
RNA Identification of PRIME Cells Predicting Rheumatoid 
Arthritis Flares

Dana E. Orange, M.D., Vicky Yao, Ph.D., Kirsty Sawicka, Ph.D., John Fak, M.S., Mayu O. 
Frank, N.P., Ph.D., Salina Parveen, M.A., Nathalie E. Blachere, Ph.D., Caryn Hale, Ph.D., Fan 
Zhang, Ph.D., Soumya Raychaudhuri, M.D., Ph.D., Olga G. Troyanskaya, Ph.D., Robert B. 
Darnell, M.D., Ph.D.
Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., 
N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation 
(O.G.T.) — all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ 
(V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the 
Divisions of Rheumatology and Genetics, Brigham and Women’s Hospital, Harvard Medical 
School, Boston, and the Broad Institute, Cambridge — both in Massachusetts (F.Z., S.R.).

Abstract

BACKGROUND—Rheumatoid arthritis, like many inflammatory diseases, is characterized by 

episodes of quiescence and exacerbation (flares). The molecular events leading to flares are 

unknown.

METHODS—We established a clinical and technical protocol for repeated home collection of 

blood in patients with rheumatoid arthritis to allow for longitudinal RNA sequencing (RNA-seq). 

Specimens were obtained from 364 time points during eight flares over a period of 4 years in our 

index patient, as well as from 235 time points during flares in three additional patients. We 

identified transcripts that were differentially expressed before flares and compared these with data 

from synovial single-cell RNA-seq. Flow cytometry and sorted-blood-cell RNA-seq in additional 

patients were used to validate the findings.

RESULTS—Consistent changes were observed in blood transcriptional profiles 1 to 2 weeks 

before a rheumatoid arthritis flare. B-cell activation was followed by expansion of circulating 

CD45−CD31−PDPN+ preinflammatory mesenchymal, or PRIME, cells in the blood from patients 

with rheumatoid arthritis; these cells shared features of inflammatory synovial fibroblasts. Levels 

of circulating PRIME cells decreased during flares in all 4 patients, and flow cytometry and 

sorted-cell RNA-seq confirmed the presence of PRIME cells in 19 additional patients with 

rheumatoid arthritis.

CONCLUSIONS—Longitudinal genomic analysis of rheumatoid arthritis flares revealed PRIME 

cells in the blood during the period before a flare and suggested a model in which these cells 
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become activated by B cells in the weeks before a flare and subsequently migrate out of the blood 

into the synovium. (Funded by the National Institutes of Health and others.)

RHEUMATOID ARTHRITIS SYMPTOMS ARE highly dynamic, with periods of stability 

interrupted by unpredictable flares of disease activity. Such waxing and waning clinical 

courses are characteristic of many autoimmune diseases, including multiple sclerosis,1 

systemic lupus erythematosus,2 and inflammatory bowel disease,3,4 underscoring a need to 

develop approaches to understand the factors that trigger transitions from quiescence to 

autoimmune flare.

Microarray studies of blood specimens from sparse time-series data have identified few 

genes that are significantly associated with rheumatoid arthritis activity.5–8 To look for 

molecular changes in blood that anticipate clinical flares, we sought to optimize methods by 

which the patients themselves could obtain fingerstick blood specimens for RNA sequencing 

(RNA-seq), facilitating weekly blood sampling for periods of months to years.

We explored the pathophysiology of rheumatoid arthritis using longitudinal, prospective 

analysis of blood transcriptional profiles from individual patients over time. We analyzed 

patient reports of clinical disease activity and RNA-seq data from patients across multiple 

clinical flares. Collecting samples longitudinally enabled a search for transcriptional 

signatures that preceded clinical symptoms, and comparison of these blood RNA profiles 

with data from synovial single-cell RNA-seq (scRNA-seq)9 was used to determine whether 

biologically coherent sets of transcripts were identifiable in the blood before symptom onset 

and as patients began to have symptoms.

METHODS

PATIENTS

We enrolled patients who met American College of Rheumatology–European League 

Against Rheumatism 201010,11 criteria for having rheumatoid arthritis and who were 

seropositive for cyclized citrullinated protein antibody (CCP). Disease activity was assessed 

from home each week, or up to four times daily during escalation of flares, with the Routine 

Assessment of Patient Index Data 3 (RAPID3) questionnaire.12 Disease activity was also 

assessed at clinic visits, each month, and during flares with the use of both RAPID3 and the 

Disease Activity Score 28 (DAS28), which incorporates tenderness and swelling from 28 

joints, erythrocyte sedimentation rate, and patient global assessment of disease activity. 

