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Abstract

Advances in mobile biosensors, integrating developments in materials science and 

instrumentation, are fueling an expansion in health data being collected and analyzed in 

decentralized settings. For example, semiconductor-based sensors are enabling measurement of 

vital signs, and microfluidic-based sensors are enabling measurement of biochemical markers. As 

biosensors for mobile health are becoming increasingly paired with smart devices, it will become 

critical for researchers to design biosensors – with appropriate functionalities and specifications – 

to work seamlessly with accompanying connected hardware and software. This article describes 

recent research in biosensors, as well as current mobile health devices in use, as classified into 

four distinct system architectures that take into account the biosensing and data processing 

functions required in personal mobile health devices. We also discuss the path forward for 

integrating biosensors into smartphone-based mobile health devices.

Graphical Abstract

The review examines recent advances in biosensors for collecting personal health measurements. 

We pay particular attention to how biosensors can be designed to be integrated with smartphones. 

Examples of biosensors for each of the four system architectures (for biosensing and data 

processing) are discussed.
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1. Introduction

Innovations in materials and instrumentation are enabling miniaturization of biosensors for 

health measurements to be collected and analyzed in decentralized settings, outside of a 

clinical laboratory.[1–3] For example, advances in semiconductor-based 

microelectromechanical systems have led to the proliferation of high-quality, low-power 

mobile sensors across a range of modalities[4], including health measurements such as vital 

signs. For biochemical measurements, different organic and inorganic materials for 

microfluidics have facilitated development of devices with finely tuned physical, chemical, 

and optical properties,[5] enabling recapitulation of complex chemical assays at the point of 

care (POC).[5, 6] Furthermore, nanomaterials such as carbon nanotubes and graphene have 

driven development of new types of biosensors,[7] including applications in detecting cancer 

biomarkers[8] or monitoring glucose levels.[9]

As biosensors are increasingly aimed for use directly by consumers and patients, they are 

being offered in the familiar form factor of smartphones. In 2018, over 1.56 billion 

smartphones were sold worldwide,[10] with about 35% of the global population owning a 

smartphone[11] and 81% of the U.S. owning smartphones.[12] As such, smartphones could 

serve as attractive mobile health (mHealth) devices due to their form factor and inbuilt 

features and, due to their ubiquity, could help democratize healthcare and bridge the gap 

between patients and healthcare professionals.[13] The Internet of Medical Things (IoMT) 

framework, also known as healthcare Internet of Things (IoT), constitutes a connected 

infrastructure of medical devices that can collect, analyze, and transfer data using 

networking technologies.[14] Smartphone-based diagnostic and mHealth systems, by virtue 

of their inbuilt sensors and connectivity features, are an integral part of this developing 

IoMT framework.[15] To serve as mHealth devices, smartphones must be augmented with 

two additional features: biosensing, as discussed above, and health data processing, as made 

possible by the increasing performance of mobile processors.[16] For data processing, 

connectivity and cloud computing also offer the possibility to offload computationally 

intensive processing to powerful servers.[17]

With an increasing number of demonstrations of mHealth devices featuring the smartphone 

as an integral component,[3] new possibilities are arising of smart connected health[18] and a 

new digital health ecosystem. As a consequence, the possible constructions of biosensors are 

increasing at a bewildering pace. For example, the biosensor could be constructed as a 

separate microfluidic chip that can communicate, as a wireless accessory, with the 

smartphone. However, it is also possible to build biosensing – along with computing and 

connectivity – into the smartphone itself, thereby minimizing additional hardware, 

improving portability, and potentially reducing cost.[19]

Previous reviews have examined the utility of smartphones for clinical diagnostics.
[1, 13, 20, 21] Due to the abundance of diagnostic applications that rely on an optical readout, 

Arumugam et al. Page 2

Adv Mater Technol. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



many of these reviews focus on the inbuilt complementary metal-oxide-semiconductor 

(CMOS) camera sensor. The smartphone has also been used to develop low-cost, portable 

microscopes capable of achieving up to 800X magnification.[22] Further, with software 

augmentation, resolutions rivaling those of table-top microscopes are possible.[23] Since 

connectivity is a key feature of smartphones that facilitates interfacing with external sensors 

and devices, Kwon et al. and Xu et al. reviewed application that used either inbuilt sensors or 

external sensors connected to the smartphone through wired or wireless means.[24, 25] In 

addition, for detection of analytes, Sun and Hall reviewed off-phone electrochemical 

biosensors for POC applications.[19] However, since multiple biosensing modalities are 

typically coordinated together for the end user via a single smart device, there will be a need 

to examine different types of biosensing functions through a single lens. Also, it will be 

necessary to examine biosensing in combination with data processing, as it is the 

combination of these functions – which will feedback into the design of the biosensors – that 

will generate actionable insight, especially with advances in artificial intelligence (AI) and 

the expanding volume of health data.[26]

In this review, we examine recent smartphone-based mHealth devices, with an emphasis on 

developments since 2014. Similar to early perspectives on mHealth that had outlined system 

architectures involving the biosensing and data processing capabilities,[27] we propose a 

“full-stack” perspective that examines the recent advances in biosensors alongside 

accompanying data processing capabilities. As the landscape of biosensors for mHealth 

devices is rapidly expanding, we will focus on some of the key literature that covers a range 

of sensing modalities alongside data processing methods that have been adapted to the 

smartphone, at both the academic and commercial level. Other reviews have covered 

biosensing modalities and applications in detail.[1, 13, 19, 20, 24, 25, 28, 29]

2. Four System Architectures of Biosensors for Personal mHealth

Although the technical specifications and form factors of smartphone-based mHealth 

devices will change over time, they will exhibit two defining and immutable features: a 

technology for sensing health parameters and software for processing this sensor data to 

extract actionable information. Hence, we classify the range of smartphone-integrated health 

devices based on the criteria of data acquisition and data processing (Figure 1a). 

Specifically, we categorize the devices based on whether the biosensing function is built on- 

or off-phone, and if the data processing is performed locally on the phone or via the cloud in 

a server. Here we refer to “local processing” to be data processing that occurs either on the 

smartphone (as commonly understood) or on a standalone biosensing accessory. For “server 

processing”, we refer to data processing that takes place on the cloud (as commonly 

understood) or on a nearby computer that communicates with the smartphone or a 

standalone biosensing accessory. Cloud services commonly used for this purpose currently 

include Google Cloud Platform, Microsoft Azure, and Amazon Web Services. Examples of 

devices, including commercial mHealth devices in use as well as major categories of 

smartphone-integrated biosensors being developed in academic research, are shown for each 

system architecture (Figure 1b).
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Smartphones can use either on-phone sensors or communicate with external, off-phone 

sensors. The location of the biosensing function (either on the phone or off the phone) is an 

important design criterion for researchers in mHealth devices, as the biosensing capabilities 

may be limited by the smartphone-supplied component. Modern smartphones contain 

numerous internal sensors for data acquisition, including, but not limited to, cameras, 

ambient light sensors, microphones, accelerometers, gyroscopes, magnetometers, and 

barometers. While the types of sensors built into smartphones continue to expand,[30] only a 

subset of these have demonstrated utility in healthcare applications. In addition to increased 

portability, a major advantage of using internal sensors for data acquisition is the availability 

of mature software tools for interfacing with the hardware, removing the need for ab initio 
firmware development. Further, as the sensors have already been optimized for the phone, 

there is no need to design the pre-processing electronic circuits.[25] However, as 

smartphones are not currently equipped with all the relevant health sensor modalities, an 

integrated smartphone biosensor is currently restricted in the types of health data they can 

gather. Nevertheless, smartphones possess connectivity technology, such as USB, Bluetooth, 

WiFi, and near-field communication (NFC), that enable them to interface with a large 

number of external biosensors to expand their range of signal acquisition capabilities. This 

flexibility introduces a challenge of interfacing with a multitude of external sensors which 

may necessitate designing a large number of customized hardware and software to collect 

and transmit the data to the smartphone, increasing cost and development time.

