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Abstract

Dynamic flux balance analysis uses a quasi-steady state assumption to calculate an

organism’s metabolic activity at each time-step of a dynamic simulation, using the well-

known technique of flux balance analysis. For microbial communities, this calculation is

especially costly and involves solving a linear constrained optimization problem for each

member of the community at each time step. However, this is unnecessary and inefficient,

as prior solutions can be used to inform future time steps. Here, we show that a basis for

the space of internal fluxes can be chosen for each microbe in a community and this basis

can be used to simulate forward by solving a relatively inexpensive system of linear equa-

tions at most time steps. We can use this solution as long as the resulting metabolic activ-

ity remains within the optimization problem’s constraints (i.e. the solution to the linear

system of equations remains a feasible to the linear program). As the solution becomes

infeasible, it first becomes a feasible but degenerate solution to the optimization problem,

and we can solve a different but related optimization problem to choose an appropriate

basis to continue forward simulation. We demonstrate the efficiency and robustness of our

method by comparing with currently used methods on a four species community, and

show that our method requires at least 91% fewer optimizations to be solved. For repro-

ducibility, we prototyped the method using Python. Source code is available at https://

github.com/jdbrunner/surfin_fba.

Author summary

The standard methods in the field for dynamic flux balance analysis (FBA) carry a prohib-

itively high computational cost because it requires solving a linear optimization problem

at each time-step. We have developed a novel method for producing solutions to this

dynamical system which greatly reduces the number of optimization problems that must

be solved. We prove mathematically that we can solve the optimization problem once and

simulate the system forward as an ordinary differential equation (ODE) for some time

interval, and solutions to this ODE provide solutions to the optimization problem. Even-

tually, the system reaches an easily check-able condition which implies that another
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optimization problem must be solved. We compare our method against typically used

methods for dynamic FBA to validate that it provides equivalent solutions while requiring

fewer linear-program solutions.

This is a PLOS Computational Biology Methods paper.

Introduction

Microbial communities and human health

The makeup of microbial communities is often complex, dynamic, and hard to predict. How-

ever, microbial community structure has a profound effect on human health and disease [1–

7]. These two facts have led to significant interest in mathematical models which can predict

relative abundances among microbes in a community. Various dynamical models have been

proposed to explain and predict microbial community population dynamics [8–12]. Among

these are models which propose that interactions between species are mediated by the metabo-

lites that each species produces and consumes [13, 14], and there is significant evidence that

these models perform better than models which depend on direct interaction between species

[15, 16].

Recently, advances in genetic sequencing have allowed the creation of genome-scale models

(GEMs) that reflect the internal network of cellular metabolism, and can therefore be used to

predict metabolite use and production [17–19]. This technique can be extended to microbial

community modeling by combining GEMs of different species. There has been significant

interest in using GEMs to predict relative populations of stable microbial communities [20–

26]. Community metabolic modeling can not only predict relative populations, but also holds

the potential to predict and explain the community metabolite yield, which can have a pro-

found effect on health [4]. Furthermore, model repositories such as the online bacterial bioin-

formatics resource PATRIC [27] or the BiGG model database [28] make it possible to build

community models using information from individual species investigations.

GEMs can be used to predict microbial growth rates as well as metabolite consumption and

production rates using a process called flux balance analysis (FBA). Because these predictions

appear in the form of rates of change, they can be used to define a metabolite mediated dynam-

ical model simply by taking as a vector field the rates of change predicted by FBA. We can

therefore combine the techniques of metabolite mediated dynamic modeling and community

metabolic modeling to produce dynamic predictions of microbial community population size

and metabolite yield. This strategy is called dynamic FBA [29–31], and has recently been used

to model microbial communities [32–34].

Dynamic FBA, when implemented naïvely, requires a linear optimization problem to be

repeatedly solved, and carries a high computational cost for even small communities. Further-

more, in silico experiments may need to be repeated many times over various environmental

conditions or using various parameter choices in order to make robust conclusions or to accu-

rately fit model parameters. As a result, implementations of dynamic FBA which depend on

optimization at every time-step carry a prohibitively high computational cost when used to

simulate larger microbial communities. The implementation of dynamic FBA in the popular

COBRA toolbox software package [17] is done in this way, and essentially all more efficient
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available tools for simulating dynamic FBA fundamentally use an ODE solver approach with

optimization at each time-step [24, 31, 35–38]. Dynamic FBA can be improved by taking

advantage of the linear structure of the optimization problem which provides a choice of basis

for an optimal solution that may be reused at future time-steps [39, 40]. However, the optimi-

zations that are required by this strategy involve solutions with non-unique bases. This means

that a basis chosen at random may not provide an optimal solution to the linear program at

future time-steps because it provides a solution that is non-optimal or infeasible.

In order to implement dynamic FBA without optimizing at each time step, we use an opti-

mal basic set for the FBA linear optimization problem to create a system of linear equations

whose solutions at future time-steps coincide with the solutions to the FBA optimization prob-

lem. To solve the problem of non-uniqueness among bases, we prove that there exists a choice

of basis that allows forward simulation for a given optimal flux solution and provide a method

to choose this basis. Note that this method does not choose among a set of non-unique optimal

flux solutions, but instead chooses a basis for a single given optimum. To choose among multi-

ple optimal flux solutions, biological, rather than mathematical, considerations should be used.

