Skip to main content
. 2020 Oct 9;15(10):e0240179. doi: 10.1371/journal.pone.0240179

Table 5. Comparison of predictive accuracy across for random forest and SVM models.

Classifier Number of Plants Price F1-macro score (f1_macro) F1-micro score (Overall Accuracy) (f1_micro/OA)
Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4
RF 6 Low 0.25 0.32 0.24 0.30 0.72 0.78 0.67 0.72
SVM 6 Low 0.20 0.20 0.20 0.24 0.67 0.67 0.67 0.67
RF 6 High 0.28 0.28 0.28 0.28 0.53 0.53 0.53 0.53
SVM 6 High 0.16 0.16 0.16 0.16 0.47 0.47 0.47 0.47
RF 12 Low 0.29 0.36 0.28 0.29 0.55 0.73 0.55 0.55
SVM 12 Low 0.17 0.40 0.34 0.34 0.36 0.73 0.64 0.64
RF 12 High 0.18 0.26 0.20 0.30 0.47 0.53 0.53 0.60
SVM 12 High 0.10 0.10 0.10 0.10 0.33 0.33 0.33 0.33
RF 24 Low 0.16 0.19 0.11 0.39 0.38 0.38 0.25 0.75
SVM 24 Low 0.18 0.28 0.40 0.38 0.38 0.50 0.75 0.75
RF 24 High 0.33 0.25 0.39 0.19 0.55 0.45 0.73 0.36
SVM 24 High 0.31 0.08 0.14 0.04 0.55 0.18 0.27 0.09

Model predictors:

Model 1: 3mer-without-LATD;

Model 2: 3mer-without-LATD + consumer attributes;

Model 3: 3mer-with-LATD;

Model 4: 3mer-with-LATD + consumer attributes.

Note: The numerically superior result in each display under either F1-macro or F1-micro score. The higher F1-macro score and the higher F1-micro score (is equivalent to overall accuracy in classification tasks) are displayed in bold.