Complete blood counts, including counts of white cells, neutrophils, monocytes, 

lymphocytes, and platelets, were assessed by the Memorial Sloan Kettering Cancer Center 

clinical laboratory. We also used fluorescence-activated cell sorting to assess peripheral 

blood mononuclear cells (PBMCs) from 19 additional seropositive patients with rheumatoid 

arthritis (irrespective of disease activity) and 18 age- and sex-matched participants without 

rheumatoid arthritis.

The study was approved by the institutional review board of Rockefeller University. All the 

patients in the study provided written informed consent before participation. The authors 

vouch for the accuracy and completeness of the data presented in this report.
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RNA PREPARATION FROM FINGERSTICK BLOOD SPECIMENS

Patients performed fingerstick collection of three drops of blood at home; the blood was 

placed into a microtainer tube prefilled with fixative, and the specimens were mailed 

overnight each week to Rockefeller University. RNA was extracted with the PAXgene RNA 

kit and was purified in accordance with the manufacturer’s protocols, with the exception of 

the volume of all washes and elutions being decreased to 25% of the volume recommended 

by the manufacturer. RNA was assessed with the Agilent BioAnalyzer for quantity and 

quality. For library preparation, we used the Globin-Zero kit (EpiCentre) and the Illumina 

Truseq mRNA Stranded Library kit, with 11 to 12 polymerase-chain-reaction (PCR) cycles 

for 5 to 8 nmol per liter input, and sequencing was performed on a HiSeq2500 system 

(Illumina) with 150-base paired-end reads. Reads were aligned to the human reference 

genome (hg19) with Gencode, version 18, as the reference gene annotation with the use of 

STAR software, version 2.3.1z,13 and were quantified with featureCounts software, version 

1.5.0-p2.14 Samples with at least 4 million paired-end reads were retained for analysis.

COMPARISON OF DISEASE-ACTIVITY MEASURES

To describe the bivariate relationship between clinical assessments of disease activity and 

disease activity as assessed with RAPID3, we used the locally weighted scatterplot 

smoothing (LOWESS) technique. R2 values were calculated to assess correlations of 

complete blood counts inferred from CIBERSORTx and counts measured by clinical 

laboratories. Inferred CIBERSORTx lymphocyte counts were calculated as the sum of the 

counts of naive B cells, memory B cells, CD8 T cells, naive CD4 T cells, resting memory 

CD4 T cells, and activated memory CD4 T cells. The counts of monocytes, M0 

macrophages, M1 macrophages, and M2 macrophages were summed to infer CIBERSORTx 

monocyte counts. One-way analysis of variance was used to test for significant differences 

among various clinical features according to disease-activity state.

ANALYSES OF DIFFERENTIAL EXPRESSION AMONG PATIENTS

Before gene-expression analysis, specimens were labeled as baseline (i.e., obtained during a 

period of stable RAPID3 scores), flare (obtained during a period in which the RAPID3 score 

was >2 SD above the baseline mean), or glucocorticoid (obtained during a period when the 

patient was taking glucocorticoids). We used edgeR software, version 3.24.3,15 to analyze 

differential gene expression in flare specimens as compared with baseline specimens. 

Permutation testing (1×106 samples) was used to test for significance in the overlap between 

the groups of genes that had decreased expression during flares in each of the four patients. 

Analysis of functional groups of genes, as defined by the Gene Ontology Consortium (with 

goana, from the limma software package, version 3.38.3),16 was used to identify enriched 

pathways among the genes that had significant differential expression during a flare relative 

to baseline in the index patient (those with a false discovery rate of <0.1) and that were 

consistent in the direction of expression in both the index patient and the three additional 

patients with rheumatoid arthritis who were included in the longitudinal study (i.e., log2 

relative expression [flare:baseline ratio] either both positive or both negative).
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TIME-SERIES ANALYSIS OF GENE EXPRESSION IN THE INDEX PATIENT

We performed an analysis of longitudinal data from the index patient, using ImpulseDE2 

software, version 1.8.017 (see the Methods section in Supplementary Appendix 1, available 

with the full text of this article at NEJM.org). Specimens from 8 weeks before a flare to up 

to 4 weeks after the start of a flare were analyzed (excluding 65 specimens obtained while 

the patient was taking glucocorticoids). The date of library preparation was included in the 

model for batch correction, and the genefilter software package, version 1.64.0,18 was used 

to filter out genes with low levels of expression.

