
Research Article

For reprint orders, please contact: reprints@futuremedicine.com

Methylation of immune-regulatory cytokine
genes and pancreatic cancer outcomes

Brian Z Huang1,2,3 , Alexandra M Binder*,1,4, Catherine A Sugar5,6, Chun R Chao2,

Veronica Wendy Setiawan3,7 & Zuo-Feng Zhang1

1Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA 90095, USA
2Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA 91101, USA
3Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
4Department of Cancer Epidemiology, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
5Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA 90095, USA
6Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
7Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
*Author for correspondence: abinder@cc.hawaii.edu

Aim: Given the immunosuppressive nature of pancreatic cancer, we investigated the relationship between
epigenetic modification of immune-regulatory cytokine genes and pancreatic cancer outcomes. Materials
& methods: We evaluated DNA methylation of 184 pancreatic tumor samples from The Cancer Genome
Atlas for 111 CpG loci in seven cytokine genes: IL10, IL6, IL8, TGFβ1, TGFβ2, TGFβ3 and TNF. We used Cox
regression to evaluate the associations between methylation and overall survival, disease-specific survival
and disease progression (α = 0.05). Results: Poorer survival was associated with increased methylation in
fifteen CpG probes in TGFβ1, TGFβ2, TGFβ3 and TNF. We also detected improved outcomes for three loci in
IL10, IL8 and IL6. Conclusion: Epigenetic regulation of cytokine-related gene expression may be associated
with pancreatic cancer outcomes.
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Pancreatic cancer is a highly lethal cancer that is currently the third most common cancer-related death in the USA [1].
The 5-year survival rate is only 9% and over 90% of cases die from this aggressive malignancy [1,2]. One reason for
these poor outcomes is the fact that pancreatic cancer cells are capable of modulating the immune response and
establishing an immunosuppressive microenvironment that promotes tumor growth [3]. In this immune-inhibitory
state, increased levels of T regulatory cells and myeloid derived suppressor cells impair the antitumor activity of
effector cells, such as cytotoxic CD8+ T cells, natural killer cells and dendritic cells [3]. In addition, helper CD4+ T
cells transition from a Th1 phenotype, which facilitates tumor-eliminating processes, to a Th2 phenotype, which
supports more tumor-tolerating immune responses [3–5]. Current literature suggests that pancreatic cancer patients
with higher levels of T regulatory cells [6], myeloid derived suppressor cells [7] and Th2-type T helper cells [8] have
worse prognoses, while those with higher concentrations of immune effector cells have increased survival [3,9,10].

These changes in immune function are influenced in part by the aberrant expression and production of regulatory
cytokines. Pancreatic tumor cells have been found to directly secrete the anti-inflammatory cytokines IL-10 and
TGF-β, which skew T helper cell differentiation toward the Th2 phenotype and suppress tumor-killing Th1
responses [5,11]. Circulating levels of pro-inflammatory cytokines (e.g., IL-6, IL-8, TNF-α) have also been observed
to be elevated in pancreatic cancer patients compared to normal controls [12–15]. Other studies have further
detected increased genetic and protein expression of both pro-inflammatory (e.g., IL-1β, IL-6, IL-8, TNF-α) and
anti-inflammatory (e.g., IL-10, TGF-β, IL-11) cytokines by pancreatic cancer cells [13,16–18]. Given the complex
interplay between cytokines and immune function, the expression and serum levels of various cytokines have been
found to be prognostic markers of pancreatic cancer progression in some small studies [13–15,17–23].
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While serum and mRNA levels of cytokines have been evaluated in regards to survival, there is limited information
as to whether prognosis is also affected by the epigenetic regulation of associated gene expression. DNA methylation
is a form of epigenetic mark that involves the addition of a methyl group to cytosine bases at CpG dinucleotides.
Aberrant DNA methylation patterns have been implicated in the development and progression of several cancers,
perhaps by inducing genomic instability and altering gene expression to influence the tumor microenvironment [24–

28]. Though current research on DNA methylation and pancreatic cancer has been fairly nascent, past studies have
identified potential epigenetic biomarkers or methylation signatures of pancreatic cancer risk and progression [29–35].
However, these studies have been primarily epigenome-wide association studies or candidate gene studies that did
not focus on genes related to the immune response. Hence, it is unknown whether the relationship between immune
dysfunction and pancreatic cancer progression and mortality is attributed to the atypical methylation of cytokine-
related genes. Furthermore, it has not been evaluated whether epigenetic regulation in these immune-regulatory
genes impacts clinical outcomes through modifications in genetic expression. Discovering and understanding these
relationships could potentially identify methylation biomarkers of survival and progression and allow for the
development of novel methylation-targeted therapies.

Materials & methods
Data source
We performed a retrospective cohort study of pancreatic cancer patients from The Cancer Genome Atlas (TCGA).
TCGA is a large-scale collaboration between the National Cancer Institute and the National Human Genome
Research Institute that provides complete genomic sequencing and epigenetic data on 11,000 patients across 33
different tumor types. It involves the participation of twenty institutions across the USA and Canada and includes
clinical data and comprehensive genomic profiling of both tumor and matched normal tissues [36]. For this study,
we included all patients with a primary pancreatic cancer tumor sample (N = 184). All de-identified data was
downloaded from TCGA using the TCGAbiolinks package in R [37].

