed 

tumor aggressiveness. As shown in Figure 3b, the most used imaging modality (68% of 

publications) was biparametric (bi)MRI (acquisition protocol that uses only T2w and DWI). 

bpMRI is becoming an attractive alternative to mpMRI because it is faster and cost-effective.
61 In addition, the benefit of DCE-MRI for prostate cancer characterization is still a matter 

of debate (in the current PI-RADSv2.18 the DCE sequence is used in only determination).
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Even though CT images are highly repeatable, only two CT-based radiomics studies of 

prostate cancer to date were found.11,12 Because of the availability of CTs in RT, we discuss 

these efforts in more details. Osman et al. found that classifiers developed from CT-based 

radiomics were well performing in distinguishing GS < 7 vs GS ≥7 (AUC = 0.90), GS 3+4 

vs 4+3 (AUC = 0.96), low vs high risk groups (0.96), and low vs intermediate risk group 

(AUC = 1.00) for their training set, but only modest performance with their validation data 

sets. The authors clarify that the modest performance of the validation data sets may be due 

to small number of patients and class imbalances in the validation data sets.11 Another study 

by Tanadini-Lang et al.12 evaluated radiomics features of CT perfusion and found classifiers 

that distinguished well between GS=7 and GS>7 (AUC = 0.81) and moderately between GS 

= 3+4 and GS = 4+3 (AUC = 0.77). No validation data set was included in Tanadini-Lang et 
al. These exploratory studies indicate possible areas of future research and prognostic 

potential using CT-based radiomics of prostate cancer.

The performance of the models is summarized in the last column of Table 1. The direct 

comparison between the different approaches is difficult because (i) the variety of the used 

models’ endpoints (Gleason Score (either from biopsy or prostatectomy), PSA, PIRADS, 

biochemical recurrence (BCR), etc.); and (ii) the variety of reported performance evaluation 

metrics - AUC, specificity, accuracy, etc.

5. THE PROMISE OF RADIOMICS FOR TREATMENT RESPONSE

Below we summarize novel concepts and efforts in the field with the emphasis of their 

utilization in RT of prostate cancer.

5.1. Delta-radiomics

Delta-radiomics refers to changes in radiomics features over time. Radiomics feature trends 

seen in longitudinal imaging studies over the course of therapy may add important clinical 

information such as treatment response prediction.62 A recently published work63 found that 

MRI-based delta-radiomics models of 33 prostate cancer patients had lower predictive 

performance than models using pre- or post-treatment MR images; however, that study 

utilized only two time points.

A recent analysis of 23 patients enrolled in the Phase I Trial of MRI-Guided Prostate Cancer 

Lattice Extreme Ablative Dose (LEAD) Boost Radiation Therapy at University of Miami64 

exploits one pre-treatment and three post-treatment MRIs to study radiation-induced 

changes in quantitative radiomics features. A schematic of the MR imaging workflow is 

shown in Figure 5. Prior to the treatment planning CT simulation, radio-opaque fiducial 

markers are placed in the prostate to enable on-board CBCT-based set up for subsequent 

radiation treatment. A Planning MRI, acquired at the same time as the CT simulation, 

facilitates fusion #3 of the Diagnostic mpMRI to the Planning CT via fusion #1 of the 

Diagnostic and Planning MRIs and fiducial-based fusion #2 of the Planning MRI and CT. 

The post-treatment MRIs at 3 and 9 months and the final pre-biopsy MRI at 2–2.5 years are 

fused (#4–6) to the pre-treatment MRIs. Radiomic features are thus readily extracted from 

regions of interest on MRIs over multiple timepoints before and after radiotherapy. Shown in 

Figure 6 are the extracted values of ADC and ve (relative volume of the extravascular 
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extracellular space) for the GTV, NATZ and NAPZ, pre- and post-RT. The increases in ADC 

and ve with RT are expected: viable tumor is characterized by an increased ‘cellularity’, or 

relatively large intracellular space. Since intracellular water diffusion is more restricted 

inside the cell than in the interstitial space, a loss in cellularity results in an increase in ADC, 

and of course the increase in interstitial space results in increased ve. It is interesting that 

there is a substantial and persistent increase in ve in the NATZ following RT. The 

pathophysiologic mechanism underlying this and other apparent trends in the data will be 

the subject of future work.