In this manuscript, we detail how dynamic FBA can be simulated forward without re-opti-

mization for some time interval, and give a method for doing so. We propose conditions on an

optimal basic set for the FBA linear optimization problem which allows for forward simula-

tion, and we prove that such a choice exists. We then detail how to choose this basis set, and

finally give examples of simulations which demonstrate the power of our method. For repro-

ducibility, we make a prototype implementation of our method in the Python language avail-

able at https://github.com/jdbrunner/surfin_fba.

Background

Flux balance analysis

With the advent of genetic sequencing and the resulting genome scale reconstruction of meta-

bolic pathways, methods have been developed to analyze and draw insight from such large

scale models [18]. To enable computation of relevant model outcomes, constraint based recon-

struction and analysis (COBRA) is used to model steady state fluxes vi through a microorgan-

ism’s internal metabolic reactions under physically relevant constraints [18]. One of the most

basic COBRA methods, called flux balance analysis (FBA) optimizes some combination of

reaction fluxes ∑γivi which correspond to increased cellular biomass, subject to the constraint

that the cell’s internal metabolism is at equilibrium:

Gv ¼ 0 ð1Þ

where Γ is the stoichiometric matrix, a matrix describing the stoichiometry of the metabolic

model.

This optimization is chosen because it reflects the optimization carried out by nature

through evolution [18]. The vector γ = (γ1, γ2, . . ., γd) is an encoding of cellular objectives,

reflecting the belief that the cell will be optimized to carry out these objectives. The constraint

Eq (1) means that any optimal set of fluxes found by FBA corresponds to a steady state of the

classical model of chemical reaction networks [41]. This reflects the assumption that the cell

will approach an internal chemical equilibrium.

The optimization is done over a polytope of feasible solutions defined by the inequalities

vi,min� vi� vi,max, or possibly more complicated linear constraints. See Fig 1 for a geometric

representation of an example of the type of linear optimization problem that is carried out. By

convention, forward and reverse reactions are not separated and so negative flux is allowed.

Linear optimization problems like FBA often give rise to an infinite set of optimal flux vectors
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v = (v1, v2, . . ., vd). Geometrically, this set will correspond to some face of the polytope of feasi-

ble solutions. To draw conclusions despite this limitation, many methods have been developed

to either characterize the set of optimal solutions, as with flux variability analysis (FVA), or

enforce more constraints on the network to reduce the size of this set, as with loopless FVA

[18].

Dynamic FBA

FBA provides a rate of increase of biomass which can be interpreted as a growth rate for a cell.

Furthermore, a subset of the reactions of a GEM represent metabolite exchange between the

cell and its environment. By interpreting constraints on nutrient exchange reactions within

the metabolic network as functions of the available external metabolites and fluxes of exchange

reactions as metabolite exchange rates between the cell and its environment, the coupled sys-

tem can be modeled. The simplest way to do this is to use an Euler method, as in [30].

In addition to Euler’s method, more sophisticated ODE solvers may be used in the so-called

“direct” method of simply recomputing the FBA optimization at every time-step. This can pro-

vide better solution accuracy and potentially larger time-steps, but may also require more than

one FBA optimization at each time-step. For instance, the Runge-Kutta fourth order method

[42] requires four FBA solutions at each time step. Direct methods are implemented in the

COBRA toolbox [17] and are the central algorithm in many modern tools, including those of

Zhuang et al. [31, 35], Harcombe et al. [36], Zomorrodi et al. [24], Louca and Doebeli [37],

and Popp and Centler [38]. Notably, any direct method requires at least one complete recalcu-

lation of the network fluxes at each time-step.

However, resolving the system at each time step is not necessary, as the solution the optimi-

zation problem at some initial time can actually be used to compute future optimal solutions.

Höffner et al., [40], used this observation to introduce a variable step-size method for dynamic

FBA. In that method a basic index set is chosen by adding biological constraints to the optimi-

zation problem hierarchically until a unique optimal flux vector is found. The challenge of

such an approach is in choosing the basis for the optimal solution, as the optimal basis is not

guaranteed to be unique even for a unique optimal flux solution. In fact, due to the nature of

the method of Höffner et al. and of our method, any optimization past the initial solution that

must be carried out is guaranteed to have a solution with a non-unique basis. Furthermore,

many choices of optimal basis will not provide a solution for future time-steps, so that

Fig 1. Geometric representation of Example 1 for t3 > t2 > t1 > 0, showing the three options for bases which are equivalent at t = 0. Note that the

best choice depends on the function c(t) = (10, 10, 30 − t) and cannot be chosen using the static problem alone. The feasible region of the optimization

problem is shown in gray.

https://doi.org/10.1371/journal.pcbi.1007786.g001
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choosing among these bases must be done intelligently. Unfortunately, Höffner et al. [40]

do not provide a method for choosing among non-unique bases for a single linear program

solution.

Our method seeks to solve this problem by choosing a basis which is most likely to remain

optimal as simulation proceeds forward from the possibilities provided by an FBA solution.

We therefore prioritize reducing the number of times the linear program must be solved,

choosing our basis based on the mathematical properties of the system which gives the best

chance of providing a solution at future time-steps.

Additionally, a method described as the “dynamic optimization approach” was introduced

in Mahadevan et al., [29], however this method is computationally expensive. In particular,

the method given in [29] involves optimizing over the entire time-course simulated, and so is

formulated as a non-linear program which only needs to be solved once. While this method

requires only one optimization, this optimization is itself prohibitively difficult due to the

dimensionality of the problem growing with the fineness of time-discretization.