Methylation exposures
DNA methylation profiles of TCGA pancreatic cancer samples were measured using the Illumina Infinium
HumanMethylation450 (HM450) BeadChip methylation assay [38,39]. This assay measures the methylated and
unmethylated signal intensities of over 450,000 CpG dinucleotide sites across the genome, which are enriched
for regulatory elements and promoter regions [40]. Raw methylation intensities downloaded from TCGA were
preprocessed using normal-exponential out-of-band (noob) background correction with dye-bias normalization
and converted to β-values with the minfi package [38,41]. β-values were calculated from the corrected methylated
(ms) and unmethylated (mu) signal intensities using the formula β = ms/(ms+mu) and range from 0 to 1, with
larger values indicating higher levels of methylation [38].

We filtered CpG probes by dropping those that overlapped with single nucleotide polymorphisms (SNPs) with
a minor allele frequency of ≤5% based on the CEU population [42]. These SNPs can interfere with probe binding,
as well as influence methylation signal intensities since the HM450 assay can erroneously detect the common C
to T polymorphism as a change in methylation [40,43]. We also dropped loci that had poor hybridization using the
updated characterization file for the HM450 assay developed by Zhou et al. [44].

As a sensitivity analysis, we performed additional pre-processing and calculated β-values using the newly developed
SeSAMe pipeline, which uses the P-value with out-of-band array hybridization (pOOBAH) method to further adjust
for poorly performing probes with failed hybridization [45].

CpG probe selection
We conducted a candidate gene approach, focusing on CpG loci in proximity to genes coding for cytokines that
have been associated with pancreatic cancer survival in previous studies: IL10, IL6, IL8, TGFβ1, TGFβ2, TGFβ3
and TNF. We identified 113 total CpG loci across these seven genes from the annotation file of the HM450
assay [40]. One probe in TGFβ2 was dropped due to failed hybridization and one probe in TGFβ3 was dropped
due to SNP overlap, leaving a total of 111 CpG loci (six for IL10, 11 for IL6, 2 for IL8, 25 for TGFβ1, 23 for
TGFβ2, 16 for TGFβ3 and 28 for TNF).
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Assessment of genetic regulation & expression
Genetic regulatory elements associated with the selected CpG loci were determined using the core 15-state model of
chromatin states for the pancreas tissue epigenome developed by the NIH Roadmap Epigenomics Mapping Con-
sortium [46]. The core 15-state model was created with ChromHMM, which establishes chromatin state signatures
using multivariate Hidden Markov Models [47] and indicates whether the genetic region is associated with regulatory
elements, such as active transcription start sites (TSS), weak transcription, enhancers and heterochromatin [46].
Chromatin states were mapped to the CpG loci using the GenomicRanges package [48].

To evaluate whether the methylation sites were associated with changes in gene expression, we also downloaded
Level 3 mRNA expression data from TCGA [49]. Raw expression reads were evaluated with RESM and standardized
using the upper-quartile normalization approach [50].

Outcomes
Our outcomes of interest were overall survival, pancreatic cancer-specific survival and progression-free interval. For
overall survival, patients were considered to have the event if they died from any cause. For pancreatic cancer-specific
survival, events were defined as having died with the tumor or having pancreatic cancer listed as the cause of death.
This outcome was missing for seven individuals due to missing data on tumor status. For progression-free interval,
new tumor events were defined as progression of disease, local recurrence, distant metastasis, new primary tumors or
disease-specific death. Data on these outcome end points were obtained from the standardized TCGA Pan-Cancer
Clinical Data Resource (TCGA-CDR) [51].

Statistical analysis
Baseline characteristics were compared across alive and deceased patients using a Mann–Whitney U test for follow-
up time, t-tests for age and tumor purity, and chi-square tests for all other variables. Four patients were missing
ethnicity, which was predicted using the SNP and type I color channel switching probes on the HM450 array via
the SeSAMe package [44,45]. All four individuals were predicted to be white.

We evaluated methylation at three levels of analysis: at the level of the individual CpG locus, at the level
of each chromatin state per gene, and at the level of the entire gene. For the chromatin state- and gene-level
analyses, we used the average methylation across all CpG loci in the given region as the exposure. For all units
of analysis, the relationship between methylation and expression of its respective gene was assessed by calculating
the Spearman’s correlation coefficient (ρ). We used Cox proportional hazards regression to assess the relationship
between methylation and our three outcomes (overall survival, disease-specific survival and progression-free interval).
Due to variation in methylation levels across CpG loci, we standardized methylation at each CpG site and evaluated
each standard deviation increase in β-value as the unit of change. Patients were followed from time of diagnosis to
the earliest of the given outcome event, last contact, or death. Tied event times were handled by calculating the
exact likelihood.