Biosensors that measure vital signs and other biophysical signals are made primarily from 

silicon using standard semiconductor device fabrication techniques. The camera and ambient 

light sensors are designed using CMOS technology that makes use of both N- and P-type 

metal–oxide–semiconductor field-effect transistors (MOSFETs).[31] In these devices, silicon 

acts as the semiconductor with polysilicon and silicon oxide acting as the conductor 

(“metal”) and the insulator (“oxide”), respectively. Another major class of sensor are based 

on microelectromechanical systems (MEMS). In these devices, the integrated electronics are 

fabricated with the same CMOS technology as the camera sensors.[32] The mechanical 

structures of these devices are typically made from silicon and polysilicon. Silicon is used 

because of the mature fabrication process pioneered by the microelectronics industry while 

polysilicon is used due to its ideal mechanical properties at the microscale.[33] Typical on- 

and off-phone specifications and fabrication materials for common biosensors are 

summarized in Table 1.

For measuring levels of biochemical and chemical analytes, many point-of-care biosensors 

employ microfluidics to carry out sample handling and small-volume reactions. In many 

instances, the readout is a colorimetric or fluorometric signal which is measured using an 

external photodiode or the smartphone camera’s CMOS sensor. The materials used most 

frequently for these applications are those that exhibit optical transparency or are of a format 

where color changes are easily visible, can be easily machined facilitating quick fabrication, 

are biocompatible, and are inexpensive. These materials fall under the three broad 

categories: polymers, inorganic materials, and paper-based.[34, 35] Common polymer 

materials include polydimethylsiloxane (PDMS), poly (methyl methacrylate) (PMMA), 

cyclic olefin copolymer (COC), and polycarbonate (PC). Examples of inorganic materials 
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include glass and ceramic. The list of materials and specific advantages of each material are 

listed in Table 1.

After acquiring the raw sensor signal, it is necessary to transform the data to yield actionable 

health information using either local or server processing. When designing the data 

processing pipeline, a primary consideration is minimizing the “time to answer”, here 

defined as the time between signal acquisition and the output of processed health 

information to the user. Current smartphones contain a System-on-Chip (SoC) with 

integrated multi-core processor and graphics processing unit (GPU), memory, onboard 

storage, as well as multiple connectivity interfaces.[36] The general-purpose processor 

typically has between 2 and 8 cores, allowing for effective multi-tasking, with clock speeds 

reaching up to nearly 3 GHz while the GPUs are approaching nearly 1 TFLOPS with single-

precision floating-point numbers.[37] Thus, in many circumstances, smartphones can run the 

full data processing pipeline locally with tolerable latency. However, the computing power 

of smartphones still fall below that offered by dedicated workstations or cloud servers. Thus, 

smartphones may not be suited for data processing that requires significant computing power 

because the processing latency may grow to intolerable levels. To overcome this limitation, 

smartphones can leverage their built-in connectivity features to transfer sensor data to a 

more powerful server and offload the more computationally expensive parts of the data 

pipeline. After the processing is completed, the server can transmit the results back to the 

smartphone, where it can be displayed to the user. While the data transmission introduces 

another source of latency, server processing is often faster than performing the computation 

locally.[17] Thus, applications with either large amounts of data or complex analytics often 

use server-assisted data processing.

Next, we review recent advances and devices that fall under each of the four system 

architectures.

2.1. Integrated: on-phone biosensing with local data processing

The first system architecture features an internal biosensor built into a smartphone, along 

with the SoC for fully integrated sensing and data processing. These devices often have the 

smallest form factor of the four system architectures. While smartphones are equipped with 

a wide variety of inbuilt sensors, only a subset of these sensors, such as imaging sensors and 

microphone, are commonly used in diagnostic applications. Applications that use internal 

sensors can be further subdivided based on whether or not an adapter is required to ensure 

the proper functionality of the system. Adapters are mainly required for applications where 

the alignment of the sensor and the sample is crucial, such as in cases of smartphone-based 

microscopy. The applications listed here have been subgrouped based on whether an 

additional adapter is needed for the functionality of the system or not. With the 

advancements in the quality of camera sensors, lenses, and image analysis software, the 

performance gap between smartphone cameras and conventional high-end cameras is 

shrinking.[1, 20] This increase in camera performance has facilitated the use of the 

smartphone-acquired images for diagnostic purposes.
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Adapter-dependent applications: Kalwa et al. demonstrated a fully-integrated 

smartphone application for the detection of melanoma at the POC.[38] The user takes an 

image of the target skin site using the smartphone with a 10× detachable lens, which is then 

subjected to a number of image processing steps such as preprocessing, segmentation, and 

feature extraction. A support vector machine classifier is then used to determine whether the 

image is indicative of a malignant or benign lesion. Using the PH2 dermoscopic image 

database, the authors demonstrated an area under the receiver operating characteristic curve 

(AUC) of 0.85 with 80% sensitivity and 90% specificity. MoleScope™, a commercially 

available smartphone attachment for dermoscopy allows the user to obtain magnified images 

of the skin with controlled lighting.[39] The images can be stored and viewed on a computer 

using a web platform and can be shared with a dermatologist, thereby facilitating 

teledermatology. While there are concerns regarding the accuracy of smartphone sourced 

images when compared to a dermatoscope,[40] improved image processing algorithms and 

better smartphone attachments may increase the reliability of the platform. Xu et al. 
developed a smartphone-based platform for the acquisition and analysis of retinal fundus 

images directly on the phone.[41] The smartphone is attached to an adapter which helps 

position the system in front of the eye being examined. The authors detected no significant 

difference in the performance when lower-quality smartphone images were used when 

compared to those obtained with fundus cameras. They evaluated their proposed system on 

the DRIVE and STARE databases and found AUC, sensitivity, and specificity values of 

0.959, 0.786, and 0.955, respectively, on the DRIVE database and 0.959, 0.825, and 0.931, 

respectively, on the STARE database.

Smartphones, with their small form factor, imaging capability, and connectivity, have made 

portable microscopy possible. Lee and Yang developed a compact, chip-scale smartphone 

microscope using ambient illumination.[42] Their microscopy method is based on shadow 

imaging, where a sample is directly placed on the image sensor. When coupled with on-

phone, super-resolution reconstruction from multiple images taken at different illumination 

angles, sub-micron resolution over an ultra-wide field-of-view is possible. The authors have 

demonstrated the utility of the microscope by imaging microscopic samples, blood cells in 

smears, microspheres, and freshwater algae in pond water. Orth et al. developed a dual-mode 

smartphone microscope capable of operating using a camera flash or ambient light for 

brightfield and darkfield imaging.[43] They devised a clip-on 3D printed attachment that 

easily attaches to the smartphone (Figure 2a) and demonstrated the utility of the system in 

imaging cell nuclei in unlabelled cells, cattle sperm, and zooplankton. An interesting 

application of the mobile phone microscope was devised by Fletcher and group where they 

quantified the amount of microfilaria in whole blood samples to determine those patients 

who can receive ivermectin treatment.[44] The smartphone video microscope can function 

with whole blood, with no additional sample preparation or staining steps, and produces the 

answer in 2 minutes. The authors validated the performance of the microscope using blood 

samples from 33 patients and showed that the results were comparable to conventional thick 

smear counts (94% specificity; 100% sensitivity). Kanakasabapathy et al. developed a 

smartphone-based semen analyzer for POC male infertility screening.[45] The system 

consists of a disposable microfluidic device for handling the semen samples and an optical 

attachment for the smartphone to facilitate image magnification and device alignment 
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(Figure 2b). The smartphone application was designed to capture images, automatically 

analyze, and report the results in less than 5 seconds with comparable performance to the 

more expensive and labor-intensive computer-assisted semen analysis system. The 

coefficient of variation when testing preclinical samples was found to be 4.5%. A total of 

350 unprocessed clinical semen samples were analyzed and the system provided the semen 

quality evaluation, based on the World Health Organization (WHO) guidelines, with ~98% 

accuracy.

