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a b s t r a c t 

A local disruption can propagate to forward and downward through the material flow and eventually 

influence the entire supply chain network (SCN). This phenomenon of ripple effect, immensely exist- 

ing in practice, has received great interest in recent years. Moreover, forward and backward disruption 

propagations became major stressors for SCNs during the COVID-19 pandemic triggered by simultane- 

ous and sequential supply and demand disruptions. However, current literature has paid less attention 

to the different impacts of the directions of disruption propagation. This study examines the disruption 

propagation through simulating simple interaction rules of firms inside the SCN. Specifically, an agent- 

based computational model is developed to delineate the supply chain disruption propagation behavior. 

Then, we conduct multi-level quantitative analysis to explore the effects of forward and backward dis- 

ruption propagation, moderated by network structure, network-level health and node-level vulnerability. 

Our results demonstrate that it is practically important to differentiate between forward and backward 

disruption propagation, as they are distinctive in the associated mitigation strategies and in the effects on 

network and individual firm performance. Forward disruption propagation generally can be mitigated by 

substitute and backup supply and has greater impact on firms serving the assembly role and on the sup- 

ply/assembly networks, whereas backward disruption propagation is normally mitigated by flexible op- 

eration and distribution and has bigger impact on firms serving the distribution role and on distribution 

networks. We further analyze the investment strategies in a dual-focal supply network under disruption 

propagation. We provide propositions to facilitate decision-making and summarize important managerial 

implications. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

In today’s tightly coupled supply chains, a disruption at either 

he supplier side or the customer side can easily wreak havoc 

cross the entire supply chain network (SCN). During the COVID-19 

andemic, the global supply chains face both supply shortage and 

emand shrink which might lead to simultaneous or sequential 

orward and backward propagations of disruptions ( Ivanov & Dol- 

ui, 2020a ; Queiroz, Ivanov, Dolgui & Fosso Wamba, 2020 ; Ivanov 

 Das, 2020 ; Paul & Chowdhury, 2020 ). For instance, the pandemic 

aused the operations suspension in China in February and March 

020, which further disrupted US and European manufacturers and 

etailers because of supply shortage ( Ivanov, 2020a ; Thomas, 2020 ). 
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dditionally, the stay-at-home order during the COVID-19 pan- 

emic has caused demand disruption to the travel and tourism- 

elated industries. Then the disruption diffuses to airline compa- 

ies, hotels, and restaurants and further negatively influences their 

ssociated supply companies ( CRS Insight, 2020 ). The diffusion of 

n operational disruption beyond its origin and across the en- 

ire network is termed as disruption propagation ( Basole & Bel- 

amy, 2014 ; Bierkandt, Wenz, Willner & Levermann, 2014 ; Garvey, 

arnovale & Yeniyurt, 2015 ; Scheibe & Blackhurst, 2018 ), also 

nown as the ripple effect ( Dolgui, Ivanov & Sokolov, 2018 ; Ivanov, 

okolov & Dolgui, 2014 b; Ghadge, Dani, Chester, & Kalawsky, 2013 ). 

The propagating effects make the impacts of a local disruption 

npredictable, hence hard to prepare for and manage. Traditional 

upply chain risk management normally starts with risk identifi- 

ation and ends with different strategies to manage the identified 

isks ( Craighead, Blackhurst, Rungtusanatham & Handfield, 2007 ). 

his approach is effective in coping with existing or anticipated 

https://doi.org/10.1016/j.ejor.2020.09.053
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isruptions, but less effective in handling abrupt or unexpected 

nes. For the latter, it is important for firms to build resilience that 

llows the firms to best prepare for, quickly respond to, and re- 

over from unexpected disruptions ( Chowdhury & Quaddus, 2017 ; 

awik, 2020 ; Yoon, Talluri, Yildiz & Ho, 2018 ; Dubey et al., 2019 ;

ettit, Fiksel & Croxton, 2010 ; Baghersad & Zobel, 2021 ). In prac- 

ice, choosing the optimal level of resilience is a critical decision 

o make, as over-capacity incurs unnecessary costs while under- 

apacity exposes firms to risks ( Fiksel, Polyviou, Croxton & Pettit, 

015 ). 