We used independent surrogate variable analysis (ISVA) to identify potential batch effects and measurement error
in confounders that may bias results [43,52]. In this step, the residual variation in DNA methylation across the array
that was not associated with the outcome was first decomposed into independent components. Individuals with
missing confounder information were dropped during the development of the independent components. Next,
independent surrogate variables (ISVs) were constructed from the independent components that were significantly
associated (using an alpha level of 0.05) with our confounders of interest: age (continuous), gender (male vs
female), stage (I, II, III/IV), smoking (never, former, current), receipt of radiation therapy (yes vs no), receipt of
chemotherapy (yes vs no) and sample plate. Since we planned to adjust for age, gender and stage in all fully adjusted
models, we selected the ISVs that were significantly associated with any of the remaining potential confounders
(smoking, receipt of radiation, receipt of chemotherapy or sample plate) as covariates in our models. ISVA identified
eight total independent surrogate variables, six of which were included in our final models.

For each unit of analysis (CpG locus, chromatin state, or gene), we ran one model minimally adjusted for age and
gender, and a fully adjusted model with age, gender, stage and the six ISVs as covariates. To evaluate the impact of
probes with failed hybridization, we repeated all analyses using the β-values preprocessed by the SeSAMe pipeline. As
there were no differences in the results for two β-value datasets, only the results from the noob-processed dataset are
presented. To assess the influence of tumor purity, we performed a sensitivity analysis by re-running all models for
overall survival with ABSOLUTE tumor purity score as an additional covariate. ABSOLUTE tumor purity scores
for pancreatic cancer samples were obtained from the TCGA Research Network [53]. As a majority of the cohort
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Table 1. Baseline characteristics of 184 patients with primary tumor samples in The Cancer Genome Atlas, by vital status.
Characteristic Total (n = 184) Alive (n = 85) Deceased (n = 99) p-value†

n % n % n %

Follow-up time (mos), median (IQR) 15.6 (9.3, 22.6) 17.2 (11.3, 31.7) 13.1 (7.7, 19.9) �0.01

Age, mean (SD) 64.8 (11.0) 63.2 (10.5) 66.1 (11.3) 0.07

Gender 0.31

– Female 82 44.6 34 40.0 48 48.5

– Male 102 55.4 51 60.0 51 51.5

Race 0.55

– White 166 90.2 77 90.6 89 90.0

– Black 7 3.8 2 2.4 5 5.0

– Asian 11 6.0 6 7.0 5 5.0

Stage 0.21

– I 21 11.4 14 16.5 7 7.1

– II 151 82.1 64 75.3 87 87.9

– III/IV 9 4.9 4 4.7 5 5.0

– Missing 3 1.6 3 3.5 0.0 0.0

Smoking status 0.55

– Never 69 37.5 33 38.8 36 36.4

– Former 60 32.6 29 34.1 31 31.3

– Current 20 10.9 7 8.3 13 13.1

– Missing 35 19.0 16 18.8 19 19.2

Received radiation 0.09

– No 120 65.2 49 57.7 71 71.7

– Yes 49 26.6 29 34.1 20 20.2

– Missing 15 8.2 7 8.2 8 8.1

Received chemotherapy 0.29

– No 41 22.3 15 17.6 26 26.3

– Yes 133 72.3 64 75.3 69 69.7

– Missing 10 5.4 6 7.1 4 4

Tumor purity 0.11

– Mean (SD) 0.35 (0.18) 0.33 (0.20) 0.37 (0.17)

– Missing 35 19.0 17 20.0 18 18.2

†Mann-Whitney U test for follow-up time, t-test for age and tumor purity, � 2 test for all other variables.

was white, we also conducted sensitivity analyses for overall survival among only white individuals to evaluate any
potential differences by race/ethnicity.

For the chromatin state- and gene-level analyses, we performed additional subgroup analyses for overall survival
stratified by gender and smoking (ever vs. never), as there is evidence of poorer pancreatic cancer survival among
males [54] and smokers [55]. Heterogeneity was assessed using a separate model with a product term for methylation
and the stratifying variable.

Schoenfeld residuals were used to confirm no violation of the proportional hazards assumption. Martingale
residuals, deviance residuals and δ-β values were reviewed to examine model fit. Wald tests with an alpha level of
0.05 were used to determine significance. All analysis was performed in R version 3.5.1 and all figures were created
using the Gviz package [56].

Results
Our sample included 184 pancreatic cancer cases with primary tumor samples in The Cancer Genome Atlas database
(Table 1). The median length of follow-up (censored at death or last contact) was 15.6 months (interquartile range:
9.3–22.6) and was longer for patients who were still alive (median 17.2 months) compared to those who were
deceased (median: 13.1 months; p < 0.01). The mean age of pancreatic cancer diagnosis was 64.8 years (standard
deviation [SD]: 11.0 years). The cohort was primarily white (90.2%) and consisted of 82 females (44.6%) and 102
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males (55.4%). Over 90% of patients had tumors of early stage (Stage I/II). ABSOLUTE tumor purity data [53]

was available for 149 samples (81%), with a mean score of 0.35 (SD 0.18). The pancreatic cancer tumor samples
were spread across twelve different plates in the methylation assay. By the end of follow-up, there were 99 overall
deaths (53.8%), 78 deaths due to pancreatic cancer (42.4%) and 109 disease progression events (59.2%).

CpG-level analyses
The 111 CpG probes of interest were associated with a variety of chromatin states in pancreas tissue. Flanking
active TSS (28.0%) were the most common, followed by quiescent/low (26.1%), weak transcription (19.8%),
active TSS (17.1%), enhancers (7.2%), strong transcription (0.9%) and weak repressed polycomb (0.9%).