Researchers have also demonstrated smartphone-based spectrometers for quantification of 

the readout from colorimetric assays. Halvorsen et al, developed a rapid smartphone-based 

neonatal diagnostic test for measuring the levels of lactate dehydrogenase (LDH) from 

whole blood samples.[46] The POC system consists of a disposable paper strip with dried-

down chemical reagents which produce the colorimetric readout. The strip is mounted on an 

injection-moulded plastic cartridge and is placed within a box holder to ensure optimal 

spacing between the smartphone camera and the cartridge. Plasma from whole blood is 

separated using filter papers, and the smartphone captures an image of the cartridge. The 

RGB values are extracted from the image and the calculated concentration of LDH is 

displayed on the screen within three minutes. The mean LDH (±SD) were found to be 

comparable between the POC system (551 ± 280 U/L) and standard laboratory analysis (552 

± 249 U/L).

Priye et al. developed a platform for smartphone-based diagnosis of mosquito-borne viral 

infections using the methods of reverse transcription-loop-mediated isothermal amplification 

(RT-LAMP) and quenching of unincorporated amplification signal reporters (QUASR).[47] 

They built a portable LAMP detection platform that interfaced with a smartphone to 

facilitate in-field diagnostics. The LAMP box consisted of (i) a heating module powered by 

a 5V source (ii) assay reaction housing module (iii) optical-detection/image analysis 

module. A smartphone application, Lamp2Go, connected to the LAMP box via Bluetooth 

and allowed the smartphone to control the heater and LEDs. The smartphone camera is used 

to capture an image of the reaction tubes which are analyzed on the phone via an app. The 

authors developed a colorimetric detection algorithm to decouple brightness information 

from color by mapping the pixel values from the RGB space to the CIE color space. Their 

platform is a field-deployable test system capable of multiplexed viral RNA detection, which 

could be used to diagnose viral infections from different sample matrices without the need 

for extensive sample preparation steps. They demonstrated the viability of their system by 

detecting Zika virus RNA down to 100 particle forming units per mL that was spiked in 

blood, urine, and saliva human sample matrices.

Liu and group developed a “smart-connected cup” for carrying out rapid, connected 

molecular diagnostics.[15] Their smartphone-based platform combines bioluminescent assay 

in real-time and LAMP, wherein the luciferin produces bioluminescent light (Figure 2c) 

which is detected by the smartphone camera. A major advantage of this method is that it 

removes the need for an excitation source and optical filters. The authors developed an 

Android application to 1) monitor luciferin emission in real-time, 2) quantify emission 

intensity, and 3) determine the concentration of the target. The final results are displayed on 

the screen and, if required, can be transmitted to a remote secure server. Additionally, the 
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application records the GPS location of each test to facilitate spatiotemporal disease 

mapping via a custom-designed website. They demonstrated the performance of the platform 

by detecting the Zika virus in urine and saliva samples with a sensitivity of 5 particle 

forming units per urine sample and HIV in blood samples within 45 minutes.

Using the microphone built into the smartphone, researchers have also built acoustics-based 

diagnostic biosensors. Thap et al. developed a lung function test using variable frequency 

complex demodulation method-based lung function parameter estimation using an audio 

signal recorded from the smartphone’s built-in microphone with an add-on mouthpiece 

attachment[48] (Figure 2d). A smartphone application for the iPhone 5S was developed using 

Objective-C for the estimation of the forced expiratory volume in 1 s/ forced vital capacity 

(FEV1/FVC) ratio. Once the audio signal had been recorded, the application took 5 seconds 

to visualize the FEV1/FVC ratio estimation. The authors demonstrated that their system 

could estimate the FEV1/FVC ratio with an absolute error and root mean squared error of 

4.5% ± 3.4% and 5.5%, respectively, for healthy subjects and 10.3% ± 10.6% and 14.5%, 

respectively, for patients with chronic obstructive lung disease. However, the authors also 

noted that, even with the mouthpiece attachment, there were variations in the angle at which 

users exhaled into the microphone, causing errors in the estimation of FEV1, FVC, and peak 

expiratory flow.

Adapter-free applications: Force sensors that are built into recent smartphone models 

have enabled diagnostic and biosensing applications. Chandresekhar et al. developed a 

smartphone application that uses the inbuilt photoplethysmogram (PPG) and force sensors 

along with the front-facing camera to estimate the subject’s blood pressure.[49] The subject 

presses their finger against the sensor and the application’s inbuilt algorithm displays the 

PPG value and the measured blood pressure in real time on the screen. The bias and 

precision errors were −4.0 and 11.4 mm Hg for systolic blood pressure and −9.4 and 9.7-mm 

Hg for diastolic blood pressure. Compared to a finger-cuff device, the error was 2 mm Hg 

higher. On the other hand, the application yielded more “try-again” messages and the blood 

pressure measurements were not as repeatable as their previous system[50], which used 

dedicated off-phone sensors, due to variability in the positioning of the fingertip.

In addition, stand-alone smartphone applications using user-entered data have been 

developed for diagnosis and monitoring of disease progression. The examples listed here are 

those in the areas of eye care and mental health. Oculocare’s Alleye.io and Vital Art and 

Science’s myVisionTrack are both FDA approved smartphone applications that have been 

developed to ascertain the severity and progression of age-related macular degeneration.[51] 

Alleye.io works by asking users to align three dots with one of their eyes closed and 

generates a score based on their performance. myVisionTrack has similar functionality, 

where the user selects the least circular object from a number of circular shapes. Based on 

their ability to delineate shapes, the application produces a score. Rutter et al. developed 

DelApp, a smartphone application for the assessment of attention deficit disorder in older 

hospitalized patients.[52] The application serves to be an objective assessment tool that is 

easily administered at the bedside setting. It comprises an arousal assessment (scored 

between 0 and 4) followed by a sustained attention task (scored between 0 and 6). The final 
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score is a total out of 10, where 10 indicates normal attention. The test is usually completed 

within 5 min.

In addition to diagnositcs and health monitoring, applications have been developed to aid 

daily activites and wellness. One such example is the SmartHear application, developed by 

Yu-Cheng Lin and group[53], for assisting individuals with mild to moderate hearing loss. 

The hearing assistive application was a smartphone-based implementation of the personal 

frequency modulation system. It mainly consisted of a smartphone running a mobile 

application paired to a Bluetooth headset. The speaker spoke into the smartphone’s 

microphone, and audio was transmitted to the Bluetooth headset worn by the listener. In a 5-

person user survey conducted by the authors, they found that the SmartHear system was 

favorably received due to its low cost, accessibility, and the low stigma associated with its 

usage.

2.2. Cloud: on-phone biosensing with data processing on a server

This system architecture deals with devices with built-in biosensors for health data 

acquisition and data processing that is done on a cloud server or on an external computer. 

Server processing is used either due to the complexity of the analysis, which makes it 

infeasible to run on the smartphone, or in those instances where the application is geared 

towards use in locations where the network connectivity is inadequate. In many instances, 

server processing is performed initially to establish the proof of concept, after which the 

algorithm is optimized for local deployment. We have grouped the applications here based 

on whether or not an external adapter is required for the functioning of the device.