The dynamic FBA model for communities

We can write a metabolite mediated model for the population dynamics of a community of

organisms x = (x1, . . ., xp) on a medium composed of nutrients y = (y1, . . ., ym):

_xi ¼ giðψ iðyÞÞxi ð2Þ

_yj ¼ �
Xp

i¼1

cijðyÞxi ð3Þ

where ψi is a vector of the fluxes of nutrient exchange reactions for organism xi as determined

by FBA. Using FBA to determine ψi is therefore a quasi-steady state assumption on the internal

metabolism of the organisms xi [43–45].

Recall that the basic assumption of flux balance analysis is that, given a matrix Γi that gives

the stoichiometry of the network of reactions in a cell of organism xi that growth gi(y) is the

maximum determined by solving the following linear program [18]:

max ðvi � γiÞ

Givi ¼ 0

c1
i � v � c2

i ðyÞ

8
>>><

>>>:

9
>>>=

>>>;

ð4Þ

where c1
i is some vector of lower flux bounds while c2

i ðyÞ is some vector-valued function of

the available metabolites which represents upper flux bounds. The key observation allowing

dynamic FBA is that the optimal solution to this problem also determines ψi simply by taking

ψij to be the value of the flux vij of the appropriate metabolite exchange reaction. For clarity, we

will relabel the elements of vi so that ψik = vij if vij is the kth exchange flux, and ϕik = vij if vij is

the kth internal flux. The objective vector γi indicates which reactions within the cell contribute

directly to cellular biomass, and so is non-zero only in elements corresponding to internal

fluxes. We can therefore rewrite this vector to include only elements corresponding to internal

fluxes, so that the objective of the optimization is to maximize γi � ϕi.
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The stoichiometry of metabolite exchange reactions is represented by standard basis vectors

[18]. Therefore, we can partition Γi as

Gi ¼
I � G�i

0 Gyi

" #

ð5Þ

where I is the identity matrix of appropriate size, and G�i and Gyi contain the stoichiometry of

the internal reactions [18, 46, 47]. Making this change in notation allows us to see that the opti-

mization problem of flux balance analysis is essentially internal to the cell, with external reac-

tions providing constraints.

We can see from Eq (5) that ker(Γi) is isomorphic to kerðGyi Þ, and so we can maximize over

this kernel. Then, the exchange reaction fluxes are determined by the internal fluxes according

to the linear mapping ψ i ¼ G�i ϕi. The maximization of FBA becomes a maximization problem

over the internal fluxes. We rewrite Eq (4) using Eq (5) and combine with Eqs (2) and (3) to

form the differential algebraic system

dxi
dt
¼ xiðγi � ϕiÞ ð6Þ

dy
dt
¼ �

X

i

xiG
�

i ϕi ð7Þ

max ðϕi � γiÞ

Gyiϕi ¼ 0

c1
i �

G�i

I

2

4

3

5ϕi � c2
i ðyÞ

8
>>>>>>><

>>>>>>>:

9
>>>>>>>=

>>>>>>>;

ð8Þ

where each ϕi is determined by the optimization Eq (8), all carried out separately. Note that

this is a metabolite mediated model of community growth as defined in [15]. That is, the cou-

pling of the growth of the separate microbes is due to the shared pool of metabolites y. Each

separate optimization which determines ϕi at a single time-step depends on y, and each ϕi
determines some change in y. Furthermore, each optimization is carried out in a manner that

depends only the status of the metabolite pool and is independent from the optimizations of

other organisms. There is therefore no shared “community objective”. Instead, each organism

optimizes according to only its own internal objective.

We write, for full generality, upper and lower dynamic bounds on internal and exchange

reactions, and assume that each function cij(y) 2 C1. We let

Ai ¼ ðG�i Þ
T
; � ðG�i Þ

T
; I; � I;

� �T
ð9Þ

so that we can rewrite the optimization problem Eq (8) as

max ðϕi � γiÞ

Aiϕi � ciðy; tÞ

Gyiϕi ¼ 0

8
>>><

>>>:

9
>>>=

>>>;

ð10Þ

for ease of notation.
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We now hope to select a basic index set I i for Eq (10) for each organism xi so that each ϕi(t)
is a solution to the resulting linear system of equations.

Methods

Linear optimization preliminaries

In this manuscript, we will rewrite the FBA optimization problem in the form

max ðϕ � γÞ

Aϕ � c

Gyϕ ¼ 0

8
>>><

>>>:

9
>>>=

>>>;

ð11Þ

where the matrices A and Γ† are derived from the stoichiometric matrix and flux constraints.

Such a problem is often referred to as a linear program (LP). We now recall some well known

results from the study of linear programming (see, for example [40, 48]).

First, we note that Eq (11) can be rewritten in the so-called standard form with the addition

of slack variables s = (s1, . . ., sn) which represent the distance each of the n constraints is from

its bound as follows:

max ð~ϕ � ~γÞ

~A I
� �

~ϕ

s

2

4

3

5 ¼ c

~�i � 0; si � 0

8
>>>>>>>><

>>>>>>>>:

9
>>>>>>>>=

>>>>>>>>;

: ð12Þ

Standard form requires that we rewrite ϕi ¼ ϕþi � ϕ�i and then define

~ϕ ¼ ð�þ
1
; �
þ

2
; :::; �

þ

d ; �
�

1
; �
�

2
; :::; �

�

d Þ so that we require non-negativity of each variable,

and the matrix ~A ¼ A B½ �, B = −A. We rewrite the problem in this form to make use of estab-

lished results, and for ease of notation will write ϕ instead of ~� when it is clear which form of

the problem we are discussing.