IDENTIFICATION AND CHARACTERIZATION OF COEXPRESSED GENE CLUSTERS

We hierarchically clustered the mean expression of significantly differentially expressed 

genes that were identified in the ImpulseDE2 analysis according to week relative to flare 

initiation (batch-corrected expression values [expressed as log2 reads per kilobase million] 

were calculated with edgeR) and identified five coexpressed gene clusters (clusters 1 

through 5). We analyzed these five gene clusters for Gene Ontology term enrichment (with 

the use of goana). To further characterize expression patterns in gene clusters over time, for 

each cluster the mean expression level for each gene was calculated across flares per week, 

then normalized across weeks. ABIS19 and CIBERSORTx20 were used to deconvolute gene-

expression data. To aggregate a given gene cluster or cell type with gene markers, the mean 

of standardized gene-expression scores or de-convoluted cell-type scores, respectively, 

within each week was plotted. To identify synovial scRNA-seq cluster–specific marker-gene 

signatures, we used a previously published data set20 to compare the cells from one scRNA-

seq cluster with cells from all the other scRNA-seq clusters, using the scRNA-seq 

log2(counts per million + 1) matrix. We generated lists of the top 200 marker genes for each 

scRNA-seq cluster using the criteria of a log2 expression ratio greater than 1 (relative to 

other scRNA-seq clusters), an area under the curve greater than 0.6, and a percentage of 

expressing cells greater than 40%. We used Fisher’s exact test to evaluate enrichment of 

synovial cell subtype marker genes in the five coexpressed gene clusters. P values were 

corrected for multiple hypothesis testing with the use of the Benjamini–Hochberg procedure.

FLOW CYTOMETRY AND SORTING

To assess percentages of cells of interest among PBMCs, specimens were stained with 

antibodies to CD31-APC (clone WM59), mouse IgG1-APC (MOPC-21), PDPN-PerCP 

(NZ1.3), rat IgG2a (eBR2a)-PerCP, CD45-PE (HI30), mouse IgG1-PE (MOPC-21), and TO-

PRO-3 and analyzed on the BD FACSCalibur cell sorting and analysis platform with the use 

of FlowJo, version 10.6.1 (BD). To flow sort and sequence cells of interest, 20 million to 

100 million cells from CD14-depleted products of leukapheresis were stained with CD31-

APC (WM59), mouse IgG1-APC (MOPC-21), PDPN-PerCP (NZ1.3), rat IgG2a-PerCP 

(eBR2a), CD45-FITC (HI30), mouse IgG1-FITC (MOPC-21), and DAPI (4′,6-diamidino-2-

phenylindole, dihydro-chloride) and sorted on BD FACSAriaII. The Illumina Stranded 

TruSeq library kit was used to generate complementary DNA libraries that were sequenced 

with the MiSeq sequencing platform (Illumina). DESeq2 software, version 1.24.0,21 was 

used for differential expression analysis.
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RESULTS

CLINICAL PROTOCOL DEVELOPMENT

We developed strategies for home blood collection that would provide high-quality RNA in 

large quantities for sequencing (15 to 50 ng of RNA; mean [±SD] RNA integrity score, 

6.9±1.7 [scores range from 1 to 10, with higher scores indicating less degradation and higher 

integrity]) (Figs. S1 through S7 in Supplementary Appendix 1; note that all supplementary 

figures and tables are located in Supplementary Appendix 1). The study patients also 

documented disease activity with the RAPID3 questionnaire. Four patients (Table S1) were 

followed for 1 to 4 years with weekly home collection of fingerstick blood specimens 

coupled with completion of RAPID3 questionnaires and monthly clinic visits, during which 

DAS28 data were collected (Fig. 1A). RNA was sequenced from a total of 189 fingerstick 

blood specimens from the four patients; 162 (87%) of the specimens passed quality-control 

filtering. In the index patient, we assessed 364 time points by RAPID3 during eight flares 

over a period of 4 years and analyzed specimens from 84 time points by RNA-seq. We 

collected data on disease activity from 43 clinic visits from the index patient and from 25, 

14, and 12 clinic visits for the other three patients who were included in the longitudinal 

study.

Patient-reported assessments of disease activity (with RAPID3) were positively correlated 

with clinician assessments of disease activity (with DAS28) (Fig. 1B and S8). RNA-seq–

inferred white-cell counts were also positively correlated with clinical laboratory 

measurements of complete blood counts (Fig. 1C), which suggested that RNA-seq of 

fingerstick blood was of sufficient quality to provide information that correlated with 

criterion-standard clinical measurements of blood counts. Taken together, these data indicate 

that patient reports of disease activity paired with analysis of fingerstick blood specimens 

may provide a high-quality and robust means by which patients can participate in 

longitudinal clinical research studies.