Adapter-dependent applications: Yetisen et al. demonstrated the use of injectable 

dermal tattoo sensors that undergo a colorimetric change upon exposure to variations in pH, 

glucose, and albumin concentrations.[54] Images of the dermal sensors were taken with a 

smartphone and analyzed in MATLAB to quantify the color change (Figure 3a). The tattoo 

sensors yielded a standard error in aqueous solutions and in ex-vivo tissues of 0.3 pH and 

0.2 pH, respectively, for pH sensing, 0.3 mmol/L and 0.2 mmol/L, respectively, for glucose 

measurement, and 0.2 g/L and 0.1 g/L, respectively, for albumin measurement. In a similar 

vein, Ozcan and group developed a smartphone-based microplate reader for carrying out 

enzyme-linked immunosorbent assays at the POC.[55] The system consists of a 3D printed 

attachment which holds a 96 well plate and an LED array for the illumination of the plate. 

Optical fibers carried the light to the smartphone camera mounted on the same attachment 

(Figure 3b). The image was then transmitted to online servers for analysis, and the results 

are sent back to the phone in approximately one minute. The authors validated the 

performance of their system using tests for mumps, measles, HSV-1, HSV-2 and achieved an 

accuracy of 99.6%, 98.6%, 99.4%, and 99.4%, respectively. Ding et al. developed a 

smartphone-based multispectral imager with an optical resolution of 100 μm and 

demonstrated its performance by non-invasively carrying out nevus lesion diagnosis and 

dental plaque detection.[56] The housing for the multispectral imaging chip and the optical 

components was 3D printed and attached to the smartphone.
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Uthoff et al. developed a dual-modality, POC oral cancer screening device.[57] The system 

contains interchangeable probes to facilitate both intraoral and whole cavity imaging 

through autofluorescence imaging and white light imaging. The illumination is provided by 

six 405 nm Luxeon UV U1 LEDs, for the autofluorescence imaging, and four 4000 k 

Luxeon ZES LEDs, for the white light imaging. The LEDs are controlled by a custom 

Android application via a Bluetooth connected microcontroller unit. The captured data is 

sent to a cloud server for analysis and automated classification using convolutional neural 

networks. Using 170 white light and autofluorescence image pairs, they were able to train 

and validate their convolution neural network, which was shown to have an AUC of 0.91, 

sensitivity of 0.85, specificity of 0.89, positive predictive value of 0.88, and negative 

predictive value of 0.85. Ozcan and group have demonstrated that smartphone microscopy 

can benefit from deep learning.[23] Images taken by a conventional smartphone camera can 

be modified using deep learning algorithms to improve their spatial resolution, signal-to-

noise ratio, and color response. It has been demonstrated that with this software 

augmentation, the image quality is comparable to images taken by a bench-top microscope 

with a 20X objective lens (Figure 3c).

Adapter-free applications: An example of an adapter-free application is the SMARTtest 

app, which our lab has developed, to accompany the INSTI duplex HIV and syphilis self-

testing kit.[58] The application provides the user with a list of instructions to carry out the 

test, prompts the user and guides them into taking a picture of the kit, transfers the image to 

a cloud server where the image is analyzed, and receives the results from the server which 

can then be saved or shared by the user. This application is geared towards removing user 

subjectivity in the interpretation of results, and allow users to share the results with their 

partner or healthcare provider. Wang et al.developed a paper-based colorimetric sensing 

platform for the detection of glucose and uric acid.[59] The color change could either be 

detected by the naked eye or, for a more quantitative analysis, by using a smartphone to take 

images of the kit, which were then analyzed offline using the ImageJ software. The sensor 

had a linear response from 0.01 mM to 1.0 mM for uric acid detection and from 0.02 mM to 

4.0 mM for glucose detection. The limit of detections were 0.003 mM and 0.014 mM for 

uric acid and glucose, respectively.

The company Healthy.io has developed an FDA approved smartphone-based home 

urinalysis kit.[60] The user purchases the kit, which contains the dipstick, urine container, 

and a color board for calibration purposes. The user, after performing the test, takes a picture 

of the dipstick inserted into the color board. The image is sent to a cloud server for analysis, 

and the results are sent to the user within a couple seconds. The results are also shared with 

the health care practitioner. Luo et al. have demonstrated the ability to estimate blood 

pressure from facial videos recorded using a smartphone camera using transdermal optical 

imaging (TOI).[61] The recorded videos were then analyzed using machine learning 

algorithms to estimate the blood pressure from the captured data. The authors showed that 

their models were able to predict systolic blood pressure with an accuracy of 94.8%, 

diastolic blood pressure with an accuracy of 95.7%, and pulse pressure with an accuracy of 

95.7%. The bias ± standard deviation values were 0.39 ± 7.3 mm Hg, −0.26 ± 6.0 mm Hg, 

and 0.52 ± 6.42 mm Hg for systolic pressure, diastolic pressure, and pulse pressure, 

Arumugam et al. Page 10

Adv Mater Technol. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respectively. While the study measured only people with normal blood pressure under rest 

conditions and with uniform controlled lighting, the paper demonstrated the utility of using 

TOI to estimate blood pressure with reasonable accuracy. FibriCheck, developed by 

Qompium, is an FDA approved and CE certified application for the detection of atrial 

fibrillation.[62] It functions by acquiring a PPG measurement from the user’s finger using the 

camera and the camera’s flash. The recording takes a minute to complete, after which the 

data is sent to a server for further analysis. Sharma et al. demonstrated the smartphone-based 

imaging of fluorescent magnetic nanoparticles, where the images were analyzed on the 

cloud.[63] The group demonstrated the efficacy of the system by measuring the level of the 

prostate-specific antigen and achieved a limit of detection of 100 pg/mL, which was 

measured in less than 60 seconds.

Narayan et al. demonstrated that it is possible to detect disturbed and normal breathing 

patterns from ambient sounds recorded by an unmodified smartphone microphone.[64] The 

authors studied 91 patients undergoing polysomnography by using a Samsung Galaxy S5 

smartphone placed less than 1 meter from the head of the bed to record ambient sounds. The 

recorded sound files were exported for analysis in MATLAB. Using the validation cohort, 

the authors showed that their algorithm performed with a c-statistic of 0.87 when compared 

to whole-night polysomnography. The study demonstrated that using unmodified 

smartphone recordings, without specialized equipment or physical contact with the patient, it 

is possible to identify the acoustic signatures of sleep-disordered breathing. Steth IO is an 

FDA approved smartphone-based digital stethoscope that is composed of 3 elements: 1) a 

smartphone case with a built-in waveguide, 2) a smartphone application, and 3) a cloud 

platform for identification of abnormal heart and lung sounds.[65] The waveguide is used to 

filter out unwanted sounds and feed the amplified heart and lung sounds directly into the 

smartphone’s microphone. By keeping the smartphone against the patient’s chest, the 

application can visualize the phonocardiogram in real time. ResApp is a smartphone 

application designed for the diagnosis of respiratory disease using only the smartphone 

microphone.[66] The application records cough sounds as the user coughs into the 

microphone and sends them to a cloud server for analysis.

hearScreen is a smartphone application developed by hearX for the purpose of detecting 

hearing loss.[67] The user is asked to plug in headphones to the audio jack and listen to 

numbers that are called out in the presence of artificial noise. The user enters the numbers 

they hear using the touchscreen input, and the process is repeated 23 times. The data is then 

uploaded to the cloud for processing, after which the hearing score is sent back to the phone 

within a few seconds. The entire test takes a minute or two to complete. Studies conducted 

in primary health clinics have shown that the application performs with acceptable 

sensitivity and specificity in a time-efficient manner.[68] Faurholt-Jepsen et al. demonstrated 

using smartphone data to identify patients with bipolar disorder.[69] The specially designed 

MONARCA software automatically collected smartphone data, such as the number of 

outgoing and incoming calls and text messages per day, duration of phone calls (min/day), 

the number of times the smartphones’ screen was turned on or off per day, and the duration 

the smartphone screen was on per day. Using this data from a cohort of 29 patients with 

bipolar disorder and 37 healthy individuals, the authors were able to identify patients with 

bipolar disorder with a positive predictive value of 0.88 and a negative predictive value of 
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0.52. This application shows the potential use of smartphone data as a diagnostic behavioral 

marker.