We will make use of the well-known result that there exists an optimal basis or basic set for

a bounded linear program [49]. To state this result, we first define the notation BJ to be the

matrix with columns of ½~A I� corresponding to some index set fk1; k2; :::; kng ¼ J , and if BJ is

invertible we define the notation wJ ðaÞ so that

ðwJ ðaÞÞl ¼

(
ðB� 1

I aÞj l ¼ kj 2 J

0 l =2 J
ð13Þ

for any a 2 Rn
. We may now define a basic optimal solution and corresponding basic index set.

Definition 1 A basic optimal solution to a linear program is an optimal solution along with
some index set fk1; k2; :::; kng ¼ I such that w ¼ wIðcÞ, where c is the vector of constraints as in
Eq (12). The variables fwiji 2 Ig are referred to as basic variables, and the index set I is referred
to as the basic index set.

Finally, if there exists a bounded, optimal solution to Eq (12), then there exists a basic opti-

mal solution and corresponding basic index set.

For a given basic optimal solution vector w, there may be more than one basic index set I
such that w ¼ wIðbÞ. Such a solution is called degenerate. Clearly a necessary condition for
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such non-uniqueness is that there exists some k 2 I such that wk = 0. This is also a sufficient

condition as long as there is some column of ½~A I� which is not in the column space of BInfkg.

Forward simulation without re-solving

Consider again Eq (10), the linear program that must be solved at each time point of the

dynamical system for each microbial population. Information from prior solutions can inform

future time-steps as long as the region of feasible solutions has not qualitatively changed. Thus,

we may only need to solve the optimization problem a few times over the course of a simula-

tion. The key observation making this possible is that the simplex method of solving a linear

program provides an optimal basis for the solution. We may often re-use this basis for future

time-steps within some time interval, and therefore find optimal solutions without re-solving

the linear program.

In order to do this, we need to find a form of the solution which may be evolved in time.

Thus, we turn the system of linear inequalities given in the linear program into a system of lin-

ear equations. Then, if this system has a unique solution we have reduced the task to solving a

system of equations rather than optimizing over a system of inequalities. We can find such a

system of equations by solving the linear program once, and using this solution to create a sys-

tem of equations whose solution provides the optimal flux ϕi using a basic index set. We then

use this same system to simulate forward without the need to re-solve the optimization prob-

lem until the solution to the system of equations is no longer a feasible solution to the linear

program.

First, the linear program Eq (10) is transformed into standard form (Eq (12)). Then, a basic

optimal solution is found with corresponding basic index set I i. The dynamical system Eqs

(6), (7) and (10) can then be evolved in time using Eq (13). This evolution is accurate until

some wij becomes negative (meaning that the solution is no longer a feasible solution to the lin-

ear program). At this point, a new basis must be chosen. That is, until wI i
ðcðtÞÞ becomes infea-

sible, we let ð�j1
ðciðtÞÞ; :::; �jm

ðciðtÞÞ; s1ðciðtÞÞ; :::; snðciðtÞÞÞ ¼ wI i
ðciðtÞÞ and replace Eqs (6),

(7) and (10) with

dxi
dt

¼ xiðγi � ϕiðciðtÞÞÞ ð14Þ

dy
dt
¼ �

X

i

xiG
�

i ϕiðciðtÞÞ ð15Þ

One major difficulty in this technique is that a unique wi does not guarantee a unique basis

set I i. If we have some ðwI i
Þj ¼ 0 for j 2 I i, then there exists some alternate set Î i such that

wÎ i
¼ wI i

. Such a solution wI i
is called degenerate. In a static implementation of a linear pro-

gram, the choice of basis of a degenerate solution is not important, as one is interested in the

optimal vector and optimal value. However, as we will demonstrate with 1, the choice of basis

of a degenerate solution is important in a dynamic problem. In fact, if the system given in Eqs

(14) and (15) is evolved forward until wI i
ðciðtÞÞ becomes infeasible, the time at which the sys-

tem becomes infeasible is the time at which we have some ðwI i
Þj ¼ 0 for j 2 I i. Thus, we need

to resolve Eq (10) whenever wI i
ðciðtÞÞ becomes degenerate, which will be the final time-point

at which the wI i
ðciðtÞÞ is feasible.
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Example 1 Consider the dynamic linear program

max ðð1; 1Þ � vÞ

1 0

0 1

1 2

2

6
6
6
6
6
4

3

7
7
7
7
7
5

v �

10

10

30 � t

2

6
6
6
6
6
4

3

7
7
7
7
7
5

vi � 0

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

ð16Þ

In standard form at t = 0, this linear program becomes

max ðð1; 1Þ � vÞ

1 0 1 0 0

0 1 0 1 0

1 2 0 0 1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

v

s

2

4

3

5 ¼

10

10

30

2

6
6
6
6
6
4

3

7
7
7
7
7
5

vi; si � 0

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

ð17Þ

which has the unique solution w = (10, 10, 0, 0, 0). There are three choices of basic index sets:
I 1 ¼ f1; 2; 3g, I 2 ¼ f1; 2; 4g, and I 3 ¼ f1; 2; 5g. The resulting bases are