A comprehensive understanding of supply chain disruption 

ropagation and how it affects both individual firms and the whole 

upply chain can support various levels of decision-making in 

erms of resilience investment. From the preceding examples, dis- 

uptions can either propagate from the supplier side (forward dis- 

uption propagation), or the buyer side (backward disruption prop- 

gation) ( Li & Zobel, 2020 ; Wenz, Willner, Bierkandt & Levermann, 

014 ). Also, in practice, mitigation strategies associated with dis- 

uptions from the supplier side and the demand side are distinc- 

ive. For example, Kroger provides additional distribution channels, 

uch as the service of ordering online and curbside pick-up, and 

ontracts with Instacart for grocery delivery service, to manage the 

emand disruption during the COVID-19 pandemic. Comparatively, 

o mitigate the supply disruption, firms normally increase stock 

evel or look for substitute supply or backup suppliers. 

Therefore, to effectively mitigate the disruption risks, it is crit- 

cal to understand how different types of disruption propagation 

nfluence both the individual firm and the whole supply chain net- 

ork. At the firm level, the impact of a local disruption varies with 

he firm’s resilience and its position in the SCN. This causes dif- 

erences in firm vulnerability across the supply chain. Understand- 

ng each firm’s vulnerability level can guide proper firm-level re- 

ilience investment. At the network-level, the whole SCN perfor- 

ance is the integrated performance of individual firms inside the 

upply network, which can be measured by network health – the 

umber of healthy (i.e., undisrupted) firms at a specific time point 

 Basole & Bellamy, 2014 ; Li & Zobel, 2020 ). Investigating how a lo-

al disruption affects the network health allows supply chain man- 

gers to allocate resources optimally across the SCN, effectively 

anage disruption propagation, and achieve better network per- 

ormance. 

Although the supply chain research has shown an increasing in- 

erest in disruption propagation ( Basole & Bellamy, 2014 ; Dolgui 

t al., 2018 ; Marchese & Paramasivam, 2013 ), current literature is 

till limited in the following two aspects. First, the majority of 

urrent studies either focus on one specific direction of disrup- 

ion propagation – forward propagation along the material flow 

 Bierkandt et al., 2014 ; Han & Shin, 2016 ) or backward propaga-

ion in a reverse direction of the material flow ( Wenz et al., 2014 )

or treat them with no difference ( Basole & Bellamy, 2014 ; Li, Zo-

el, Seref & Chatfield, 2020 ). Although a limited number of studies 

ave considered both forward and backward disruption propaga- 

ion ( Garvey et al., 2015 ; Hosseini & Ivanov, 2019 ; Ojha, Ghadge,

iwari & Bititci, 2018 ) using the Bayesian network approach in a 

imple supply chain structure context, the forward and backward 

ropagations remain diversely separately perspectives. As these 

wo types of disruption propagation mechanisms are distinctive in 

ractice, we are motivated to consider both directions of the rip- 

le effect and examine their marginal and joint effects on firm 

nd SCN performance from a complex network perspective. Sec- 

nd, despite the mature literature on supply chain resilience, very 

ew studies have examined the interplay of resilience investment 

etween dual focal firms that share a common supply base subject 

o risk and disruption propagation. Viewing firms embedded in a 

CN, we address the research gaps by answering the following two 

esearch questions (RQs). 
1118 
RQ1: How does forward and backward disruption propagation af- 

fect network-level health and node-level vulnerability? 

RQ2: How can a focal firm’s resilience investment in its SCN influ- 

ence this focal firm itself and other focal firms in the network, 

given the existence of shared supply base? 

To address these questions, we first introduce a theoretical 

ramework that illustrates the disruption propagation mechanism, 

hich articulates the interplay between node-level influencing fac- 

ors, network structure, disruption propagation, and associated in- 

estments. In this framework, we identify the origins and mecha- 

isms of forward and backward disruption propagation. As forward 

nd backward disruption propagation are associated with distinc- 

ive mitigation strategies, differentiating them can support effec- 

ive decision-makings, especially in limited resources. We use the 

gent-based simulation to model the disruption propagation be- 

avior and then conduct multi-level quantitative analyses based 

n the simulation data. Our results show that the impacts of for- 

ard and backward disruption propagation, both on network-level 

ealth and node-level vulnerability, are distinctive and moderated 

y the network structure. Thus, to effectively mitigate the disrup- 

ion, practitioners should consider the resilience capacities related 

o different types of disruption propagation and network structure. 

dditionally, we perform a game theoretical analysis to evaluate 

he influence of one focal firm’s resilience investment on other fo- 

al firms. In contrast with the commonly used ego network, which 

ncludes only one focal firm, we investigate a supply network of 

ual focal firms that have commonly observed shared supply base 

 Wang, Li, Wu, & Anupindi, 2020 ). Our results show that examin- 

ng the broader industrial network beyond a firm’s ego network 

nd enhancing supply chain visibility can support better decision- 

akings to mitigate disruption risks. In this sense, we extend the 

raditional “triad” structure ( Choi & Wu, 2009 ) that has one buyer 

nd two suppliers to two buyers and one shared supply base. The 

ame theoretical analysis indicates that one focal firm’s investment 

ecision should consider the benefit-cost ratios of both its own and 

he other focal firm. 