CLINICAL AND MOLECULAR FEATURES OF FLARES

Flares were associated with increases in objective clinical and laboratory measures of 

rheumatoid arthritis disease activity in the index patient (Fig. 2A and Fig. S9). RNA-seq 

analysis of fingerstick blood specimens identified 2613 genes that were differentially 

expressed at the time of a flare as compared with baseline (false discovery rate, <0.1); the 

expression of 1437 of these genes was increased during a flare (Fig. 2B and Supplementary 

Appendix 2). Pathway analysis identified enrichment in myeloid, neutrophil, Fc receptor–

signaling, and platelet-activation genes (Fig. 2C and Supplementary Appendix 3), findings 

consistent with clinical blood-count measurements during flares (Fig. S9). The expression of 

1176 genes was significantly decreased during flares, and pathway analysis of these genes 

indicated enrichment for extracellular matrix, collagen, and connective-tissue development 

(Fig. 2D and Supplementary Appendix 3).

TIME-SERIES ANALYSIS OF MOLECULAR EVENTS LEADING TO FLARES

To analyze the trajectories of gene expression over time and identify potential antecedents to 

flares, we performed time-series analysis of the RNA-seq data (Fig. 3A). Disease-activity 
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scores in the weeks just before a flare were the same as the baseline scores 2 months before 

a flare, underscoring the challenges of identifying both a time frame and a gene-expression 

signature that precede a flare. We focused the analysis on 65 specimens that were acquired 8 

weeks before a flare and 4 weeks after flare initiation, binning samples according to the 

week in which they were drawn. With this method, we identified 2791 genes with significant 

differential expression over the time leading up to and during a flare (false discovery rate, 

<0.05), and with hierarchical clustering of gene expression we identified five clusters (Fig. 

3B and Supplementary Appendix 4). Cluster 1 represented a group of genes that had 

increased expression after symptom onset (Fig. 3C and 3D) and had a high degree of overlap 

(Fig. 3E) with genes that had higher expression during flares than at baseline (Fig. 2B). 

These gene-expression clusters were reproducibly altered in five separate clinical flare 

events (Fig. S10).

We further focused on two clusters of genes that were differentially expressed before a flare 

(Fig. 3C and 3D). Antecedent cluster 2 (AC2) transcripts increased 2 weeks before a flare 

and were enriched with developmental pathways for naive B cells and leukocytes. Two 

additional means of deconvoluting the RNA-seq data — the CIBERSORTx and ABIS 

software packages — independently confirmed evidence of increases in naive B-cell 

populations before a flare, and all analyses showed evidence of innate inflammatory 

signatures (neutrophils and monocytes) during a flare (Figs. S11 and S12).

Antecedent cluster 3 (AC3) transcripts increased during the week before a flare and then 

decreased for the duration of the flare (Fig. 3C and 3D). AC3 was enriched for pathways that 

were not typical of blood specimens, including cartilage morphogenesis, endochondral bone 

growth, and extracellular matrix organization (Fig. 3E and Supplementary Appendix 5), 

suggesting the presence of a mesenchymal cell.

TIME-SERIES ANALYSIS OF SYNOVIAL CELL MARKER GENES IN FLARES

To better characterize the clusters identified by the time-series analysis of fingerstick blood 

and their relevance to synovitis (Fig. 3C), we examined them for enrichment in synovial cell 

sub-types characterized by scRNA-seq. This analysis of 5265 single synovial cells from 

patients with rheumatoid arthritis and patients with osteo-arthritis identified four fibroblast, 

four B-cell, six T-cell, and four monocyte subpopulations (Fig. 4A). We identified 

approximately 200 marker genes that best distinguished each of 18 synovial cell types. AC2 

was enriched with naive B-cell genes (Fig. 4A and Fig. S12), and AC3 was enriched with 

three sublining fibroblast genes (CD34+, HLA-DR+, and DKK3+) (Fig. 4A). Two of these 

fibroblast subsets, CD34+ and HLA-DR+, are more abundant in inflamed synovium than in 

uninflamed synovium.22 We plotted the expression of those transcripts that were common to 

both synovial sublining fibroblasts and AC3 over time; again, we noted their increased 

expression in blood 1 week before a flare and decreased expression during a flare (Fig. 4B, 

Fig. S13, and Supplementary Appendix 6).