BI1
¼

1 0 1

0 1 0

1 2 0

2

6
6
6
4

3

7
7
7
5

BI2
¼

1 0 0

0 1 1

1 2 0

2

6
6
6
4

3

7
7
7
5

BI3
¼

1 0 0

0 1 0

1 2 1

2

6
6
6
4

3

7
7
7
5

Computing Eq (13) at t> 0 for each, we have that BI1
yields wI1

ðcðtÞÞ ¼ ð10 � t; 10; t; 0; 0Þ,
BI2

yields wI2
ðcðtÞÞ ¼ ð10; 10 � t=2; 0;

t=2; 0Þ, and BI3
yields wI3

ðcðtÞÞ ¼ ð10; 10; 0; 0; � tÞ,
shown in Fig 1 for t> 0. Thus, only wI2

ðcðtÞÞ solves the dynamic problem because wI1
ðcðtÞÞ is

not optimal and wI3
ðcðtÞÞ is not feasible for t> 0. Wemay follow wI2

and be insured of remain-
ing at an optimal solution to the linear program until t = 20 + ε, at which point
wI2
¼ ð10; � ε=2; 0; 10; 0Þ, which is not a feasible solution to the linear program. At time t = 20,

a re-optimization is required to choose a new basis.
Notice that the correct choice of basis fundamentally depends on the time-varying bound func-

tion c(t) = (10, 10, 30 − t). To see this, consider other possible time-varying bounds c(t) which
have c(0) = (10, 10, 30). For example, if c(t) = (10 − t, 10 − t, 30), then only BI3

would give the
correct w(c(t)) for t> 0.

A basis for the flux vector

We now provide a method to choose a basis I i for each organism xi in the case of a degenerate

solution. Consider an optimal solution wi to the linear program Eq (12). To simulate forward

PLOS COMPUTATIONAL BIOLOGY Minimizing the number of optimizations for efficient community dynamic FBA

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007786 September 29, 2020 9 / 20

https://doi.org/10.1371/journal.pcbi.1007786


according to Eqs (14) and (15), we need for each organism xi a basic index set I i such that

_wi ¼ wI i
d
dt ci
� �

~A I
� �

_w ¼
d
dt

ci

ðwI i
Þj ¼ 0) _wij � 0

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

ð18Þ

so that the solution remains feasible, and furthermore that _w i is optimal over the possible

choice of basic index sets for wi. This is obviously a necessary condition for forward simulation

within some non-empty time interval, and can be made sufficient (although no longer neces-

sary) by making the inequality ðwI i
Þj ¼ 0) _wij � 0 strict. We use the relaxed condition for

more practical applicability.

In order to develop a method based on the above observation (i.e., Eq (18)), we must know

that Eq (12) has such a solution. We therefore require the following lemma, which is proved in

S1 Text:

Lemma 1 For a linear program with the form given in Eq (12) with a basic optimal solution
w, there exists a basic index set I such that Eq (18) holds and _w is optimal over the possible
choice of basic index sets for w.

If Eq (12) has only a non-degenerate solution, the unique basis will satisfy this requirement.

The challenge remains to choose from among the possible bases of a degenerate solution.

To do this, we form a second linear program analogous to Eq (18) in the following way. We

first find all constraints aij (i.e. rows of Ai or Gyi ) such that aij � ϕi = cij(t), calling this set Si.

Note that this set contains all the rows of Gyi , for which we regard cij(t) = 0 for all t> 0. Note

that if the solution given is a basic optimal solution, the rank of the matrix whose rows are aij
for aij 2 Si is d, where again d is the number of internal fluxes. This is true because we include

constraints of the type a< ϕij< b as rows of Ai.

Then, we solve the linear program

max ð _w i � giÞ

aj � _ϕ i �
dcij
dt ; aj 2 Si

8
<

:

9
=

;
ð19Þ

We may then use any basis Bi
I which solves Eq (19) as long as it has exactly d non-basic

slack variables. Lemma 1 tells us that such a choice exists, although it may be necessary to man-

ually pivot non-slack variables into the basis set given by the numerical solver. In testing the

algorithm, this was necessary when using IBM ILOG CPLEX Optimization Studio to solve,

but not when using The Gurobi Optimizer. Note that we do not need the entire basis Bi
I , but

instead only need the d × d submatrix formed by rows of Ai or Gyi which correspond to non-

basic slack variables in the solution to Eq (19). These appear as rows (ai, 0) in Bi
I , and so this

sub-matrix uniquely determines ϕi. We call this smaller matrix Bi, and label the set of row indi-

ces as J .

The chosen basis J and corresponding constraints are used to simulate forward until that

particular solution becomes infeasible. At that time, we have an optimal solution to Eq (10)

simply by continuity. We therefore do not need to resolve Eq (10) but instead re-form and

solve Eq (19).
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Pseudo-Code of the method

Below, we present as pseudo-code an outline of the method. A practical implication may

need to adaptively adjust the time-step Δt to insure that no resource is artificially over-depleted

past 0.

