Table 5. Comparison of predictive accuracy across for random forest and SVM models.
Classifier | Number of Plants | Price | F1-macro score (f1_macro) | F1-micro score (Overall Accuracy) (f1_micro/OA) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 1 | Model 2 | Model 3 | Model 4 | |||
RF | 6 | Low | 0.25 | 0.32 | 0.24 | 0.30 | 0.72 | 0.78 | 0.67 | 0.72 |
SVM | 6 | Low | 0.20 | 0.20 | 0.20 | 0.24 | 0.67 | 0.67 | 0.67 | 0.67 |
RF | 6 | High | 0.28 | 0.28 | 0.28 | 0.28 | 0.53 | 0.53 | 0.53 | 0.53 |
SVM | 6 | High | 0.16 | 0.16 | 0.16 | 0.16 | 0.47 | 0.47 | 0.47 | 0.47 |
RF | 12 | Low | 0.29 | 0.36 | 0.28 | 0.29 | 0.55 | 0.73 | 0.55 | 0.55 |
SVM | 12 | Low | 0.17 | 0.40 | 0.34 | 0.34 | 0.36 | 0.73 | 0.64 | 0.64 |
RF | 12 | High | 0.18 | 0.26 | 0.20 | 0.30 | 0.47 | 0.53 | 0.53 | 0.60 |
SVM | 12 | High | 0.10 | 0.10 | 0.10 | 0.10 | 0.33 | 0.33 | 0.33 | 0.33 |
RF | 24 | Low | 0.16 | 0.19 | 0.11 | 0.39 | 0.38 | 0.38 | 0.25 | 0.75 |
SVM | 24 | Low | 0.18 | 0.28 | 0.40 | 0.38 | 0.38 | 0.50 | 0.75 | 0.75 |
RF | 24 | High | 0.33 | 0.25 | 0.39 | 0.19 | 0.55 | 0.45 | 0.73 | 0.36 |
SVM | 24 | High | 0.31 | 0.08 | 0.14 | 0.04 | 0.55 | 0.18 | 0.27 | 0.09 |
Model predictors:
Model 1: 3mer-without-LATD;
Model 2: 3mer-without-LATD + consumer attributes;
Model 3: 3mer-with-LATD;
Model 4: 3mer-with-LATD + consumer attributes.
Note: The numerically superior result in each display under either F1-macro or F1-micro score. The higher F1-macro score and the higher F1-micro score (is equivalent to overall accuracy in classification tasks) are displayed in bold.