2.3. Tethered: off-phone biosensing with local data processing

This system architecture features devices with the biosensing function off the smartphone, 

but with data processing taking place on the smartphone. The main advantage of this system 

architecture is the flexibility of working with a large range of sensors, thus enabling the 

monitoring of numerous health targets that would otherwise be infeasible with a smartphone 

alone. Further, as the data processing takes place locally, these devices typically retain 

functionality when not connected to the internet. As a result, this class of device is 

potentially more attractive for use in low-resource settings with intermittent access to the 

internet. A common paradigm for this system architecture is for the sensing and processing 

to occur on the external device with the results transmitted to the smartphone. Thus, in some 

cases, the smartphone can be viewed as a peripheral instrument that augments the 

functionality of an external device rather than being an integral component. However, even 

for these smartphone-optional devices, integration with the smartphone is often necessary to 

enable more advanced functionality.

The most common academic examples of this classification have been developed for 

biochemical assays, particularly those that use an electrochemical readout.[70] 

Electrochemical analysis is widely used for quantitative analyte detection. Electrochemical 

analysis can typically be classified as either potentiometric, amperometric, or impedimetric 

where measures of voltage, current, and impedance are related to analyte concentrations, 

respectively.[71] A recent example of potentiometric sensing is the smartphone-interfaced 

chip for biological sex identification demonstrated by Deng et al.[72] The device consisted of 

an external electrochemical chip that connected to a smartphone using microUSB, and was 

controlled by an application on the phone. The device used cyclic voltammetry to detect 

creatine kinase (CK) and alanine transaminase (ALT) via quantitative detection of NADH 

consumption. In an assay for CK detection, the system had a limit of detection (LOD) of 100 

U/L and dynamic range of 100 to 3200 U/L. In the pure ALT assay, the system had a LOD 

of 10 U/L and a dynamic range of 10 to 640 U/L. By utilizing a joint CK-ALT assay, the 

system was shown to discriminate between male and female serum samples, with AUC, 

sensitivity, and specificity of 0.874, 88.3%, and 88.9%, respectively.

An example of amperometric readout is the system developed by Guo for the monitoring of 

blood β-ketones for early detection of diabetic ketoacidosis.[73] The device consists of a 

smartphone-powered electrochemical analyzer that uses disposable test strips to detect blood 

ketone concentration from fingerstick whole blood (Figure 4a). After addition of a drop of 

whole blood, the β-hydroxybutyrate dehydrogenase integrated with the test strip drives the 

conversion of β-hydroxybutyrate to acetylacetic acid. This cascade subsequently drives the 

oxidation of NADH into NAD+, which can be detected amperometrically using the 

electrochemical analyzer. After mapping the current to the concentration of β-

hydroxybutyrate, the results are transmitted to the smartphone via USB. The system was 

demonstrated to have a LOD of 0.001 mmol/L and a dynamic range of 0.001 mmol/L to 
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6.100 mmol/L. Further, the device was shown to have excellent agreement with benchtop 

electrochemical analyzer.

An impedimetric-based example is the smartphone-based system for the detection of volatile 

organic compounds (VOCs) developed by Liu et al.[74] The system used interdigital 

electrodes that interfaced with a mobile impedance sensing device with results transmitted to 

the smartphone via Bluetooth in real time. The electrodes had been modified with graphene 

and ZnO such that increasing VOC concentration resulted in an increase in the conductivity 

of the electrodes due to the reduction of adsorbed oxygen and subsequent transfer of free 

electrons to the electrode. This change in conductivity was measured by the impedance 

sensing device and used to measure the concentration of VOCs. The system was shown to 

have a LOD of 1.56 ppm for acetone with a linear response range up to 10 ppm. Further, the 

system was able to discriminate acetone from other VOCs, like formaldehyde, via 

impedance spectroscopy. Impedance readout was also adapted for blood cell counting in a 

work by Talukder et al.[75] They developed a portable cytometer capable of detecting the 

small change in impedance from cells flowing past the electrode. The minimum change in 

impedance that the sensor could detect using 3 μm beads was 0.032%. The sensing was 

performed by custom lock-in amplifier circuit interfaced with an Arduino Uno 

microcontroller. The sampled data was transmitted to the smartphone via Bluetooth for 

processing.

As the components required for each of these modalities are similar, a recent study by 

Escobedo et al. developed a general-purpose device that could perform both amperometric 

and potentiometric readouts.[76] The device consisted of a general-purpose electrochemical 

analyzer that was powered and controlled by a smartphone via NFC. Amperometric 

operation was demonstrated for the quantification of glucose, where the system had a LOD 

0.024 M and dynamic range of 0.065 to 0.750 M. Similarly, potentiometric operation was 

demonstrated by measuring pH, where the system was shown to have a dynamic range of 3 

to 9. This device was also designed for electrochemiluminescence applications. This 

technique combines the principles of electrochemistry with chemiluminescence where the 

application of a voltage drives the electrochemistry reaction that subsequently triggers 

chemiluminescence.[77] This functionality was demonstrated with the quantification of 

hydrogen peroxide, where the system had a LOD of 0.03 mM and dynamic range of 0.62 to 

100 mM. However, this modality alone uses the smartphone’s internal camera sensor for 

readout of the chemiluminescence. Kassal et al.developed a smart bandage which could 

measure the levels of uric acid[78] and the pH[79] to monitor the status of wound healing. 

Uric acid sensing was achieved by screen printing an amperometric sensor directly onto a 

wound dressing which facilitated the chronoamperomertic sensing of uric acid. The data was 

wirelessly transferred via radio-frequency identification (RFID) or NFC to computer, tablet, 

or a smartphone. The performance of the uric acid sensor was compared with that of the CHI 

440 electrochemical sensor and there was high agreement between the two instruments (R2 

= 0.9967) with a sensitivity coefficient of −2.4 nA/μM.[78] For the sensing of pH, the authors 

were able to construct a bandage with immobilized cellulose particles covalently attached to 

a pH sensing dye. An optoelectronic probe quantified the pH value and stored it on the 

device. The data could then be transmitted via RFID to a smartphone or computer. The 

performance of the pH sensor was compared with that of a reference pH meter and the 
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difference in the measured pH values was used to determine the accuracy and precision of 

the smart bandage. The accuracy and precision values were found to be 0.08 pH units and 

0.05 pH units, respectively, demonstrating the ability of the pH sensor to accurately measure 

the pH values in the ranges tested.[79]

Smartphone-based biochemical assays have also been developed that use external optics. 