Increased DNA methylation at several loci in TGFβ1, TGFβ2 and TGFβ3 was significantly associated with
our three clinical end points. Each standard deviation increase in methylation at cg09926389 (hazard ratio [HR]:
1.34; 95% confidence interval [CI]: 1.03–1.73), located within the TGFβ1 gene body, and cg04547554 (HR:
1.19; 95% CI: 1.00–1.43), cg23275502 (HR: 1.18; 95% CI: 1.01–1.37), and cg24767336 (HR: 1.30, 95% CI:
1.13–1.50), all located in proximity to the TGFβ1 TSS, was associated with poorer overall survival (Table 2,
Supplementary Figure 1). The HRs for these four CpG loci were similar for disease-specific survival (Table 2).
In addition, each standard deviation increase in DNA methylation β-value at cg03313751, near the TGFβ1 gene
body, was associated with a 21–22% increased hazard for all three outcomes, which was borderline significant
for overall (HR: 1.21; 95% CI: 0.99–1.47) and disease-specific mortality (HR: 1.22; 95% CI: 0.98–1.53) and
statistically significant for disease progression (HR: 1.22; 95% CI: 1.02–1.47). Finally, increased methylation at
cg03630756, near the TGFβ1 gene body, was associated with a decreased hazard of pancreatic cancer-specific death
(HR: 0.64; 95% CI: 0.42–0.96). Methylation at all of these sites had a weak to moderate correlation with TGFβ1
gene expression (Table 2).

Within the TGFβ2 gene body, each standard deviation increase in methylation at cg07810039 was associated with
a 19–26% decreased hazard for all end points, which was borderline significant for overall mortality (HR: 0.81;
95% CI: 0.64–1.01) and statistically significant for disease-specific mortality (HR: 0.74; 95% CI: 0.57–0.97) and
disease progression (HR: 0.79; 95% CI: 0.64–0.99). Methylation at this locus had a moderate negative correlation
with TGFβ2 gene expression (ρ = -0.436; p < 0.001, Supplementary Figure 2). Furthermore, increased methylation
at cg16967578, which was not correlated with TGFβ2 gene expression (ρ = 0.099; p = 0.190), was associated with
a 45–52% increased hazard for all three outcomes (Table 2). Higher methylation at cg20698667 was associated
with elevated hazards of overall (HR: 1.34, 95% 1.04–1.74) and pancreatic cancer-specific mortality (HR: 1.36;
95% CI: 1.03–1.81), and had a weak negative correlation with expression (ρ = -0.173; p = 0.020). Near the TGFβ2
TSS, each standard deviation increase in methylation at cg16361301 was associated with a 23% higher hazard of
disease progression (HR: 1.23; 95% CI: 1.01–1.51).

For TGFβ3, each standard deviation increase in the methylation β-value at cg16292972, located near the TGFβ3
TSS, was associated with a 26% elevated hazard of overall mortality (HR: 1.26; 95% CI: 1.01–1.57). However,
methylation at this probe was not correlated with TGFβ3 expression (ρ = 0.071; p = 0.350, Supplementary Figure
3). For cg24696715, increased methylation had a moderate negative correlation with TGFβ3 gene expression
(ρ = -0.479; p < 0.001) and was associated with a decreased hazard of overall (HR: 0.80; 95% CI: 0.63–1.01) and
pancreatic cancer-specific mortality (HR: 0.76; 95% CI: 0.58–0.99). Higher methylation at cg06958766, which
had a weak negative correlation with expression (ρ = -0.178; p = 0.020), was associated with a greater hazard of
disease progression (HR: 1.32; 95% CI: 1.05–1.67).

In TNF, five CpG sites (cg17741993, cg20477259, cg09637172, cg05952498, cg02137984), all associated
with either weak transcription or quiescent/low chromatin states, were associated with increased hazards of overall
and disease-specific mortality (Table 2, Supplementary Figure 4). The HRs for these associations were stronger
for disease-specific mortality (ranging from 1.35 to 1.55) compared to overall mortality (ranging from 1.26
to 1.38). For cg17741993 and cg05952498, the association for overall survival was borderline statistically significant
(cg17741993: HR: 1.26; 95% CI: 0.98–1.62; cg05952498: HR: 1.34; 95% CI: 0.98–1.85), while the association
for disease-specific survival was statistically significant (cg17741993: HR: 1.35; 95% CI: 1.02–1.78; cg05952498:
HR: 1.55; 95% CI: 1.10–2.20). Methylation at all of these CpG loci had moderate inverse correlations with TNF
expression (Table 2).

Elevated methylation in three CpG loci across IL10, IL8 and IL6 were inversely associated with our clinical
outcomes. Higher methylation in cg14789529, located near the IL10 three prime untranslated region (3′ UTR),
had a weak negative correlation with expression (ρ = -0.229; p < 0.001) and was associated with reduced hazards
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of overall mortality (HR: 0.70; 95% CI: 0.56–0.89), disease-specific mortality (HR: 0.68; 95% CI: 0.52–0.88)
and disease progression (HR: 0.80; 95% CI: 0.64–1.00, Supplementary Figure 5). For cg04392234, in the 3′ UTR
region of IL8, each standard deviation increase in the methylation β-value was associated with a borderline 30%
decreased hazard of disease-specific death (HR: 0.70; 95% CI: 0.48–1.02) and a significant 49% decreased hazard
of disease progression (HR: 0.51; 95% CI: 0.36–0.72). Finally, increased methylation at cg26061582, near the IL6
TSS, had a lower hazard of overall mortality (HR: 0.66; 95% CI: 0.44–0.98, Supplementary Figure 6). HRs for
the remaining CpG loci are presented in Supplementary Table 1.