5.2. Cone Beam CT

Radiomics features from CBCT images may provide an opportunity to efficiently capture 

early tumor response to therapy and allow for adaptive treatment decisions though there are 

image quality challenges. To date, most radiomics studies of prostate cancer are limited to 

assessments before treatment or with limited time points. CBCT scans are typically captured 

daily for patient alignment prior to RT as part of standard care. Consequently, CBCT images 

offer the advantage of adding radiomics data during the course of treatment at multiple time 

points. However, CBCT image quality in comparison to diagnostic CT has known 

limitations in the form of more beam hardening, motion, scatter, and other artifacts.65–68 The 

viability of radiomics analysis of CBCT image rests largely on whether CBCT image is 

sufficient to capture repeatable and reproducible radiomic features. Although not focused on 

prostate cancer, there are some published studies focused on radiomic feature quality of 

CBCT images.13,69,70 In a pilot study, we studied the repeatability of CBCT-based radiomic 

features of 20 CBCT test-retest image pairs and the reproducibility of radiomic features 

between the planning CT and the first fraction CBCT for 20 patients. We determined that the 

CBCT reconstruction and image preprocessing methods affect the repeatability and 

reproducibility of radiomic features. In view of the viability of CBCT-based radiomics it 

remains to be seen whether the radiomics features will also have prognostic power. For other 

cancer sites, like non-small cell lung cancer, well-performing prognostics models using 

CBCT-based radiomics have been documented.14,15 Considering the previous studies of 

CBCT radiomic quality and the potential shown in cancer sites, CBCT radiomics may yet be 

viable for the prediction of treatment outcome.

5.3. MRI-guided Radiotherapy

The integration of the MRI scanner with the linear accelerator radiation delivery machine 

has launched a new era for radiotherapy.71 On-board MRI-guided radiotherapy (MRIgRT) 

not only provides for increased setup accuracy but also affords improved motion 

management as well as the capability for on-table adaptive re-planning based on the 

anatomy of the day. Precise localization of the tumor and nearby organs at risk in real time 

has allowed for safe tumor dose escalation on hybrid MRI/RT machines.72 In addition, on-

board MRIgRT holds promise for improving prognostic assessment of cancer patients via 

MRI set-up images that are acquired daily on these machines. Prior to the advent of hybrid 

MRI/RT treatment platforms, MR images were typically acquired only pre- and post-

treatment clinically, and perhaps once or twice during treatment in the clinical research 

setting. Daily MR images from MRIgRT now provide a wealth of image data during the 

entire course of treatment with vastly improved temporal resolution, offering a potentially 
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valuable new assessment tool via delta-radiomics. Recent studies conducted on low-field 

(0.35T) hybrid MRI/RT machines have shown the promise of MRI-derived radiomic 

biomarkers to predict response in rectal cancer73 and pancreatic cancer.74 Future studies will 

determine whether radiomics analysis of daily images from MRIgRT can similarly add 

prognostic value to prostate cancer treatment.

5.4. Radiogenomics

Tumor underlying molecular and genomic characteristics can provide patient-tailored 

treatment stratification and prediction of therapy response that goes beyond the Gleason 

Score’s prediction of aggressiveness. There is an increasing interest in the assessment of the 

association of radiomics features with biopsy tissue genomics. In the first radiogenomics 

study, we demonstrated significant correlation of mpMRI radiomics with prostate cancer risk 

gene expression profiles in mpMRI-guided biopsies tissues.75 Imaging features clustered 

with gene markers are associated with adverse outcome. Another group using a proliferation 

gene signature found similar results,76 supporting a role for the radiomics features 

associated with gene expression patterns in quantitative imaging algorithms.

The presence of hypoxia in the tumor microenvironment, associated with a more aggressive 

tumor phenotype,77,78 often underlies the resistance to RT in comparison with well-

vascularized, well-oxygenated tumors.77,79–81 Thus, in vivo knowledge of the spatial 

distribution of hypoxia in tumors may provide prognostic information and can possibly 

improve treatment planning (e.g. intensity-modulated radiotherapy).81 Dynamic Contrast 

Enhanced (DCE-) MRI can characterize the microenvironment in solid tumors by 

determining areas of inadequate or heterogeneous perfusion with hyper-permeable 

vasculature which are related to the degree of hypoxia.82 The individual tumor habitats vary 

in their rate and magnitude of contrast uptake and washout.83 In a pilot study, we analyzed 

twenty genes in 17 biopsy cores from six patients (Figure 7). The hierarchical clustering on 

expression from these genes identified reciprocal heat-map patterns in the cores from two 

high-risk patients in the dataset. Analysis of the DCE-MRI curves confirmed that the 

patients had dramatically different contrast uptake patterns, suggesting the potential of DCE 

radiomics to predict for hypoxia.