One example is the mChip platform described by Laksanasopin et al. for POC diagnosis of 

infectious disease (Figure 4b).[80] This platform consists of a smartphone dongle, powered 

and controlled via the 3.5 mm audio jack, that replicated all components of a benchtop 

enzyme-linked immunosorbent assay (ELISA) and was validated with whole blood. Using 

venipuncture whole blood the dongle achieved a sensitivity and specificity of 100% and 

91%, respectively for HIV, 77% and 89%, respectively for treponemal syphilis, and 80% and 

82%, respectively for nontreponemal syphilis. Li et al. developed a smartphone-assisted 

microfluidic chemistry analyzer for the detection of three markers indicative of diabetes and 

hyperlipidemia status: glucose, triglyceride, and total cholesterol.[81] The serum samples 

were added to a microfluidic chip and the color changes were measured using a custom 

analyzer with a built-in optical system which was under the control of a smartphone. The 

data generated by the analyzer is wirelessly transmitted via Bluetooth to a smartphone for 

result determination using previously established standard curves. The authors compared the 

performance of their system with that of an automatic chemistry analyzer and achieved high 

coefficients of determination between the two sets of results for all the analytes measured: 

0.969, 0.966, and 0.969 for glucose, triglyceride, and total cholesterol, respectively. In 

addition to biochemical assays, off-phone optical readout has been described by Das et al. 
using a mini-spectrometer for skin cancer diagnosis.[82] The device was composed of a 

MEMS spectrometer controlled by an Arduino microcontroller that incorporated an 

additional Bluetooth module, for transmission of the data to the smartphone for analysis, and 

discriminated between normal skin and cancerous lesions via the reflectance spectra. The 

device demonstrated a resolution of 10 μm. The smartphone blood pressure monitor 

described by Chandrasekhar et al.[50] is another example of off-phone optical readout. This 

device uses a PPG sensor coupled with a thin-filmed, capacitive force sensor to measure 

blood pressure using a modified oscillometric technique (Fig 4c). Compared to an 

oscillometric arm cuff device, the system was shown to have a mean absolute error of 3.3 ± 

8.8 mmHg for systolic pressure and 5.6 ± 7.7 mmHg for diastolic pressure.

Off-phone sensing with client-side processing has also been explored for acoustic-based 

applications. For example, Reyes et al. describe a system that used an off-phone electret 

microphone as an acoustic sensor for detection of crackle sounds in pneumonia patients.[83] 

The sensor interfaced with the smartphone via the 3.5 mm audio jack where the acquired 

acoustic signal was processed using a time-varying autoregressive algorithm to 

automatically detect crackles (Figure 4d). When validated with synthetic data injected with 

both fine and coarse crackles, the system was found to have an average accuracy, sensitivity 

and specificity of approximately 81%, 89%, and 99%, respectively. However, when tested 

with real patients, these metrics decreased. In another work, Jayatilake et al. developed a 

device for automatic analysis of swallowing sounds for dysphagia diagnosis.[84] The device 

uses a neck-worn microphone to record the swallowing sound which is then processed using 

an on-phone algorithm for detection of both dry and wet swallows. Dry swallow detection 
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was validated using 8 subjects with 71 dry swallow episodes where the system was found to 

have a precision of 83.7% and recall of 93.9%. Similarly, wet swallow detection was 

validated using 31 subjects with 92 wet swallow episodes where the accuracy was 79.3%. 

Smartphones have also been employed in mobile ultrasound. Huang et al. described a 

smartphone-based system for blood flow measurement using Doppler ultrasound.[85] The 

device used a 10-MHz ultrasonic sensor, for monitoring blood flow, interfaced with an 

analog processing circuit. The pre-processed Doppler signal was then transmitted to the 

smartphone using the 3.5 mm audio jack for visualization and spectrogram analysis. Initial 

calibration was performed using a Couette flow phantom with porcine blood under pulsatile 

conditions. The system was validated in vivo by comparing the arterial blood flow measure 

of a rat with those acquired using a commercial ultrasound duplex scanner. The mobile 

ultrasound system was found to have good agreement with a commercial duplex scanner.

Stopczynski et al. developed the Smartphone Brain Scanner (SBS2) application which 

combines an off-the-shelf EEG cap with a smartphone resulting in a fully-portable real-time 

3D EEG imaging system.[86] The EEG recordings collected by the cap were wirelessly 

transmitted to an Android phone for processing and imaging reconstruction. A validation 

study was carried out by Mckenzie et al.to assess the performance of the application. The 

reconstructed EEG waveform was used for detecting epileptiform abnormalities and was 

compared to a standard EEG.[87] It was found that SBS2 yielded sensitivity and specificity 

values of 39.3% and 94.8% respectively with a positive prediction value of 0.71 and a 

negative predictive value of 0.82. The main limitation in the performance of the system was 

its low to moderate sensitivity when compared to standard EEG.

In addition to these technologies in development, there are a number of commercial devices 

within this system architecture. The most prominent examples are the fitness trackers and 

smartwatches offered by Fitbit,[88] Apple,[89] and Samsung,[90] among other commercial 

vendors. While these products may contain a host of different sensors, common 

configurations contain an accelerometer and a photoplethysmogram sensor. After acquiring 

the raw sensor signal, proprietary algorithms are used to estimate activity and heart rate. 

Further, some devices apply additional processing to track other metrics, including distance 

travelled, calories burned, or sleep state. The processed data is then shared with the 

smartphone where it can be visualized and stored for later analysis. However, despite their 

popularity, there are concerns over the accuracy and clinical relevance of these devices.[91]

A recent development in this space is the integration of electrodes to enable on-demand 

recording of clinical-grade electrocardiogram (ECG). While preceded by AliveCor’s 

KardiaBand, a prominent example today is the Apple Watch, where ECG capability was 

introduced with the Series 4 model; however, other ECG-capable smartwatches are in 

development. Further, mobile ECG devices are not limited to the watch form-factor. For 

example, the AliveCor KardiaMobile[92] consists of a pad with two electrodes that can be 

clipped to the smartphone. Despite the differences in form-factor, all of these devices operate 

by acquiring a short ECG recording, typically around 30-seconds in length, and then 

transmitting it to the smartphone for analysis. Some products, like the KardiaMobile and 

KardiaBand, have developed algorithms to analyze the ECG recording to detect arrhythmias. 

AliveCor’s atrial fibrillation detection algorithm was shown to have a sensitivity and 

Arumugam et al. Page 15

Adv Mater Technol. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



specificity of 96.6% and 94%, respectively, when used with the KardiaMobile.[93] When 

used with the KardiaBand, the algorithm demonstrated a sensitivity and specificity of 93% 

and 84%, respectively.[94] Another ECG example is the QardioCore.[95] Whereas the 

previous products discussed collect a short ECG recording, the QardioCore continuously 

records ECG via wearable chest electrodes that wirelessly transmit to the smartphone. In 

addition to ECG, the QardioCore continuously monitors heart rate, body temperature, and 

physical activity. To date, no study has examined the clinical utility of the QardioCore.

“Elemark lipid check”is a smartphone-based in vitro diagnostic device for the measurement 

of three lipid biomarkers: total cholesterol (TC), high density lipoprotein (HDL), and 

triglyceride (TG).[96] The device consists of an analyzer, test strips, and a compatible 

smartphone. The analyzer physically attaches to the smartphone and the operation of the 

analyzer is controlled via an app. Yun et al. compared the performance of elemark lipid 

check with that of the hospital-grade AU5800 Analyzer from Beckman Coulter.[97] The 

comparison study showed that the elemark lipid check demonstrated high correlation with 

that of reference test R = 0.97 for TC, R = 0.97 for HDL, and R = 0.99 for TG. Additionally, 

99.1% of the measured TC concentration values at 100 mg/dL or higher were within ±15% 

of the reference results, 100% of measured HDL concentration values less 100 mg/dL were 

within ±10 mg/dL of the reference results, and 96.7% of the measured TG concentration 

values at 100 mg/dL or higher were within ±15% of the reference results.