The remainder of the paper is organized as follows. 

ection 2 presents a review of the literature on supply chain 

isruption propagation. The disruption propagation mechanism 

s described in detail in Section 3 . We design the experiment in 

ection 4 . We perform the empirical analysis and provide the 

ropositions derived from the results in Section 5 . Section 6 sum- 

arizes the managerial implications. We conclude the paper with 

 discussion on the contributions and limitation in Section 7 . 

. Literature review 

Supply chain disruption propagation, also known as the ripple 

ffect, has drawn increasing academic interest recently, due to 

he significant global economic loss caused by various disrup- 

ion events such as the 2011 Thailand Flood, the 2012 Japan 

arthquake, and the 2020 COVID-19 Pandemic ( Ivanov, 2020a ). 

isruption propagation / ripple effect refers to that an operational 

ailure at one entity of the SCN causes operational failures of other 

usiness entities ( Dolgui et al., 2018 ; Ivanov, Pavlov & Sokolov, 

014 a; Li & Zobel, 2020 ; Nguyen & Nof, 2019 ). This concept is

ifferent from the bullwhip effect ( Dolgui, Ivanov & Rozhkov, 

020 ; Lee, Padmanabhan & Whang, 1997 ), as the bullwhip effect is 

riggered by small demand vulnerabilities but does not necessarily 

mply a severe operational failure ( Chatfield, Hayya & Cook, 2013 ; 

ang & Disney, 2016 ). Within the research scope of operational 

ailure, there are studies on the ripple effect that mainly focus on 

ownward disruption propagation from the supplier side ( Ivanov, 

018 ; Ivanov et al., 2014 b), the snowball effects where impacts can 

ransmit and get amplified towards a larger number of firms in 



Y. Li, K. Chen, S. Collignon et al. European Journal of Operational Research 291 (2021) 1117–1131 

t

p

o  

a

a  

a

o

m

Z

f

L  

Z

n

2

O

t

e  

v

X

2

D

&

p

(

t

&

p

Y

p

c

s

i

t

e

r

f

v

s

s

H

a

c

t

w

A

m

a

t

a

n  

m

s

t

s

t  

o

o

w

f

d

f

i

a

a

t

i

f

s

n

i

p

m

a

e

fi

3

r

t

fi

b

3

d

s

t

(

F

p  

r

n

F

o

2

l

d

t

2

p

b

d

o

l

t

he supply chain ( Swierczek 2016 ; 2014 ), the backward disruption 

ropagation that means disruptional effects diffuse backwards 

pposite to the direction of the material flows ( Wenz et al., 2014 ),

s well as the general disruption propagation both from supplier 

nd demand sides ( Basole & Bellamy, 2014 ; Li & Zobel, 2020 ; Li et

l., 2020 ; Zhao, Zuo & Blackhurst, 2019 ). 

Various approaches have been adopted in the current studies 

n disruption propagation. First of all, modeling and simulation 

ethods are widely used in this field ( Ivanov, 2017 ; Macdonald, 

obel, Melnyk, & Griffis, 2018 ), including agent-based simulation 

rom a complex network perspective ( Basole & Bellamy, 2014 ; 

i & Zobel, 2020 ; Li et al., 2020 ; Tang, Jing, He & Stanley, 2016 ;

hao et al., 2019 ), investigating risk propagation using Bayesian 

etwork approaches ( Garvey & Carnovale, 2020 ; Garvey et al., 

015 ; Hosseini & Ivanov, 2019 ; Hosseini, Ivanov & Dolgui, 2019 ; 

jha et al., 2018 ), numerical models to simulate indirect effects in 

he global supply chain using the input-output model ( Bierkandt 

t al., 2014 ; Wenz et al., 2014 ), the entropy approach to study the

ulnerability of cluster SCN during the cascading failures ( Zeng & 

iao, 2014 ), and other operations research methods ( Ivanov et al., 

014 a; Kinra, Ivanov, Das & Dolgui, 2020 ; Liberatore, Scaparra & 

askin, 2012 ; Pavlov, Ivanov, Pavlov & Slinko, 2019 ; Sinha, Kumar 

 Prakash, 2020 ). 