Chromatin & gene-level analyses
When evaluating the average methylation levels across chromatin states, we observed that higher methylation in
weak transcription regions in TNF were associated with higher hazards of overall (HR: 1.43; 95% CI: 1.04–1.97)
and pancreatic cancer-specific mortality (HR: 1.56; 95% CI: 1.10–2.21). We also found that increased methylation
in weak transcription regions in IL10 were associated with reduced hazards of overall mortality (HR: 0.70; 95% CI:
0.56–0.89), disease-specific mortality (HR: 0.68; 95% CI: 0.52–0.88) and disease progression (HR: 0.80; 95% CI:
0.64–1.00). For average methylation across entire genes, higher methylation in IL8 was associated with a reduced
hazard of disease progression (HR: 0.70; 95% CI: 0.54–0.91). There was no association for average methylation
across any of the other genes (Table 3).

In the subgroup analyses, higher methylation in loci located on the enhancer region of IL6 was associated with an
increased hazard of overall death among never smokers (HR: 1.58; 95% CI: 1.02–2.46), and a decreased hazard of
overall death among ever smokers (HR: 0.56; 95% CI: 0.37–0.84; p-interaction < 0.01). For loci in the active TSS
of TGFβ2, higher methylation was associated with increased overall mortality among ever smokers (HR: 1.40; 95%
CI: 1.00–1.97), but not among never smokers (HR: 0.86; 95% CI: 0.51–1.27; p-interaction = 0.04). Furthermore,
higher average methylation in IL8 was associated with a decreased hazard of overall mortality among females (HR:
0.63; 95% CI: 0.41–0.95), but not among males (HR: 1.19; 95% CI: 0.83–1.72; p-interaction = 0.03). There was
no other significant interaction across smoking or sex for the other genomic regions (data not shown).

Sensitivity analyses
We observed comparable results for overall survival when further adjusting for tumor purity or performing analyses
among only whites (Supplementary Table 2). The HRs for methylation in individual CpG loci, chromatin states
and entire genes were generally consistent across the different analytical methods. The only exception was for
cg23275502, near the TSS in TGFβ1, which had an unstable HR in the tumor purity sensitivity analyses due
to small cell bias and a tight range of methylation among nonwhites. When we re-ran the models for this CpG
locus among only whites, we did not observe any major differences in the HRs between the main and tumor purity
sensitivity analyses (Supplementary Table 2). Likewise, there were no major changes in the HRs for the models
assessing average methylation across chromatin states and entire genes (Supplementary Table 3).

Since this was a candidate gene approach where we treated each gene as a unique hypothesis, we did not perform
correction for multiple comparisons for the main CpG-level analyses. However, if we were to apply the Benjamini
and Hochberg procedure to control the false discovery rate (FDR) at a q-level of 0.05 in each gene [57], only
cg14789529 in IL10 and cg24767336 in TGFβ1 would still be considered significant for overall and disease-
specific survival, and cg04392234 in IL8 would still be significant for progression-free interval (Supplementary
Table 1). On the other hand, several loci across IL10, TGFβ1, TGFβ2, TGFβ3 and TNF in the minimally adjusted
models for overall survival would still meet the FDR-corrected threshold for significance (Supplementary Table 2).

Discussion
In this study, we examined the associations between DNA methylation in proximity to cytokine-related genes and
overall survival, disease-specific survival and progression-free interval among pancreatic cancer patients from TCGA.
We observed significant associations for all three outcomes for methylation in several CpG probes across TGFβ1,
TGFβ2 and TGFβ3. In addition, elevated methylation in five CpG loci in TNF was associated with increased
overall and disease-specific mortality, while higher methylation in CpG loci across IL10, IL6 and IL8 appeared to
have a protective association. These results may improve our understanding of cytokine-related mechanisms and
can contribute toward the development of survival models and targeted therapy for pancreatic cancer.

TGF-β is an immunosuppressive cytokine that has been found to be directly secreted by pancreatic cancer tumor
cells [5]. Past literature has shown that higher serum concentrations of TGF-β are associated with lower pancreatic
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Table 3. Hazard ratios and 95% confidence intervals for the associations between average methylation across CpG loci
in specific genomic regions and overall survival, disease-specific survival and progression-free interval.
Genomic region N CpG

loci
�-value,
mean (SD)

Expression Overall survival Disease-specific survival Progression-free interval

Spearman’s � p-value HR (95% CI)† p-value HR (95% CI)† p-value HR (95% CI)† p-value

IL10

Entire gene 6 0.79 (0.07) -0.479 �0.001 0.94 (0.76, 1.17) 0.577 0.88 (0.70, 1.12) 0.298 0.91 (0.75, 1.12) 0.368