Another set of examples of this system architecture are the smart scales offered by Withings,
[98] FitBit,[88] and others. While the most basic models typically only track the user’s weight 

and body mass index over time, the more advanced models provide estimates of body 

composition and pulse wave velocity. To measure body composition, the scales use 

bioelectrical impedance analysis. Integrated electrodes are used to pass a small current 

through the user and the impedance is recorded. As the measure of electrical impedance is 

known to relate to total body water and fat-free body mass, the scales can calculate body 

composition using the measured weight in conjunction with the user’s height and sex.[99] To 

measure pulse wave velocity, the scales use both ballistocardiography and impedance 

plethysmography.[100] By analyzing the ballistocardiogram, the scale can detect the opening 

of the aortic valve. Similarly, analysis of the plethysmogram signal yields the arrival time of 

the blood pressure pulse wave at the foot. By dividing by the distance between the foot and 

the heart, estimated by the user’s height, the scale can estimate the velocity of the pulse 

wave. Like fitness trackers, these products primarily use the smartphone as a peripheral that 

offers another means to visualize the data as both the sensing and processing are performed 

on the scale.

Numerous other smartphone-integrated smart devices have been developed that satisfy the 

criteria for this classification. Examples range from smart thermometers and blood pressure 

monitors, like the QardioArm[101] or Omron HeartGuide,[102] to wireless 

electroencephalograms (EEG) for guided meditation,[103] and wearable respiratory monitors 

for early detection of asthma attacks.[104] In addition to these biophysical measures, 

smartphone-integration has been implemented in devices used for tracking biochemical 

targets, most notably blood glucose concentration via the smart glucose meters marketed by 

iHealth Labs[105] and DarioHealth,[106] among others. After measuring the user’s blood 
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glucose levels using standard electrochemical techniques, these devices transmit the reading 

to the smartphone, enabling efficient and accurate self-monitoring. In addition to discrete 

monitors, smartphone-based features have been incorporated into all of the latest models of 

continuous glucose monitors. Complimentary to these products, Companion Medical 

developed the InPen, the first FDA approved smart insulin pen.[107] Whereas the smart 

glucose meters automatically log blood glucose concentration, the InPen monitors the 

amount of insulin delivered. By automatically logging insulin dosage to the smartphone for 

later review, smart insulin pens are expected to improve clinical outcomes by facilitating 

treatment optimization.[108] Smartphones are also being used for portable ultrasound, such 

as the Philips Lumify[109] and the Butterfly iQ.[110] Both devices offer clinical-grade 

imaging capabilities at dramatically reduced cost and have been cleared by the FDA for 

multiple clinical applications, including fetal and obstetric exams. Critically, these products 

are marketed primarily to healthcare professionals and hospitals, indicating that the 

healthcare industry will adopt smartphone-integrated health devices if the value is clear.

2.4. Hub: off-phone biosensing with data processing on a server

The last system architecture we consider features devices where biosensing takes place off 

the smartphone, and where data processing takes place on an external computer or a remote 

server. Here, the smartphone serves primarily as a data collection hub and user interface. 

Examples of devices that fit these criteria are more limited than the other system 

architectures, possibly because current mHealth devices with off-phone biosensors typically 

perform measurements that do not require computationally expensive data processing. 

However, as the latest AI techniques continue to be successfully applied to problems in 

healthcare,[111] more devices may make use of the sophisticated data processing available 

via the cloud to analyze the collected data to provide personalized predictive analytics.

Philips et al. developed the WristO2, a wrist-worn device for the estimation of SpO2.[112] 

They used the MAX30102 reflective pulse oximeter and the MPU9250 IMU sensor for 

collecting data together with an Adafruit FLORA microcontroller for data alignment. A 

smartphone running an Android application was connected to the microcontroller via a USB 

connection. This USB connection served to power each device as well to read and visualize 

the signals from all the connected sensors. The application then saved the readings and sent 

them to a remote database for offline data processing. The authors demonstrated the 

reliability of SpO2 sensing by showing a reduction in the RMSE value to 1.5% brought 

about by the integration of the features extracted from the IMU sensor with that of the 

reflective pulse oximeter.

Despite the relative infancy of AI in healthcare, a number of commercial products within 

this system architecture have already made this transition. One example is the Bluetooth 

equipped blood glucose meter from One Drop.[113] While the core functionality of the 

device, blood glucose measurement, occurs locally, one of its more interesting features, the 

“Automated Decision Support”, is made possible with cloud processing using advanced AI 

algorithms. After taking a blood glucose measurement, the reading is transmitted to One 

Drop cloud network where it is analyzed and compared to over one billion other glucose 

measurements. Once processed, the Automated Decision Support system provides the user 
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with a personalized forecast of future blood glucose concentration over the next 8 hours. The 

forecasts were shown to be reasonably accurate, with 91% of predictions within 50 mg/dL of 

the glucometer readings and 75% within 27 mg/dL.[114] Thus, these predictions yield 

actionable information that can be used to guide future behavior and achieve better glycemic 

control.

Another example of this system architecture is the iTBra in development by Cyrcadia,[115] a 

smart bra developed for early detection of breast cancer. The iTBra contains two breast-

conforming patches with integrated thermistor sensors that track local metabolic activity and 

the fluctuations in skin temperature associated with the circadian rhythm, measures that are 

known to relate to breast cancer progression.[116] After wearing the device for two hours, the 

skin temperature rhythm data is transmitted to the smartphone then uploaded to the cloud for 

analysis where AI algorithms generate a diagnosis. Cyrcadia claims the diagnoses generated 

by the iTBra have an accuracy of 84% with a sensitivity and specificity of 90% and 84%, 

respectively.[60] While the results are unpublished, other works have demonstrated the 

feasibility of the approach.[117]

The Air Next by NuvoAir[118] is a smart spirometer used to monitor pulmonary function. 

The device provides clinically accurate measurements of forced expiratory volume in the 

first second (FEV1) and forced vital capacity (FVC) in addition to accurate detection of 

obstructive ventilatory impairment, with a sensitivity and specificity of 90% and 97%, 

respectively.[119] In a follow-up study looking at its use in low resource settings, the smart 

spirometer detected ventilatory impairment with a sensitivity and specificity of 98% and 

74%, respectively.[120] While this core functionality uses only local processing, NuvoAir 

uses the cloud to generate personalized care suggestions using their Lung Health AI 

platform. The DUO by Eko[121] is an upcoming example of this system architecture. The 

DUO is an FDA cleared and HIPAA compliant device that combines a digital stethoscope 

with a 1-lead ECG. While the core data processing is performed locally on-device with 

results sent to the smartphone via Bluetooth., Eko has announced that soon cloud-based 

machine learning will be used to perform automated data analysis.

CloudMinds has developed a smartphone-integrated cloud-based Raman spectrometer called 

the XI.[122, 123] The spectrometer is fully integrated with the back of a custom Android 

smartphone and is connected to the phone via WiFi, Bluetooth, or 4G data connection. The 

acquired Raman spectra along with the background signal is transmitted to a cloud server for 

background subtraction and material identification using a proprietary deep learning model. 

The authors also state that their system can function as a standalone unit without relying on 

the cloud server for analysis at the cost of increased compute time. This makes their system 

possess characteristics of both a tethered and hub architecture. They have shown that their 

platform was able to identify a single unknown material with an accuracy of 99.9%, mixture 

of two materials with an accuracy of 96.7%, and a mixture of three materials with an 

accuracy of 85.7%.[123]
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3. Future Directions and Challenges

As the digital health paradigm gains traction, mHealth devices used by patients and 

consumers will contain increasingly advanced biosensors for measuring a large range of 

personal health parameters, expanding upon the currents set of vital signs and biochemical 

measurements. Amidst this anticipated proliferation of smartphone-based mHealth devices, 

we describe for researchers in biosensors four system architectures that could help constrain 

the specifications of the biosensor. This perspective aligns with that of data informatics 

researchers in mHealth,[27] and concords with the “sample-to-answer” workflow (i.e. from 

the acquisition of signal from a clinical sample to processing the data to yield health 

information of interest) which is sought after in an integrated POC diagnostics device.[124] 

Specifically, by examining the flow of data through the sample-to-answer workflow, this 

categorization contextualizes how the biosensor fits into the broad architecture of the 

mHealth device. (While this review provides examples of applications that fall under each of 

these four categories, the review is not meant to be an exhaustive survey of biosensors used 

in personal mobile health space.)