Overall, 622 of 625 AC3 genes decreased in expression during a flare in the index patient, 

and a subset (194 genes) also decreased in expression during flares in at least three of four 

patients (22 genes decreased in expression in all four patients) (Fig. 4C and Supplementary 

Appendix 7); a permutation test indicated that this overlap was greater than would have been 
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expected by chance (P<0.001). Pathway analysis of the subset of 194 overlapping genes 

again showed that it was enriched for genes associated with extracellular matrix and secreted 

glycoprotein.

We further tested whether cells that expressed surface markers of synovial fibroblasts were 

detectable by flow cytometry in blood from patients with rheumatoid arthritis. 

CD45−CD31−PDPN+ cells were more common in blood from 19 additional patients with 

rheumatoid arthritis than in blood from healthy controls (Figs. S14 and S15). RNA-seq of 

CD45−CD31−PDPN+ cells sorted by fluorescence-activated cell sorting confirmed that they 

were enriched for AC3 cluster genes (Fig. 4D) and for synovial fibroblast genes and 

expressed classical synovial fibroblast genes such as FAP, DKK3, CDH11, as well as 

collagens and laminins (Figs. S16 through S18 and Table S2). Given their expression of 

classical mesenchymal surface markers and genes, we refer to these cells as 

preinflammatory mesenchymal cells, or PRIME cells. Taken together, our observations 

suggest a model in which sequential activation of B cells activates PRIME cells just before 

flares; these cells are then evident during flares in inflamed synovium as inflammatory 

sublining fibroblasts (Fig. 5).

DISCUSSION

We present longitudinal genomics as a strategy to study the antecedents to rheumatoid 

arthritis flares that may be generalizable to autoimmune diseases associated with waxing and 

waning clinical courses. We developed tools for patients to acquire both data on clinical 

symptoms and molecular data at home over the course of many years. This allowed us to 

capture data before the onset of flares and identify different RNA signatures (AC2 and AC3) 

evident in peripheral blood 1 to 2 weeks before a flare.

The RNA signature of AC3 and sorted CD45−CD31−PDPN+ circulating cells revealed 

enrichment for pathways including cartilage morphogenesis, endochondral bone growth, and 

extracellular matrix organization (Fig. 3E) and strongly overlapped with the RNA signatures 

of synovial sublining fibroblasts. We therefore propose that antecedent PRIME cells are the 

precursors to inflammatory sublining fibroblasts that have previously been found adjacent to 

blood vessels in inflamed synovium in patients with rheumatoid arthritis.23

Inflamed sublining fibroblasts have been shown to be pathogenic in an animal model of 

arthritis.24 Our finding that AC3 genes in humans share molecular characteristics of 

sublining fibroblasts, together with the observation that these cells spike before a flare but 

are less detectable in blood during a flare (Figs. 2 and 4) support a model in which PRIME 

cells immigrate from blood to the synovium, where they contribute to the inflammatory 

process (Fig. 5). This model is consistent with the observation that in rheumatoid arthritis, 

synovial fibroblasts can traffic to cartilage implants and are sufficient to passively transfer 

synovial inflammation in mice.25 Together, our data suggest the mesenchymal signal 

detected in AC3 before flares represents a previously uncharacterized type of trafficking 

fibroblast that circulates in blood.
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In addition, we observed a second RNA signature, AC2, that was activated in blood before 

the spike in AC3. AC2 bears RNA hallmarks of naive B cells. This finding is reminiscent of 

those in recent studies showing that autoreactive naive B cells are activated in patients with 

rheumatoid arthritis.26 Although the triggers of this B-cell activation are unknown, 

infectious factors (e.g., bacterial or viral antigens), environmental factors, or endogenous 

toxins27–29 could either provide a source of specific antigens or activate pattern-recognition 

receptors.

We developed methods for collecting frequent (weekly) longitudinal clinical and gene-

expression data that can be used to identify changes in transcriptional profiles in blood 

weeks before the onset of symptoms in patients with rheumatoid arthritis. This approach led 

to the identification of PRIME cells, which bear hallmarks of synovial fibroblasts, are more 

common in patients with rheumatoid arthritis than in healthy controls, and increase in blood 

just before flares. We suggest that before a clinical flare, B-cell immune activation (detected 

as AC2) acts on PRIME cells, which traffic to the blood (detected as AC3) and subsequently 

to the synovial sublining during flares of disease activity. More generally, this study of 

rheumatoid arthritis provides an example of an approach to the study of waxing and waning 