Algorithm 1: Dynamic FBA algorithm following Lemma 1. Note that for numerical stabil-

ity and speed, we may store the matrices Qi, Ri such that QiRi = Bi is the QR-factorization of

Bi rather than either storing B� 1
i or solving completely during each time step of numerical

integration.
Input: Final time T, initial microbial biomasses xi(0), initial nutri-

ent concentrations yj(0), maximum inflow rates of nutrients αi,
stoichiometric matrices Γi

OutPut: Timecourse simulation of biomass and nutrient concentrations
1 for each microbial population i do
2 Set wi(0) to be solution to Eq (13) which lies on a vertex of the

feasible polytope.;
3 Solve Eq (21) to find initial basis Bi
4 end
5 while t < T do
6 Integrate Eqs (14) and (15) from t to t + Δt with ϕi ¼ B� 1

i cJ ðyðtÞ; tÞ;
7 if B� 1

i cJ ðyðt þ DtÞ; t þ DtÞ is not a feasible solution then
8 reset xi = xi(t), yj = yj(t);
9 Solve Eq (21) to find new basis Bi, with additional constraints

representing bounds violated by B� 1
i cJ ðyðtÞ; tÞ.

10 end
11 end

Results

Number of optimizations

We can compare the efficiency of Algorithm 1 with modern dynamic FBA methods by count-

ing the number of times a large linear program must be carried out over the course of a simula-

tion. At their core, state-of-art dynamic FBA tools such as d-OptCom [24] and COMETS [36]

employ the direct method of calling an ODE-solving method with the linear program set as

the right-hand-side. In the case of Euler’s method, the resulting ODE can be integrated by

hand between time-steps. This last strategy is often referred to as the “static optimization

approach” [40].

We compared simulation of various combinations of the organisms Escherichia coli str.
K-12 substr. MG1655 (model iJR904), Saccharomyces cerevisiae S288C (model iND705), Pseu-
domonas putida KT2440 (model iJN746) and Mycobacterium tuberculosis H37Rv (model

iEK1008), using models from the BiGG database [28] (see S2 Table for details). We counted

the optimizations required for our model, as well as for direct methods using the numerical

ODE solvers vode, zvode, lsoda, dopri5, and dop853 from the SciPy library. All of these numeri-

cal ODE solvers use adaptive step sizes for accuracy and stability, and so represent optimized

choices of time-steps. Additionally, we compared the method of Höffner et al. as implemented

in the MatLab package DFBAlab [39]. The number of re-optimizations required for each simu-

lation is shown in Table 1 and the time-point of each re-optimization that was carried out is

shown in Fig 2.

For our method and the direct method, we allowed exchange of every metabolite detailed in

S1 Table with initial metabolite concentrations given by that same file, and with initial biomass

of 0.3 for each species. The file sim_comm.py in the supplementary repository https://

github.com/jdbrunner/surfin_fba contains complete simulation set-up.
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To compare with the method of Höffner et al. [40], we use the newly available Python pack-

age from the research group of Dr. David Tourigny titled dynamic-fba [50] for single organ-

isms. This package allows simulation without secondary optimizations, as our does, and so is

more similar to our prototype tool for comparison. Unfortunately, this package is currently

only able to simulate single organisms at the time of publishing. For microbial communities,

we can compare with the MatLab package DFBAlab [39] which requires all dynamics variables

to be optimized in a secondary optimization. For simulations with DFBAlab, we use only the

low-concentration metabolites D-glucose, oxygen, and cob(I)alamin from the M9 medium

detailed in S1 Table as dynamically varying metabolites. It is worth noting that these are the

most favorable conditions we could find for the method of Höffner [39, 40] et al. which are

still biologically equivalent to our other simulations.

Error estimation

Our method provides much less theoretical error in dynamic FBA solutions than traditional

methods. In fact, Algorithm 1 implies that a simulation of a microbial community can be

Table 1. Number of realizations required to simulate to time t = 5 with no cell death or metabolite flow, using M9 minimal medium. �Simulation failed at

t = 3.034277.

Model Combination Solution Method

Algorithm 1 Höffner vode zvode lsoda dopri5 dop853

iJR904 7 1 62 62 116 3313 6228

iND750 4 1 91 91 85 3508 6514

iJN746 4 13 166 167 376 1176 2249

iEK1008 4 4 120 120 208 2768 5148

iJR904 + iND750 4 24 240 211 346 5586 10469

iJR904 + iJN746 30 479 420 420 744 2695 5579

iJR904 + iEK1008 20 136 216 216 454 3385 6411

iND750 + iEK1008 8 32 311 311 509 5284 9888

iJR904 + iND750 + iEK1008 18 32� 451 451 1282 6225 11961

iJR904 + iND750 + iJN746 + iEK1008 56 672 1122 1122 2242 6837 13529

https://doi.org/10.1371/journal.pcbi.1007786.t001

Fig 2. Time-points of re-optimizations required in simulations using the proposed method, the method of Höffner et al. [40] and various direct

methods, shown in blue. Shown in orange are times at which the direct method solver encountered an infeasible linear program due to numerical

error.

https://doi.org/10.1371/journal.pcbi.1007786.g002
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divided into time intervals on which the algorithm is exact. Of course, this assumes that the lin-

ear ODE solved in these intervals is solved exactly rather than numerically.