Weak transcription 1 0.75 (0.09) -0.254 0.001 0.70 (0.56, 0.89) 0.003 0.68 (0.52, 0.88) 0.003 0.80 (0.64, 1.00) 0.050

Quiescent/low 5 0.79 (0.07) -0.499 �0.001 1.01 (0.82, 1.26) 0.911 0.95 (0.75, 1.19) 0.641 0.95 (0.77, 1.16) 0.584

TGFβ2

Entire gene 23 0.22 (0.03) -0.321 �0.001 0.99 (0.77, 1.28) 0.960 1.06 (0.81, 1.39) 0.660 1.18 (0.93, 1.50) 0.180

Active TSS 8 0.05 (0.02) -0.277 �0.001 1.00 (0.80, 1.26) 0.972 1.02 (0.79, 1.30) 0.893 1.16 (0.94, 1.42) 0.167

Flanking active TSS 8 0.07 (0.05) -0.350 �0.001 0.96 (0.74, 1.25) 0.776 1.01 (0.77, 1.34) 0.936 1.24 (0.99, 1.57) 0.067

Weak transcription 5 0.61 (0.08) -0.377 �0.001 0.97 (0.78, 1.20) 0.768 1.02 (0.81, 1.30) 0.849 1.00 (0.82, 1.22) 0.996

Enhancers 1 0.35 (0.13) 0.132 0.094 1.11 (0.88, 1.39) 0.383 1.14 (0.89, 1.47) 0.307 1.15 (0.93, 1.43) 0.197

Quiescent/low 1 0.72 (0.13) 0.311 �0.001 1.07 (0.84, 1.36) 0.584 1.04 (0.80, 1.36) 0.753 0.97 (0.77, 1.22) 0.793

IL8‡

Entire gene 2 0.48 (0.04) 0.009 0.915 0.89 (0.69, 1.14) 0.358 0.76 (0.57, 1.00) 0.052 0.70 (0.54, 0.91) 0.008

TNF

Entire gene 28 0.60 (0.07) -0.443 �0.001 1.14 (0.88, 1.48) 0.318 1.19 (0.90, 1.59) 0.225 1.04 (0.82, 1.32) 0.756

Weak transcription 9 0.78 (0.07) -0.390 �0.001 1.43 (1.04, 1.97) 0.026 1.56 (1.10, 2.21) 0.013 1.08 (0.82, 1.43) 0.580

Quiescent/low 19 0.52 (0.07) -0.417 �0.001 1.05 (0.82, 1.33) 0.714 1.08 (0.82, 1.41) 0.592 1.02 (0.81, 1.28) 0.857

IL6

Entire gene 11 0.43 (0.06) -0.032 0.689 0.96 (0.77, 1.21) 0.733 0.95 (0.74, 1.23) 0.717 0.99 (0.80, 1.22) 0.898

Flanking active TSS 4 0.39 (0.09) -0.328 �0.001 1.05 (0.82, 1.33) 0.701 0.99 (0.75, 1.30) 0.941 1.03 (0.82, 1.28) 0.805

Enhancers 4 0.27 (0.05) 0.191 0.015 0.91 (0.76, 1.10) 0.339 0.93 (0.75, 1.16) 0.537 0.96 (0.79, 1.15) 0.644

Weak repressed
PolyComb

1 0.50 (0.17) 0.274 �0.001 0.88 (0.72, 1.08) 0.215 0.88 (0.70, 1.11) 0.294 0.91 (0.75, 1.10) 0.325

Quiescent/low 2 0.77 (0.08) 0.049 0.540 1.14 (0.85, 1.53) 0.387 1.21 (0.85, 1.70) 0.290 1.14 (0.86, 1.52) 0.372

TGFβ3

Entire gene 16 0.39 (0.05) -0.211 0.007 0.91 (0.72, 1.15) 0.441 0.93 (0.72, 1.20) 0.585 1.12 (0.90, 1.38) 0.317

Active TSS 10 0.31 (0.04) -0.160 0.043 0.98 (0.78, 1.24) 0.879 1.00 (0.77, 1.28) 0.970 1.17 (0.94, 1.46) 0.169

Flanking active TSS 5 0.47 (0.08) -0.221 0.005 0.86 (0.69, 1.09) 0.220 0.88 (0.67, 1.15) 0.342 1.05 (0.84, 1.30) 0.676

Strong transcription 1 0.81 (0.03) -0.264 0.001 0.88 (0.72, 1.09) 0.244 0.87 (0.69, 1.09) 0.211 1.01 (0.80, 1.26) 0.955

TGFβ1

Entire gene 25 0.32 (0.02) 0.336 �0.001 1.20 (0.94, 1.52) 0.142 1.27 (0.96, 1.67) 0.090 1.09 (0.86, 1.38) 0.478

Active TSS 1 0.08 (0.04) 0.105 0.184 0.98 (0.71, 1.36) 0.915 0.94 (0.67, 1.33) 0.741 0.83 (0.60, 1.15) 0.260

Flanking active TSS 14 0.04 (0.01) -0.384 �0.001 1.11 (0.86, 1.45) 0.418 1.15 (0.86, 1.54) 0.351 0.99 (0.74, 1.32) 0.945