Gene expression signatures, such as Decipher® (DecipherDx, San Diego, California),84–87 

Prolaris® Cell Cycle Progression (CCP) (Myriad Genetics, Salt Lake City, Utah),88–93 and 

Genomic Prostate Score® (GPS) (Genomic Health, Redwood City, CA)93–96 add to clinical-

pathologic risk factors and have the potential to become integral to risk stratification and 

management. Significant correlation between mpMRI radiomics with prostate cancer risk 

gene expression signatures was demonstrated in mpMRI-guided biopsies tissues.75,97 

Hectors et al.,97 report numerous significant associations of mpMRI radiomics features with 

the gene signature PORTOS,98 which has recently been reported as promising for prediction 

of outcome (i.e. development of distant metastasis) after postoperative radiation therapy of 

prostate cancer. The significant correlations between multiparametric MRI radiomics 

features and PORTOS suggest that mpMRI radiomics analysis may be useful for prediction 

of salvage radiotherapy outcome.
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6. DISCUSSION

As a topic of interest in research, radiomics of prostate cancer has received increasing 

attention in recent years. The number of published studies have almost quadrupled in the two 

years since our previous review paper.43 MRI is still the main modality for radiomics 

studies, but CT and CBCT-based features are progressively being investigated. These 

datasets, specifically acquired in the course of RT, as well as the emerging MRIgRT 

capabilities, provide RT clinicians and researchers with unique opportunities for 

investigations. Developing tools and pipelines for optimal extraction of radiomics features 

holds the promise for improved prognostic and predictive assessment for prostate cancer.99

RT of prostate cancer also poses specific questions that are not readily answered with the 

existing imaging and radiomics workflows. PI-RADS cannot provide the 3D volume of the 

radiation boost, nor they are defined in the setting of radiated prostate. The goal of a 

majority of radiomics studies is to predict GS, an information that is readily available for the 

radiation oncologist. In the summary of manuscripts in Table 1, only two publications (9%) 

predict for BCR. Intermediate and high-risk prostate cancer patients, who are candidates for 

RT, are very heterogeneous in terms of progression risk. While there is a gradation of 

treatment intensification options that are effective, optimized criteria are lacking for 

recommendations concerning RT dose, RT fractionation, the use, timing and duration of 

ADT and the use of additional systemic agents (e.g., abiraterone, chemotherapy).

These questions frame the role of imaging in the identification of early markers of patient 

outcome. Prostate cancer has an exceptionally long natural history and the lack of mature 

datasets with available outcome end-points poses a particular challenge for these studies.

One area of prosate cancer radiomics research that holds particular promise is delta-

radiomics. With the advent of MRIgRT, we now have access to daily MRI patient set-up 

images for patients treated on MRIgRT machines in addition to daily CBCT images for 

patients treated on conventional linacs. There is tremendous potential in mining this wealth 

of imaging data to discover trends in radiomics features during treatment that could be 

exploited for predicting treatment response or normal tissue toxicity. Correlating these trends 

with patient outcome could lead to predicitve models that the radiation oncologist would 

utilize to guide possible changes in treatment early on, thus realizing the vision of 

personalized care tailored to the individual patient. However, this approach is not without 

challenges. Development of reliable predictive models using machine learning typically 

require on order of hundreds of patients to use as input for building the model, in addition to 

a like number of patients in an independent data set for model validation. Use of 

retrospective image data can be problematic, as it is well known that radiomic features can 

be sensitive to image acuisition parameters and reconstruction algorithms, which vary over 

institutions and even from patient to patient within a given clinic. Efforts are underway to 

determine which MRI- and CBCT-based radiomic features are repeatable (i.e., robust to test/

retest on a given machine) and reproducible (i.e., constant across machine platforms). While 

repeatability and reproducibility of radiomic features are necessary and desirable, the 

ultimate test is the ability of radiomic features used in a model to reliably predict patient 

outcome.
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In conclusion, this review paper has summarized ongoing radiomics efforts for analysis of 

imaging studies, acquired from prostate cancer imaging prior, during and after radiation 

treatment. The correlation to patient outcomes, rather than surrogate pathological features, is 

still challenging, but more groups are developing such models. It will be important to 

incorporate radiomics-based models into clinical trials to properly validate its robustness, 

maximize efficacy and confirm the clinical utility of these tools. The expectation is that 

these concepts, methods and tools described herein will be eventually applicable to the 

radiation oncology practice.
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Figure 1. Correlation of radical prostatectomy histopathology with mpMRI.
a) Transverse pseudo whole mount section of H&E-stained radical prostatectomy from a 

patient with prostate cancer. The areas of the tumors are marked by pathologist. The green 

ellipse separates the peripheral (outer) and transition zones of the prostate; b) Corresponding 