Precisely, there exits some sequence t0 = 0< t1 < � � �< tn−1 < tn = T such that if we know

the optimal flux vectors wi(tl) at time tl, then Lemma 1 implies the existence of a set of invert-

ible matrices Bl
i such that solutions to Eqs (14) and (15) are solutions to Eqs (6), (7) and (10)

for t 2 [tl, tl+1]. Therefore, if we are able to identify the tl exactly, then Algorithm 1 provides

exact solutions to the dynamic FBA problem Eqs (6), (7) and (10). Of course, numerical limita-

tions imply that we will not re-optimize precisely at each tl, and so we must investigate the

impact of this error. However, once re-optimization is done, the method is again exact. The

result is that we have no local truncation error for any time step taken between re-optimization

after tl and the interval endpoint tl+1, except for error due to numerical integration. In compar-

ison, direct methods provide some integration error at every time step. This error depends on

the integration strategy used, and so for example the Euler’s method based static optimization

approach carries first order local truncation error at each time step. This can easily lead to

ODE overshoot and infeasible linear programs at future time-steps.

Assume that tl−1 is known exactly, and N is such that

t1 ¼ tl� 1 þ ðN � 1ÞDt � tl < tl� 1 þ NDt ¼ t2;

so that there is some possible error in the interval [t1, t2]. We can estimate the accumulated

error in this time interval using a power series expansion. Let x(t), y(t) be solutions to Eqs (6),

(7) and (10) and ~x; ~y be solutions given by Algorithm 1 for t 2 [t1, t2). Furthermore, let Bl� 1
i be

the invertible matrices derived by solving Eq (10) at tl−1 and Bl
i those derived by solving at tl.

Then, xðt1Þ ¼ ~xðt1Þ and yðt1Þ ¼ ~yðt1Þ. For each xi we expand, assuming some regularity of the

functions c(y),

xiðt2Þ � ~xiðt2Þ ¼ ðDtÞxiðt1Þðgi � ððBl� 1
i Þ

� 1
� ðBl� 1

i Þ
� 1
Þĉ iðyðt1ÞÞ þ oðDtÞ ð20Þ

and see that this method gives first order local error in time steps that require a re-

optimization.

The local error, while first order, only appears at time steps in which a re-optimization

occurred, and so global error will scale with the number of necessary re-optimizations. This is

in contrast with the classical use of Euler’s method, which gives first order local error at every

time-step, or any other direct ODE method, whose error is dependent on the solver used.

We may compare the solutions provided by direct methods with those provided by the

method presented in Algorithm 1 and by the method of Höffner et al. [40]. The root-sum-

square (l2) difference in results are shown in Table 2, and example simulations are shown in

Fig 3. As we argue above, direct methods are less accurate in theory that the algorithm pre-

sented in Algorithm 1. Furthermore, direct simulations routinely failed to simulate to time

t = 5 without encountering an infeasible linear program. This infeasibility is the result of

numerical error accumulating throughout the simulation. The comparisons in Table 2 can

be summarized by three distinct characteristics. First, in the case of S.cerevisiae, the direct

methods agree well with the newly presented method. Secondly, in the case of E.coli and M.

Table 2. l2 difference in solutions to single-organism simulations between direct methods and the method presented in Algorithm 1.

vode zvode lsoda dopri5 dop853 Hoffner et al.

E.coli 5.09933 5.09933 4.61467 5.09928 5.09928 4.68578

M.tuberculosis 1.45401 1.45401 1.45417 1.45415 1.45415 2.48691

S.cerevisiae 0.00426 0.00426 0.00430 0.00429 0.00429 3.06105

P.putida 15.29177 15.29177 0.07080 15.23826 15.26221 4.78751

https://doi.org/10.1371/journal.pcbi.1007786.t002
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tuberculosis, error seems to begin accumulating immediately. Finally, in the case of P.putida,

the simulations agree well up to some time-point at which the direct method fails and either

quits entirely (as in the case of the dopri5 solver which returns small error) or continues at a

constant value.

We note that discrepancies in dynamic FBA simulation may not always be due to numerical

error, but instead due to non-uniqueness in optimal flux solutions. Our method provides a

strategy for choosing between non-unique representations (in the form of a basis) of a single

optimal flux solution. The method of Höffner et al. [40] provides a lexicographic strategy for

choosing between non-unique optimal flux solutions based on biological, rather than mathe-

matical, considerations. We note that for complete reproducibility, our method should be inte-

grated with some biologically based strategy for choosing between non-unique optima.

Examples & applications

There has been a recent surge in interest in modeling microbial communities using genome-

scale metabolic models, much of which has focused on equilibrium methods [4, 21, 22, 26, 51].

In order to capture transient behavior and dynamic responses to stimuli, dynamic FBA has

also been applied to microbial communities [24, 34, 52]. However, community dynamic FBA

invariably leads to a large dynamical system with a high-dimensional parameter space, often

Fig 3. Simulations of E.coli, S.cerevisae, M.tuberculosis and P.putida using Algorithm 1, direct solvers, and the method of Höffner et al. In

simulations of E.coli M.tuberculosis, there is discrepancy early in the simulation. In contrast, simulations of P.putida agree up to the point that an ODE

solver fails.

https://doi.org/10.1371/journal.pcbi.1007786.g003
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with little to no knowledge of parameter values. Any parameter fitting therefore requires

repeated numerical simulation of the system. Existing tools to do this are built around a direct

simulation approach, requiring many linear program solutions. By drastically reducing the

number of optimizations required for numerical simulation, our approach offers the promise

of efficient numerical simulation of dynamic FBA which will make parameter fitting more

tractable, and may even allow conclusions without well-fit parameters.