Weak transcription 7 0.70 (0.06) 0.480 �0.001 1.17 (0.93, 1.48) 0.174 1.26 (0.96, 1.65) 0.096 1.11 (0.88, 1.41) 0.379

Enhancers 3 0.78 (0.03) -0.161 0.042 0.96 (0.77, 1.20) 0.720 0.91 (0.71, 1.16) 0.445 0.99 (0.79, 1.23) 0.922

†Fully adjusted models adjusted for age, sex, race, stage and six surrogate variables.
‡Both CpG loci for IL8 were associated with the Quiescent/Low chromatin state.
Models were run using complete case analysis. Maximum sample sizes were 181 for overall survival, 174 for disease-specific survival and 181 for progression-free interval.
TSS: Transcription start site.

cancer survival [17,21,58]. In our study, we observed that higher methylation in ten loci across TGFβ1, TGFβ2 and
TGFβ3 was associated with increased hazards of overall and disease-specific mortality, while methylation in three
loci was associated with decreased disease-specific mortality. DNA methylation in TGF-β genes and pancreatic
cancer survival have been evaluated in two previous studies, which actually found longer survival among individuals
with greater methylation in TGFβ2 [34,35]. Both of these studies, however, had patient samples and methods
that were dissimilar from the present analysis. In the first study, which used a subset of TCGA pancreatic tumor
samples, the authors evaluated overall TGFβ2 gene methylation and separated individuals into short (<1 year)
and long (>2 year) survival groups [35]. In the other study, the researchers found that higher methylation in one
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unspecified CpG site in TGFβ2 was associated with improved survival, but the results were not fully adjusted and
were only based on a small sample of eleven pancreatic cancer tumors [34]. Given these differences in study design,
future research with more consistent methods are needed to validate the current findings.

Among the TGFβ1, TGFβ2 and TGFβ3 CpG sites that were associated with mortality in our study, the
strongest associations were observed among loci located near regions of weak transcription and TSS. However,
the methylation of the CpG loci in these regions had weak to moderate correlations with expression in their
respective genes. One possible explanation for this scenario could be that methylation at these particular loci may
not account for all epigenetic regulation of gene expression. Additionally, there has been limited literature on the
association between TGF-β gene expression and pancreatic cancer mortality. The only previous study examining
this relationship, also using TCGA data, found enhanced survival among patients with TGFβ1 overexpression [22].

TNF-α is a pro-inflammatory cytokine that has been observed to be involved in the progression and invasiveness
of pancreatic tumors [13,59]. Past literature has shown that pancreatic cancer patients have higher blood levels of both
TNF expression and TNF-α concentrations compared to controls [12,60]. In our study, higher methylation in five
CpG loci in TNF was associated with reduced overall and pancreatic cancer-specific survival. Methylation at all of
these sites was also negatively correlated with TNF expression. Previous DNA methylation studies on TNF are sparse
and have focused on genes in the TNF receptor superfamily, which observed higher methylation in TNFRSF1A in
the leukocyte DNA of pancreatic cancer patients [61] and lower methylation for TNFRSF10C in pancreatic cancer
cell lines [62]. Research on TNF expression and pancreatic cancer mortality has also been somewhat inconsistent.
While one prior study found no relationship between tumor TNF expression and mortality [63], another study
found that increased expression was associated with decreased survival [18]. To our knowledge, this is the first study
to evaluate DNA methylation in TNF and survival in pancreatic cancer patients.

IL-10 is an anti-inflammatory cytokine that is released by pancreatic cancer cells and contributes to the de-
velopment of a tumor-tolerating microenvironment [13,59]. Current evidence has suggested that higher serum
concentrations of IL-10 is associated with poorer survival in pancreatic cancer patients [14,20]. We found that
increased methylation in one CpG site in IL10, which had a weak inverse correlation with expression, had a
protective association for all three clinical outcomes. Though there has been no other literature on IL10 DNA
methylation and survival, previous studies have found lower IL10 methylation in leukocyte DNA [61] and increased
IL10 expression [17] in the tumor tissue among pancreatic cancer cases. Furthermore, IL10 has been shown to be
hypomethylated in other malignancies, such as colon, kidney, stomach, lung and breast cancer [64].

IL-8 is a pro-inflammatory cytokine that has been shown to promote the proliferation and invasiveness of
pancreatic cancer [13,16,59]. In the present study, higher methylation in one CpG locus in IL8 had protective
associations for pancreatic cancer-specific mortality and disease progression, but no association for overall survival.
While methylation in IL8 and pancreatic cancer outcomes have not been previously investigated, three prior
studies also found no association between IL-8 concentrations and overall survival from pancreatic cancer [14,20,23].
Another study, however, observed improved survival among patients with lower concentrations of IL-8 [15]. Our
results suggest that epigenetic modification of IL8 could have a greater impact on disease-specific outcomes rather
than overall survival.