Second, there are qualitative studies investigating disruption 

ropagation from different aspects. Ivanov (2018) and Dolgui et al. 

2018) addressed the ripple effect, analyzed major recent publica- 

ions, and delineated research perspectives in the domain. Scheibe 

 Blackhurst (2018) provided theoretical insights into the risk 

ropagation using the grounded theory case study approach. Deng, 

ang, Zhang, Li and Lu (2019) , through a case study as well, ex- 

lored risk propagation mechanisms and put forward the feasible 

ountermeasures for perishable product supply chain to improve 

ustainability. At last, there are also several related empirical stud- 

es. Goto, Takayasu and Takayasu (2017) derived a stochastic func- 

ion of risk propagation from comprehensive data of bankruptcy 

vents in Japan from 2006 to 2015. Świerczek (2014) explored the 

elationship between supply chain integration and the snowball ef- 

ect. Zhang, Chen and Fang (2018) surveyed 31 Chinese firms in- 

olved in the auto-industry and explored the transmission of a 

upplier’s disruption risk along the supply chain. 

The aforementioned studies have greatly enriched our under- 

tanding of the disruption propagation / ripple effect phenomenon. 

owever, the literature falls short in two aspects. First, although 

 firm’s operational failure can result from either its suppliers’ or 

ustomers’ disruption in practice, to the best of our knowledge, 

here are no recent studies considering the different impacts of for- 

ard and backward disruption propagation on the supply chain. 

 study considering both directions of disruption propagation is 

ore comprehensive and realistic. Understanding disruption prop- 

gation comprehensively is crucial to the identification of effec- 

ive techniques for supply chain risk management. Second, there 

re limited studies on the disruption propagation from a complex 

etwork perspective ( Basole & Bellamy, 2014 ; Li et al., 2020 ). The

ajority of the current studies still focus on a simple supply chain 

tructure, such as an ego network. Research based on simple struc- 

ures could not fully grasp the interaction between the network 

tructure and disruption propagation ( Li et al., 2020 ; Mizgier, Jüt- 

ner & Wagner, 2013 ; Zhao et al., 2019 ). For example, studies based

n a single firm’s ego network ignore the influence of disruptions 

riginated outside of the ego network. 

Motivated by the research gaps, we study the forward and back- 

ard disruption propagation and contribute to the literature in the 

ollowing aspects. First, this study comprehensively delineates the 

isruption propagation mechanism, which differentiates between 

orward and backward disruption propagation and identifies the 

nfluential factors in detail. In the analysis, we find that forward 
1119 
nd backward disruption propagation influences node vulnerability 

nd network health in distinctive ways. Thus, investment strategies 

o reduce both directions of propagation may differ significantly 

n practice. Second, this study investigates disruption propagation 

rom a complex network perspective. Extending the traditional per- 

pective of a firm’s ego network, we examine a realistic industrial 

etwork with two focal firms. The industrial network more real- 

stically reflects how network structure interacts with disruption 

ropagation and how one focal firm should make resilience invest- 

ent decisions subject to other focal firms’ actions. Based on the 

nalysis of the industrial network, this study proposes to develop 

ffective strategies for one focal firm to benefit from other focal 

rms’ resilience investment. 

. Modeling disruption propagation 

Disruptions can diffuse along the material flow as well as in a 

everse direction. Such a complex behavior of disruption propaga- 

ion in the SCN can originate from simple interaction rules among 

rms. To capture the disruption propagation, we characterize the 

asic interaction rules first in this section. 

.1. Dyadic buyer-supplier relationship 

In a dyadic buyer (j)-supplier (i) relationship, a disruption can 

iffuse either from a supplier to a buyer or from a buyer to a 

upplier. The forward disruption propagation refers to the disrup- 

ion diffusion from supplier i to buyer j , along the material flow 

 Bierkandt et al., 2014 ). The rate of forward disruption diffusion, 

 R i j , is defined as the probability of a disrupted buyer at the time 

oint t + 1 if the supplier is disrupted at time t . The forward dis-

uption diffusion is a probability because one firm’s disruption may 

ot necessarily lead to another firm’s disruption ( Li & Zobel, 2020 ). 

or example, the same fire in Philips’ plant had almost no impact 

n Nokia but caused huge loss to Ericsson ( Norrman & Jansson, 

004 ). 