T2-weighted axial MRI image is shown. The prostate is contoured in magenta. The two 

zones of the prostate have different intensities: the T2 signal is bright on the peripheral zone 

(yellow contour), due to the fact that the peripheral zone contains mainly prostatic acini and 

ducts and the prostatic fluid in their lumina rises a strong signal. Alternatively, the transition 

zone has a higher proportion of prostatic stroma. The light green structure is the urethra. 

Correspondingly, on the histopathology sample, the transition zone is surrounded by a 

porous tissue related to the frequent glandular luminae in the peripheral zone. The tumors 

(red and shades of blue) on T2-weighted MRI are hypo-intense. c) Apparent Diffusion 

Coefficient (ADC) image. ADC is calculated from Diffusion weighted imaging (DWI) - a 

specialized acquisition technique which highlights areas with restricted microscopic motion 

of water molecules. Tumors on ADC are also hypo-intense. d) The early enhancing image in 

the Dynamic Contrast Enhanced (DCE-) MRI. DCE-MRI highlights the tumor vasculature 

and areas of the tumor are of higher intensity.
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Figure 2. The radiomics workflow in RT of prostate cancer.
Image Acquisition: Image modalities, mpMRI, CT and CBCT from the same prostate 

cancer patient are shown. The red arrow points at the tumor. Segmentation: Prostate, 

urethra, peripheral zone (PZ), and transition zone (TZ), as shown in the top panel, are 

contoured. Habitat Risk Score (HRS), displayed as a heat map on the T2-weighted MRI 

indicates the tumor. HRS6 volume is selected for volume of interest (VOI) for radiomics 

features extraction (HRS6 also defines gross tumor volume (GTV)). Normal Appearing 

Tissues (NAT) in PZ and TZ are obtained by subtracting VOI from PZ and TZ. Feature 
extraction: The radiomics features typically belong to one of four categories shown. Data 
integration: Radiomics features are integrated with other available biomarkers, such as data 

from clinical records, genomic profiling, proteomic screening, and physiological analysis. 

Application in RT: Integrated data/models are used to aid in diagnostic assessment, to 

facilitate patient-individualized treatment strategizing, and improve predictive and 

prognostic accuracy.
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Figure 3: 
Summary of publications to date that assessed tumor aggressiveness of prostate cancer using 

radiomics by a) the number of publications per year and b) the percentage of publications 

per modality.
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Figure 4: 
A pie chart showing the proportion of publications to date according to the radiomic feature 

categories used to assess tumor aggressiveness of prostate cancer using radiomics.

Delgadillo et al. Page 20

Strahlenther Onkol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Adapted workflow for comparisons of pre- and post-treatment mpMRIs in prostate 
cancer radiotherapy clinical trials at the University of Miami.
Six image fusions are carried out, indicated on the graph above. (1) Using prostate 

anatomical matching, the diagnostic MRI is fused with the planning MRI; (2) The planning 

MRI is fused to the planning CT, using fiducial matching; (3) Using (1) and (2), the 

diagnostic MRI is fused to the planning MR for target volume contouring; (4–6) The post-

RT MRIs (at 3 and 9 mo) and the one before the endpoint biopsy (2.0 – 2.5 yr after 

completion of all therapy) is fused with both the pre-RT planning and diagnostic MRI.
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Figure 6. Delta radiomics in mpMRI (LEAD trial, University of Miami).
Using the workflow from Figure 5, radiomics features are extracted from gross tumor 

volume (GTV), normal appearing transition and peripheral zone (NATZ and NAPZ) at 3 mo 

and 9 mo after RT and 2–2.5 yr after end of all therapy. Box plots of Apparent diffusion 

coefficient (ADC) (upper series) and ve (percent of extravascular extracellular space (EES)) 