IL-6 is a pleiotropic cytokine that is involved in several pathways in pancreatic cancer tumorigenesis [65,66].
Many prior studies have found poorer survival among pancreatic cancer patients with higher serum levels of IL-
6 [14,17,20,23]. In our analysis, we detected a decreased risk for overall mortality for increased methylation at one
CpG locus in IL6. The relationship between DNA methylation in IL6 and pancreatic cancer has not been well
evaluated in the current literature. While a previous study observed lower leukocyte DNA methylation in IL6
among pancreatic cancer patients [61], no prior study has evaluated DNA methylation in this gene in the context of
pancreatic cancer survival. Additionally, this CpG site was located near the IL6 enhancer region, but there was no
significant correlation between methylation and IL6 expression. It is possible that DNA methylation in this region
does not have a strong influence on genetic expression.

A major strength of this study is that it is one of the larger cohorts to evaluate DNA methylation in proximity
to cytokine genes and pancreatic cancer survival using a candidate gene approach. Past research on this topic
has been evaluated primarily in epigenome-wide association studies with much smaller sample sizes. We also
incorporated chromatin states and expression in our analyses, which enhanced the interpretability of our results.
However, our sample size was not sufficiently powered to perform subgroup analyses, so we do not know if the
observed associations differ by certain patient characteristics. In addition, TCGA had limited clinical information,
so we could not adjust for patient-related covariates, such as body mass index or comorbidities, that could have
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potentially influenced our findings. Generalizability of our results may also be an issue since the patient population
was comprised of mainly white individuals with early-stage tumors. However, the age and sex distributions of the
cohort are fairly similar to the observed rates among pancreatic cancer patients in the USA [54]. Furthermore, the
methylation assays were performed using DNA from surgically resected tumor samples [53], so the timing of the
sample collection and methylation assays may not exactly correspond to the time of diagnosis. Lastly, the pancreatic
tissue samples may likely be within a mixture of other cells that could have impacted some of the associations. As
the pancreatic cancer tumor microenvironment involves the interaction of many different cell types, we did not
adjust for cellular heterogeneity because it could have perhaps overcorrected and removed true biologic signals.

Each cytokine gene in this study was selected specifically because increased expression or serum concentrations of
the cytokine was associated with pancreatic cancer in prior literature. Though this was a nonagnostic analysis, using
the false discovery rate to correct for multiple comparisons led to three remaining significant hits (cg14789529 in
IL10, cg24767336 in TGFβ1 and cg04392234 in IL8) in the fully adjusted models. However, many loci in the
minimally adjusted models would still be significant, indicating a potential loss of statistical power when adjusting
for additional covariates. Ultimately, our observed findings are still helpful for describing associations and generating
hypotheses on the relationship between the immune system and pancreatic carcinogenesis.

Conclusion
In this study of pancreatic cancer patients from TCGA, we report several associations between pancreatic cancer
outcomes and methylation in CpG loci across TGFβ1, TGFβ2 and TGFβ3, poorer survival for higher methylation
in TNF probes and reduced death and progression for methylation in loci in IL10, IL8 and IL6. Our findings
suggest that the interactions between cytokines and pancreatic cancer outcomes are complex and may potentially
be influenced by epigenetic modifications. As epigenetics research on cytokine-related genes and pancreatic cancer
is still quite sparse, future studies should evaluate these associations in larger samples to further elucidate the
immune-associated mechanisms behind pancreatic cancer development and mortality.

Future perspective
Pancreatic cancer remains a challenging malignancy due to its immunosuppressive nature and poor prognosis. Our
study sought to identify potential epigenetic biomarkers of survival and progression by investigating DNA methy-
lation in immune-regulatory cytokines genes. Future studies should aim to validate these findings in larger, more
racially heterogeneous populations to examine whether these associations are similar among understudied minority
populations. A deeper epigenetic exploration using the 850k MethylationEPIC Array would also be warranted
to identify additional immune-related CpG loci of interest. Furthermore, we plan to perform a more integrative
analysis that synthesizes information on single nucleotide polymorphisms, DNA methylation, microRNA and
protein expression to better elucidate the genomic and molecular pathways involved in pancreatic cancer outcomes.
Together, these efforts should provide a clearer understanding of the genomic landscape of pancreatic cancer and
help to establish improved biomarkers and prognostic models of survival and disease progression.

Summary points

• Using data from 184 pancreatic cancer patients from The Cancer Genome Atlas, we investigated the association
between DNA methylation in loci across seven cytokine genes and overall survival, pancreatic cancer-specific
survival and progression-free interval.

• We also examined whether DNA methylation influenced clinical outcomes through changes in genetic expression.
• Over ten CpG loci across TGFβ1, TGFβ2 and TGFβ3 were associated with both increased and decreased hazards of

overall mortality, pancreatic cancer-specific mortality and disease progression.
• Increased methylation in five CpG probes in TNF (cg17741993, cg20477259, cg09637172, cg05952498,

cg02137984) was associated with elevated risks of overall and disease-specific death.
• Higher methylation at cg14789529 in IL10 was associated with decreased hazards of overall mortality,

disease-specific mortality and disease progression.
• One CpG site in IL8 (cg04392234) had protective associations for disease-specific mortality and disease

progression.
• Elevated methylation at cg26061582 in IL6 was associated with a reduced hazard of overall death.
• There was no clear relationship between DNA methylation, genetic expression and clinical outcomes.
• Our findings may shed some light on underlying biological mechanisms and help guide the development of

prognostic models and the identification of potential treatment targets.
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