inflammatory diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Supported by grants from the National Institutes of Health (NIH) (T32 HG003284, to Dr. Yao; UH2AR067677 and 
U01 HG009379, to Dr. Raychaudhuri; R01 GM071966, to Dr. Troyanskaya; and NS034389, NS081706, 
NS097404, and 1UM1HG008901, to Dr. Darnell), the Simons Foundation (SFARI 240432, to Dr. Darnell), the 
Robertson Foundation (to Drs. Darnell and Orange), Rockefeller University (UL1 TR001866 from the National 
Center for Advancing Translational Sciences), the NIH Clinical and Translational Science Award Program, a 
Rheumatology Research Foundation Bridge to K (to Dr. Orange), the Bernard and Irene Schwartz Foundation (to 
Dr. Orange), the Iris and Junming Le Foundation (to Dr. Orange), and a Rockefeller Clinical and Translational 
Science Award Program Pilot Award (to Dr. Orange). Dr. Troyanskaya is a senior fellow of the Genetic Networks 
program of the Canadian Institute for Advanced Research. Dr. Darnell is an Investigator of the Howard Hughes 
Medical Institute.

We thank the staff of Rockefeller University Hospital and the Hospital for Special Surgery, particularly Rhonda 
Kost, Arlene Hurley, Caroline Jiang, and Weijia Yuan.

REFERENCES

1. Steinman L Immunology of relapse and remission in multiple sclerosis. Annu Rev Immunol 2014; 
32: 257–81. [PubMed: 24438352] 

2. Fava A, Petri M. Systemic lupus erythematosus: diagnosis and clinical management. J Autoimmun 
2019; 96: 1–13. [PubMed: 30448290] 

3. Braun J, Wei B. Body traffic: ecology, genetics, and immunity in inflammatory bowel disease. Annu 
Rev Pathol 2007; 2: 401–29. [PubMed: 18039105] 

4. Braun J, Baraliakos X, Listing J, et al. Differences in the incidence of flares or new onset of 
inflammatory bowel diseases in patients with ankylosing spondylitis exposed to therapy with anti-
tumor necrosis factor alpha agents. Arthritis Rheum 2007; 57: 639–47. [PubMed: 17471540] 

5. Sellam J, Marion-Thore S, Dumont F, et al. Use of whole-blood transcriptomic profiling to highlight 
several pathophysiologic pathways associated with response to rituximab in patients with 

Orange et al. Page 8

N Engl J Med. Author manuscript; available in PMC 2021 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rheumatoid arthritis: data from a randomized, controlled, open-label trial. Arthritis Rheumatol 2014; 
66: 2015–25. [PubMed: 24756903] 

6. Sanayama Y, Ikeda K, Saito Y, et al. Prediction of therapeutic responses to toci lizumab in patients 
with rheumatoid arthritis: biomarkers identified by analysis of gene expression in peripheral blood 
mononuclear cells using genome-wide DNA microarray. Arthritis Rheumatol 2014; 66: 1421–31. 
[PubMed: 24591094] 

7. Tanino M, Matoba R, Nakamura S, et al. Prediction of efficacy of anti-TNF biologic agent, 
infliximab, for rheumatoid arthritis patients using a comprehensive transcriptome analysis of white 
blood cells. Biochem Biophys Res Commun 2009; 387: 261–5. [PubMed: 19577537] 

8. Teixeira VH, Olaso R, Martin-Magniette M-L, et al. Transcriptome analysis describing new 
immunity and defense genes in peripheral blood mononuclear cells of rheumatoid arthritis patients. 
PLoS One 2009; 4(8): e6803. [PubMed: 19710928] 

9. Zhang YJ, Ioerger TR, Huttenhower C, et al. Global assessment of genomic regions required for 
growth in Mycobacterium tuberculosis. PLoS Pathog 2012; 8(9): e1002946. [PubMed: 23028335] 

10. Aletaha D, Neogi T, Silman AJ, et al. 2010 Rheumatoid arthritis classification criteria: an 
American College of Rheumatology/European League Against Rheumatism collaborative 
initiative. Arthritis Rheum 2010; 62: 2569–81. [PubMed: 20872595] 

11. Aletaha D, Neogi T, Silman AJ, et al. 2010 Rheumatoid arthritis classification criteria: an 
American College of Rheumatology/European League Against Rheumatism collaborative 
initiative. Ann Rheum Dis 2010; 69: 1580–8. [PubMed: 20699241] 

12. Pincus T, Swearingen CJ, Bergman M, Yazici Y. RAPID3 (Routine Assessment of Patient Index 
Data 3), a rheumatoid arthritis index without formal joint counts for routine care: proposed 
severity categories compared to disease activity score and clinical disease activity index categories. 
J Rheumatol 2008; 35: 2136–47. [PubMed: 18793006] 

13. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. 
Bioinformatics 2013; 29: 15–21. [PubMed: 23104886] 

14. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning 
sequence reads to genomic features. Bioinformatics 2014; 30: 923–30. [PubMed: 24227677] 

15. Robison EH, Mondala TS, Williams AR, Head SR, Salomon DR, Kurian SM. Whole genome 
transcript profiling from fingerstick blood samples: a comparison and feasibility study. BMC 
Genomics 2009; 10: 617. [PubMed: 20017944] 

16. Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-
sequencing and microarray studies. Nucleic Acids Res 2015; 43(7): e47. [PubMed: 25605792] 

17. Fischer DS, Theis FJ, Yosef N. Impulse model-based differential expression analysis of time 
course sequencing data. Nucleic Acids Res 2018; 46(20): e119. [PubMed: 30102402] 

18. Bourgon R, Gentleman R, Huber W. Independent filtering increases detection power for high-
throughput experiments. Proc Natl Acad Sci U S A 2010; 107: 9546–51. [PubMed: 20460310] 

19. Monaco G, Lee B, Xu W, et al. RNA-seq signatures normalized by mRNA abundance allow 
absolute deconvolution of human immune cell types. Cell Rep 2019; 26(6): 1627.e7–1640.e7. 
[PubMed: 30726743] 

20. Newman AM, Steen CB, Liu CL, et al. Determining cell type abundance and expression from bulk 
tissues with digital cytometry. Nat Biotechnol 2019; 37: 773–82. [PubMed: 31061481] 

21. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq 
data with DESeq2. Genome Biol 2014; 15: 550. [PubMed: 25516281] 

22. Zhang F, Wei K, Slowikowski K, et al. Defining inflammatory cell states in rheumatoid arthritis 
joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat Immunol 
2019; 20: 928–42. [PubMed: 31061532] 

23. Mizoguchi F, Slowikowski K, Wei K, et al. Functionally distinct disease-associated fibroblast 
subsets in rheumatoid arthritis. Nat Commun 2018; 9: 789. [PubMed: 29476097] 

24. Croft AP, Campos J, Jansen K, et al. Distinct fibroblast subsets drive inflammation and damage in 
arthritis. Nature 2019; 570: 246–51. [PubMed: 31142839] 

25. Lefèvre S, Knedla A, Tennie C, et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected 
joints. Nat Med 2009; 15: 1414–20. [PubMed: 19898488] 

Orange et al. Page 9

N Engl J Med. Author manuscript; available in PMC 2021 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



26. Lu DR, McDavid AN, Kongpachith S, et al. T cell-dependent affinity maturation and innate 
immune pathways differentially drive autoreactive B cell responses in rheumatoid arthritis. 
Arthritis Rheumatol 2018; 70: 1732–44. [PubMed: 29855173] 

27. Mikuls TR, Payne JB, Yu F, et al. Periodontitis and porphyromonas gingivalis in patients with 
rheumatoid arthritis. Arthritis Rheumatol 2014; 66: 1090–100. [PubMed: 24782175] 

28. Konig MF, Abusleme L, Reinholdt J, et al. Aggregatibacter actinomycetemcomitans-induced 
hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Sci Transl 
Med 2016; 8: 369ra176.

29. Eriksson K, Nise L, Alfredsson L, et al. Seropositivity combined with smoking is associated with 
increased prevalence of periodontitis in patients with rheumatoid arthritis. Ann Rheum Dis 2018; 
77: 1236–8. [PubMed: 28986364] 

Orange et al. Page 10

N Engl J Med. Author manuscript; available in PMC 2021 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Study Overview and Validation of In-Home Assessments of Disease Activity and Gene 
Expression.
Panel A shows an overview of the collection of clinical data and specimens over time. The 

Routine Assessment of Patient Index Data 3 (RAPID3) questionnaire and the Disease 

Activity Score 28 (DAS28) were used to assess disease activity weekly at home and monthly 

in the clinic, respectively. Green indicates the time leading up to a flare, and purple the time 

during a flare. Panel B shows a scatterplot (with locally weighted smoothing) of the 

relationship between the change in scores on the RAPID3 questionnaire and the DAS28 in 

the index patient. DAS28 scores range from 2 to 10, with higher scores indicating more 

disease activity. RAPID3 scores range from 0 to 30, with higher scores indicating more 

severe disease. The blue line represents the point estimates, and the shaded area represents 

the 95% confidence interval. Panel C shows neutrophil, lymphocyte, and monocyte counts in 

paired clinical complete blood counts conducted with blood drawn by venipuncture as 

compared with the CIBERSORTx-inferred blood counts from RNA sequencing (RNA-seq) 

data obtained with the use of fingerstick blood specimens (38 paired specimens). The shaded 

areas represent the 95% confidence intervals.
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Figure 2. Clinical and Transcriptional Characteristics of Rheumatoid Arthritis Flares in the 
Index Patient.
Panel A shows disease activity (measured with the RAPID3 questionnaire; 356 scores 

included in the analysis) over the course of 4 years in the index patient. Panel B shows a 

volcano plot of differential gene expression during flares (46 specimens) and during baseline 