Below, we demonstrate that the problem of parameter fitting is an important one by show-

ing that experimental outcome in even small communities is sensitive to changes in kinetic

parameters. Precisely, the kinetic parameters governing the uptake rate of nutrients (i.e., the

parameters of the functions c2
i in Eq (4)) have a profound effect on species competition.

Next, we show how repeated simulation with randomly sampled parameters can provide

some insight into community structure even without a well-fit set of nutrient uptake parame-

ters. These examples demonstrate the importance of efficient dynamic FBA to microbial com-

munity modeling.

Prediction dependence on nutrient uptake

The set of unknown functions c2
i ðyÞ in Eq (4) present a profound problem for dynamic FBA

simulation. If the behavior of the system is sensitive to the functions chosen and parameters of

those functions, a single simulation will be of little use in drawing biological conclusion. In

order to demonstrate that such a sensitivity exists, we repeatedly simulated the same simple

community with different randomly drawn parameters. While a more realistic choice of func-

tion may be saturating or sigmoidal (as with Hill or Michaelis-Menten kinetics), for the follow-

ing experiment we take these functions to be linear:

c2
ijðyÞ ¼ kijyj; ð21Þ

meaning that the maximum uptake rate of nutrient yj by organism xi is proportional to the

concentration of yj. This choice minimizes the number of parameters that must be chosen for

our analysis of parameter sensitivity, and is in line with an assumption of simple mass action

kinetics [53, 54].

The choice of κij may have a profound effect on the outcome of a community simulation, as

it represents how well an organism can sequester a resource when this will optimize the organ-

ism’s growth. In order study this effect in a small community, we sampled a three-species com-

munity model with κij 2 (0, 1) chosen uniformly at random. We used models for E.coli, S.
cerevisiae and M.tuberculosis downloaded from the BiGG model database [28].

We simulated with no dilution of metabolites or microbes, and no replenishment of nutri-

ents. In every simulation, some critical metabolite was eventually depleted and the organisms

stopped growing. We recorded the simulated final biomass of each organism from each simu-

lation, and the results are shown in Fig 4.

Community growth effects

As we saw in previous section, community growth outcomes depend on the choice of nutrient

uptake rates κij. Using Algorithm 1, we can perform Monte-Carlo sampling in order to under-

stand the possible effects on some microorganism of growing in some community. To do this,

we randomly sample the set of uptake rates κij and run simulations of various communities for

the chosen uptake rates. Then, the correlation between communities of final simulated biomass

of some organism can be interpreted as the effect of the community on the growth of that organ-

ism. A correlation less than 1 between growth of an organism in different communities indicates

that the community is having some effect. To see the direction of this effect, we can fit a simple
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linear regression model (best fit line) to the final simulated biomasses. Then, the slope of this line

tells us if the organism benefits or is harmed by being in one community over another.

We again simulated E.coli, S.cerevisiae and M.tuberculosis downloaded from the BiGG

model database [28]. Simulations were run with the M9 medium described in S1 Table, with

no replenishment of resources.

Each organism grew to a larger final simulated biomass when alone compared to when in a

trio with the other two, which is unsurprising given the finite resources. This difference was

the least pronounced for S.cerevisiae, suggesting that this organism is the least negatively

effected by the competition. However, this can be seen as only a preliminary observation with-

out better estimates of uptake parameters. Best-fit lines are shown in Fig 5. Efficient dynamic

FBA allows repeated simulation with randomly sampled parameters, which gives an indication

of likely behavior even without accurate parameter fitting.

Conclusion

Understanding, predicting, and manipulating the make-up of microbial communities requires

understanding a complex dynamic process. Genome-scale metabolic models provide an

Fig 4. (Top) Histogram of the final simulated biomass of each of E.coli, S.cerevisiae and M.tuberculosis from 95 simulations, each with different

metabolite uptake rates κij. (Bottom) Pair-wise comparison of the final simulated biomass densities using a kernel density estimation. In red is the result

of uniform uptake rates κij = 1 for all i, j.

https://doi.org/10.1371/journal.pcbi.1007786.g004
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approximation to this process through the quasi-steady state assumption which leads to

dynamic flux balance analysis. However, this system is large and hard to simulate numerically,

let alone analyze for qualitative behaviors. As a first step towards a thorough analysis of com-

munity of organisms modeled with dynamic FBA, an efficient method of numerical simulation

would provide an essential tool. However, modern tools for simulating dynamic FBA rely on

repeatedly solving an optimization problem at every time step [24, 31, 35–38].

Dynamic FBA simulation can be improved by considering the structure of these linear pro-

grams so that many fewer optimizations are required. As of now, the algorithm of Höffner

et al. [40] is the only published method which takes advantage of this observation. However,

that method does not account for the degeneracy of solutions to the relevant linear programs,

meaning that it can choose a solution that cannot be carried forward in time. We present a

method that chooses a basis for forward simulation. In contrast to the method of Höffner

et al., we choose this basis in such a way that increases the likelihood that this forward simula-

tion is actually possible.

Efficient dynamic FBA will allow better parameter fitting to time-longitudinal data. Fur-

thermore, it allows for a search of parameter space which can help predict likely model out-

comes or learn maps from parameter values to model outcomes.
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