(lower series).
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Figure 7. Association of Dynamic Contrast Enhanced (DCE-) MRI with hypoxia.
a) Hierarchical clustering on expression of the twenty hypoxia genes in 17 biopsies from 6 

patients. Each sample is color-coded based on Gleason Score (GS). The two main clusters of 

genes were driven by the biopsy cores (n = 3) from two patients with high risk (marked with 

red boxes, Patient A and Patient B) Hypoxic genes, such as HIF3A, EPAS1, CUL2, EP300 

are upregulated in the tissue from Patient A and vice versa, downregulated in the tissue from 

Patient B. b) Early enhancing series on DCE-MRI and corresponding T2-weighted and 

Apparent Diffusion Coefficient (ADC) images from Patient A and B. The enhancement is 

more pronounced in Patient B, suggesting well-perfused tumor. c) DCE-curves in the 

tumors, referenced to DCE signal in muscle (Gluteus Maximus). The tumor DCE-curves in 

Patient A are characterized with slower contrast uptake and moderate enhancement, 

characteristic for hypoxic tumors. On the other hand, in Patient B contrast uptake is hast and 

with high amplitude, suggesting well perfused tumor. Note that the muscle contrast-uptake 

amplitude is almost the same for the two patients.
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Table 1:

Summary of radiomic manuscripts in prostate cancer, grouped by modality.

Reference Tumor 
Segmentation

Modality Feature Category Analysis 
Endpoints

Performance

Wibmer et al. (2015)100 Manual bpMRI Statistical Prostate cancer 
GS

p: <.0001 to .0008 p: .0019 
to .0225

Vignati et al. (2015)101 Manual bpMRI Statistical GS AUC: 0.82 to 0.96

Fehr et al. (2015)102 Manual bpMRI Statistical GS Accuracy: 83% to 93% 
AUC: 0.91 to 0.99

Algohary et al. (2018)58 Manual bpMRI Statistical PI-RADS and 
Biopsy positivity p < 0.001

Shiradkar et al. (2018)59 Manual bpMRI Statistical, 
Transform-based BCR AUC: 0.73 to 0.84

Chaddad et al. (2018)103 Automatic bpMRI Statistical GS AUC: 0.65 to 0.82

Chen et al. (2019)104 Manual bpMRI Morphological, 
Statistical

Prostate Cancer 
GS

AUC: 0.98 to 0.999 AUC: 
0.87 to 0.93

Cuocolo et al. (2019)57 Manual bpMRI Morphological
GS and max 
cancer core 
length

AUC: 0.78 p: 0.002

Min et al. (2019)105 Manual bpMRI
Morphological, 
Statistical, 
Transform-based

GS AUC: 0.73 to 0.87

Toivonen et al. (2019)106 Manual bpMRI
Morphological, 
Statistical, 
Transform-based

GS AUC: 0.71 to 0.84

Abdollahi et al. (2019)107 Manual bpMRI Statistical GS AUC: 0.61 to 0.74

Varghese et al. (2019)56 Manual bpMRI Statistical, 
Transform-based

Risk group using 
TG, GS, and PSA AUC: 0.92

Gong et al. (2020)108 Manual bpMRI Morphological, 
Statistical GS AUC: 0.79 to 0.80

Li et al. (2020)109 Manual bpMRI Statistical GS AUC: 0.98

Bourbonne et al. (2020)60 Semi-automatic bpMRI Statistical, 
Transform-based BCR Accuracy: 76% to 78% 

AUC: 0.82 to 0.86

Stoyonova et al. (2018)110 Automatic mpMRI Statistical GS AUC: 0.72 to 0.90

Bleker et al. (2020)111 Auto-fixed mpMRI Statistical GS AUC: 0.87

Brunese et al. (2020)112 Manual T1 MRI + 
T2w MRI Morphological GS Sensitivity: 0.75 to 1 

Specificity: 1

Tiwari et al. (2013)113 Automatic T2w MRI Statistical, 
Transform-based GS AUC: 0.84 to 0.89

Nketiah et al. (2017)114 Manual T2w MRI Statistical GS Accuracy: 91% AUC: 0.83

Tanadini-Lang et al. 
(2018)12 Manual CT

Morphological, 
Statistical, 
Transform-based

GS AUC: 0.77 to 0.81

Osman et al. (2019)11 Manual CT Statistical, 
Transform-based

GS Risk group 
using tumor 
grade, GS, and 
PSA

AUC: 0.90 to 1.00

Abbreviations: NAT = Normal Appearing Tissues; ROI = Region of Interest; GS = Gleason Score; BCR = Biochemical Recurrence; TG =Tumor 
Grade; AUC = Area under the Receiver Operating Characteristics curve (ROC).
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