(33 specimens), with significance (−log10 false discovery rate [FDR]) plotted against the 

log2 relative expression (flare:baseline ratio). Gray points indicate genes with no significant 

difference in expression between flares and baseline (with FDR >0.1), red indicates genes 

with significantly increased expression during a flare (FDR <0.1 and log2 expression ratio 

>0), and blue indicates genes with significantly decreased expression during a flare (FDR 

<0.1 and log2 expression ratio <0). Panels C and D show pathways enriched among genes 

with significantly increased (Panel C) or decreased (Panel D) expression during a flare 

relative to baseline. The dashed line represents the threshold for significance (FDR <0.05, or 

−log10 FDR >1.3). NLS denotes nuclear localization signal.
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Figure 3. Transcriptional Characteristics of Immune Activation before Symptom Onset in 
Rheumatoid Arthritis Flares.
Panel A shows RAPID3 disease-activity scores over time (measured in days). The box 

represents disease activity from day −56 to day 28 relative to the start of a flare (day 0). 

Panel B shows hierarchical clustering of z scores of 2791 significantly differentially 

expressed genes over time. Significant clusters are labeled by color. Antecedent cluster 2 

(AC2) and AC3 refer to clusters of genes with expression that changed before flares. Panel C 

shows a detailed representation of the cluster 1, AC2, and AC3 genes depicted in Panel B 

over the time to a flare. Panel D shows the mean standardized cluster gene expression over 

the time to a flare. Light gray lines represent expression of individual genes in the cluster. 

The dashed horizontal line represents the mean baseline gene expression (weeks −8 to −4). 

Panel E shows pathways enriched in cluster 1, AC2, and AC3. The dashed vertical line 

represents the threshold for significance (FDR <0.05, or −log10 FDR >1.3).
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Figure 4. Expression of AC3 Genes in PRIME Cells.
Panel A shows synovial cell subtype marker genes in clusters identified in blood. 

Enrichment scores of 200 single-cell RNA-seq (scRNA-seq) marker genes from 18 synovial 

subset cell types are shown. The dashed vertical line represents the threshold for significance 

(FDR <0.05, or −log10 FDR >1.3). ABC denotes age-associated B cell, CTL cytotoxic T 

lymphocyte, IFN interferon, Tph/fh T peripheral helper/follicular helper, Treg T regulatory. 

Panel B shows the means of the standardized expression of genes that are common to 

synovial sublining fibroblasts (CD34+DKK+HLA−DRA+ fibroblasts) and AC3 in blood 

over the time to a flare (the dashed vertical line represents the start of a flare); I bars 

represent 95% confidence intervals. For standardization, the mean expression level for each 

gene was calculated across flares per week and then normalized across weeks. Panel C 

shows a Venn diagram of the numbers of AC3 genes that decreased during flares in the index 

patient (Patient 1) and the three additional patients (Patients 2, 3, and 4). Shading is used to 

highlight overlap between the index patient and the other patients. Panel D shows the log2 

relative expression ratio for AC3 genes in PRIME cells (flow-sorted CD45−CD31−PDPN+ 

cells) as compared with hematopoietic cells (flow-sorted CD45+) and in stained peripheral 

blood mononuclear cells (not flow sorted) as compared with hematopoietic cells (flow-

sorted CD45+) as a technical control for the stress of flow sorting. The box-and-whisker 

plots indicate the median, interquartile range, and 1.5 times the interquartile range; the P 

value is from a Mann–Whitney U test.
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Figure 5. Model of Blood and Synovial Gene-Expression Changes before and during Rheumatoid 
Arthritis Flares.
Inflammatory signals activate naive B cells (AC2), which in turn activate PRIME cells 

(AC3); these cells harbor the signature of synovial sublining fibroblast genes. According to 

this model, PRIME cells demarginate and are increased in blood before a flare and then 

decrease just after symptom onset; these cells or their progeny are increased in inflammatory 

synovium in patients with rheumatoid arthritis, where they contribute to and may be 

sufficient to cause joint inflammation.
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