How would a researcher assess which system architecture would be the most appropriate, 

given a target health parameter to sense? Depending on the use case (for example, whether a 

highly sensitive and precise value is required for clinical diagnosis, versus binning of results 

or observation of a general trend for maintaining general wellness), the required technical 

specifications may be achievable as a built-in biosensor on the phone, even if an off-phone 

biosensor could produce more analytically powerful measurements (see the “on-phone” and 

“off-phone” specifications in Table 1). In the “integrated” architecture, the biosensor fits into 

the phone and directly interfaces with its circuitry, with ideally an overall compact device for 

the end user. By contrast, in a “tethered” architecture where the biosensor is separate from 

the smartphone, the construction of the biosensor can take on a large number of materials 

and designs, but data connectivity must also be built into the biosensor.

Similarly, there are implications for biosensor development when considering data 

processing. As the processing power of smartphones increases over time, the data processing 

may become less reliant on server computing to favor mHealth devices of the “integrated” 

and “tethered” architectures. For example, mHealth devices could take advantage of deep-

learning frameworks that enable AI models to be run directly on the phone[125] to decrease 

the time to answer, enable offline use, and reduce server cost. Biosensors that provide data in 

forms that are readily processed locally would harmonize with these two architectures. On 

the other hand, the advent of 5G networks, which can reach 10 Gbit/s data transfer rates 

(more than a 20-fold increase over LTE) with a latency of around 3 ms (compared to 50 ms 

for LTE), will enable the transfer of greater amounts of data to the cloud for processing.[126] 

The increase in data transfer speeds and reduction in network latency will support the 

burgeoning field of minimally invasive, non-obtrusive continuous biosensors. The capability 

to collect large quantities of meaningful health parameters in real time and transfer them to a 

server for advanced data analytics will further support the vision of mHealth to shift from 

diagnosing illness to predicting adverse events in advance. The development of continuous 

biosensors in this data network environment could help shift the paradigm of healthcare 

from reactive to proactive patient care.
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Finally, roadblocks must be addressed before personal mHealth sensors can achieve 

widespread use. First, usability studies will need to be carried out that analyze user feedback 

on different aspects of the device and software to identify and correct points of failure.[127] 

In many cases, current devices have only been tested in controlled environments and have 

not been validated with the target audience. Usability studies will also help capture issues 

stemming from variations in the manufacture specifications of smartphone hardware. Next, 

careful regulation must protect users from unsafe applications (an example being a blood 

pressure measurement application that was withdrawn due to dangerously inaccurate 

predictions).[128] Additionally, with the rise of AI, it is important to ensure that the 

predictive models are accurate. Since the accuracy of data-driven models are dependent on 

the dataset that was used for training, biased datasets could skew the model and lead to 

identifying trends and patterns that are not applicable to the user.[129] So far, for “software as 

a medical device”, the FDA has approved only locked algorithms (which provide identical 

results each time given the same input, with examples being static look-up tables and 

decision trees).[130]

According to the 2015 guideline issued by the FDA[29, 131], all applications that, by using 

their internal or external sensors, can turn a smartphone into a medical device will need to be 

regulated by the FDA. Since a number of the examples detailed in this review fall under the 

medical device category, it is necessary that the researchers keep in mind the regulatory 

processes and its requirements for the commercialization of the device. The health data 

generated by the systems would be classified as protected health information and, as such, 

would require the cloud databases used to store the sensitive data to have the necessary 

encryptions in place to ensure that they are compliant to the Health Insurance Portability and 

Accountability Act. Majumder and Deen have, in their review, presented a detailed summary 

of the state of the regulatory policies for mHealth devices in the US and UK.[29] Kotz et al. 
have presented a detailed look into the privacy and security challenges presented by mHealth 

technology.[132] For AI and machine learning, the FDA is considering to emphasize a well-

established algorithm change protocol and validation process, such that algorithms can learn 

and change while remaining safe and effective.[130] Moreover, patient privacy and data 

security must be ensured.[132, 133] With increasing use of AI, the models may leak 

identifiable user information from the training data due to unintended memorization.[134] As 

biosensors are increasingly developed with connected hardware and software towards use in 

decentralized settings, it will become important for researchers to be aware of the features of 

the chosen system architecture, including data security, while collecting and analyzing 

personal health information.
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Figure 1. 
(a) Biosensors for collecting personal health data can be categorized into four distinct 

system architectures based on the method of sensing and processing health data. The 

categories are titled “integrated”, “cloud”, “tethered”, and “hub”. The red eye denotes 

general biosensing functionality (not just optical), which can be physically located on the 

phone or off the phone. Examples of on-phone sensors include smartphone-supplied 

cameras, ambient light sensors, microphones, accelerometers, gyroscopes, magnetometers, 

and barometers. (b) Examples of types of health sensing devices are shown for each system 

architecture.
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Figure 2. 
Examples of personal mobile health devices with biosensors built on the phone and data 

processed also locally on the phone. (a) Dual-mode microscope attachment (left) designed 

for the smartphone (right). Reproduced as is;[43] use permitted under the Creative Commons 

Attribution License CC-BY 4.0 (b) Semen analyzer for point-of-care male fertility 

screening. Reproduced with permission;[45] Copyright 2017, The American Association for 

the Advancement of Science. (c) Smart-connected cup for rapid molecular diagnostics 

without the need for an excitation source or optical filters. Reprinted with permission;[15] 

Copyright 2018 American Chemical Society. (d) Smartphone device with mouthpiece 

attachment for lung function testing. Reproduced as is;[48] use permitted under the Creative 

Commons Attribution License CC-BY 4.0
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Figure 3. 
Examples of personal mobile health devices with biosensing built on the phone but with data 

processed remotely on a server. (a) Injectable dermal tattoo sensors with a colorimetric 

readout for chemical analyte monitoring. Reproduced with permission.[54] Copyright 2019, 

John Wiley and Sons. (b) Smartphone-based microplate reader for point-of-care enzyme-

linked immunosorbent assays. Reproduced with permission.[55] Copyright 2015, American 

Chemical Society (https://pubs.acs.org/doi/10.1021/acsnano.5b03203; further permissions 

related to the material excerpted should be directed to the ACS). (c) Smartphone microscope 

with the resolution of acquired images enhanced using a deep neural network. Reprinted 

with permission.[23] Copyright 2018, American Chemical Society.
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Figure 4. 
Examples of personal mobile health devices with biosensing built off the phone (for 

example, electrochemical sensing) as an accessory, and with data processed locally on the 

phone. (a) Amperometric-based system for blood ketone monitoring. Reproduced with 

permission.[73] Copyright 2017, American Chemical Society Group. (b) Portable diagnostics 

platform for point-of-care enzyme-linked immunosorbent assays. Reproduced with 

permission.[80] Copyright 2015, The American Association for the Advancement of Science. 

(c) Smartphone-based cuffless blood pressure monitor. (i) The smartphone attachment for 

off-phone sensing. (ii) The developed application for local processing. Reproduced with 

permission.[50] Copyright 2018, The American Association for the Advancement of Science. 

(d) System for automated detection of crackle sounds (left) demonstrated with a pneumonia 

patient (right). Reproduced as is;[83] use permitted under the Creative Commons Attribution 

License CC-BY 4.0
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