This rate of forward disruption diffusion is affected by the fol- 

owing factors. 

- The nature of the supplier’s disruption. This includes the type, 

severity, and length of the disruption. For example, a disrup- 

tion caused by cyber-attacks may influence the buyer differ- 

ently from one caused by the adverse weather. 

- The dependence of the buyer on the supplier. If the buyer 

is highly dependent on the supplier (for example, the buyer 

sources the key components solely from this supplier), the 

buyer tends to be more easily disrupted by the supplier. 

- The buyer’s resilience capacity. If the buyer has a higher re- 

silience capacity such as the higher safety stock, better supply 

chain visibility, or a quicker response plan, it is less likely to be 

impacted by a supplier’s disruption. 

Comparatively, backward disruption propagation refers to the 

isruption diffusion from buyer j back to supplier i , which passes 

hrough the adverse direction of the material flow ( Wenz et al., 

014 ). When the buyer suffers a disruption, the supplier may sus- 

end its operations to avoid producing too many supplies that the 

uyer does not need. For example, when HP and Dell faced pro- 

uction disruption during the 2011 Thailand flood, the operations 

f Intel that is HP and Dell’s supplier were also disrupted due to a 

ack of demand ( Intel, 2011 ). 

The rate of backward disruption diffusion, B R i j , is affected by 

he following factors. 

- The nature of the buyer’s disruption, including the type, sever- 

ity, and length of the disruption. 
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- The dependence of the supplier on the buyer. If the supplier is 

highly dependent on the buyer (for example the majority of the 

supplier’s revenue comes from the buyer), the supplier tends 

to have a higher disruption diffusion rate from the buyer’s 

disruption. 

- The supplier’s resilience capacity. The higher resilience capacity 

the supplier has (such as higher operational flexibility and sup- 

ply chain visibility), the supplier is less likely to be impacted by 

the buyer disruption. 

Forward and backward disruption propagation differ in two 

ain aspects. First, the disruption propagation rates are differ- 

nt as the resilience capacities against forward and backward dis- 

uption propagation are distinctive. The resilience capacity against 

ackward disruption propagation mainly relies on its operation 

nd distribution flexibility, while the resilience capacity against 

orward disruption propagation largely depends on the availabil- 

ty of substitute resources. Second, the dependence between the 

uyer and the supplier is mostly asymmetric in reality. For exam- 

le, a small supplier whose major business comes from Walmart is 

ighly dependent on Walmart, but not vice versa. Based on these 

ifferences, forward and backward disruption propagation should 

e modeled and evaluated differently to provide better decision- 

aking to improve supply chain resilience. 

.2. Node status transition probability 

In a directed SCN with multiple suppliers and buyers, the dis- 

uption probability of one particular business entity depends on 

ts relationship with all disrupted neighbors, including both sup- 

liers and buyers. We assume every node in the SCN has two 

tates, namely healthy ( H ) and disrupted ( D ). The disruption sta-

us of a node means that the firm suspends its operations due 

o reasons including but not limited to inventory stockout, labor 

trike, extreme weather and earthquakes. There is uncertainty that 

 healthy node i at time t can become disrupted at time t + 1 un-

er the influence of its disrupted suppliers and buyers at time t . 

or example, a firm with ample safety stock that faces a supplier 

isruption may less likely become disrupted than a firm with a 

ow safety stock level. To take this into consideration, we model 

he status transition as a probability. 

For a firm with multiple disrupted neighbors, we assume the 

isruption impact from suppliers and buyers are independent. We 

cknowledge that this assumption cannot grasp the full picture, 

s the impacts of disruptions may be interdependent in practice 

 Ackermann, Howick, Quigley, Walls & Houghton, 2014 ; Garvey & 

arnovale, 2020 ; Garvey et al., 2015 ; Qazi, Quigley, Dickson & Ekici, 

017 ). However, the assumption of independence also provides two 

ain benefits. First, this assumption holds in many real cases, so 

he derived results have important practical implications. For in- 

tance, a firm has several suppliers who have their own manu- 

acturing. The quality of the suppliers’ products (i.e., components) 

etermines the final product quality. As the quality of one prod- 

ct is not affected by other suppliers’ products, disruption impacts 

rom suppliers are independent in this sense. Second, this assump- 

ion is widely used in the risk management literature ( Qazi et al., 

017 ; Zhao & Freeman, 2019 ), as it makes the model tractable. If

he risk dependence estimation becomes complicated and difficult, 

ore errors can occur, and relying on incorrect estimation can be 

ostly in practice ( Zhao & Freeman, 2019 ). Future studies can build 

n and relax the assumption of independence. In this way, for a 

iven node, the transition probability from healthy status to dis- 

upted status is: 

p t i,HD = 1 −
∏ 

k ∈ DS ( i ) 

(
1 − F R 

t 
ki 

)
·

∏ 

j∈ DC ( i ) 

(
1 − BR 

t 
i j 

)
(3.1) 
1120 
here p t 
i,HD 

stands for node i ’s transition probability from being 

ealthy at time t to being disrupted at t + 1 ; DS(i ) and DC(i ) stands

or disrupted suppliers and disrupted customers of node i , respec- 

ively; F R t 
ki 

represents the probability of forward propagation from 

upplier k to node i at time t ; and BR t 
i j 

indicates the probability of

ackward propagation from customer j to node i at time t . 

A disrupted node can recover and become healthy. Let RC t 
i 

be 

he recovery probability of node i from being disrupted at time t 

o being healthy at time t + 1 , regardless of the statuses of sup-

liers and buyers. Assuming the recovery is independent from the 

nfluences of suppliers and buyers, we model the transition proba- 

ility of node i from being disrupted at time t to being healthy at 

 + 1 as: 

p t i,DH = RC t i ·
∏ 

k ∈ DS ( i ) 

(
1 − F R 

t 
ki 

)
·

∏ 

j∈ DC ( i ) 

(
1 − BR 

t 
i j 

)
(3.2) 

ormula (3.2) implies that when some of its suppliers and buyers 

re disrupted, supplier i ’s ability to recover will be discounted, and 

ts recovery process will slow down. 

.3. Disruption propagation mechanism 

The complex disruption propagation behavior within the SCN 

merges from the aforementioned interaction rules among nodes. 

ig. 1 depicts the disruption propagation mechanism. Each individ- 

al node has its own specific FR, BR, and RC values based on its 

ependency with the neighbors and its resilience capacity. These 

ode-level influencing factors interact with the network structure, 

etermine the nodes’ transition probabilities, and ultimately shape 

he disruption propagation across the SCN. 

Disruption propagation exerts effects on both node and net- 

ork levels. At the node level, some nodes have more frequent 

isruptions than others during the disruption propagation process. 

upply chain managers should therefore be more concerned with 

hose nodes. At the network level, the disruption varies with and 

s moderated by different node-level factors and the network struc- 

ure. Given a network structure, supply chain managers can control 

nd mitigate the disruption propagation at both node and network 

evels through proper investment that can change node-level fac- 

ors of FR, BR and RC. Based on the framework, we investigate the 

mpacts of disruption propagation at both node and network levels 

y designing experiments that interact node-level factors with the 

etwork structure in the next section. 

. Experimental design 

The purpose of this study is to investigate how FR and BR influ- 

nce the ripple effect differently. Given a SCN G = ( N, E ) , consist- 

ng of the Set N of nodes and E ⊆ N × N of directed edges. Each 

ode has two possible status: 1 represents healthy and 0 repre- 

ents disrupted. The transition probability of each node is deter- 

ined by the current status of itself and all of its neighbors’ cur- 

ent status as Eq (3.1) and Eq (3.2) . To formulate such a prob-

em, the model is set up as locally interacting Markov chains, also 

nown as probabilistic cellular automata (PCA) ( Fernández, Louis & 

ardi, 2018 ). The state space of such a model is the tensor prod-

ct of the statuses of all the local Markov chains, which is huge in 

ur context. For example, for an individual node with 3 suppliers 

nd 2 customers, there are in total 2 2 ∗2 3 = 32 combinations of sta- 

uses. Enumerating the transition probabilities for all the possibili- 

ies is challenging. This might work for a small sized network, but 

t will eventually become infeasible when the size or complexity 

f the network grows ( Garvey & Carnovale, 2020 ). In fact, the area

f PCA acknowledges its complexity and suggests that it is used as 

 flexible modeling, such as agent-based modeling, and simulation 

ramework in an applied context ( Fernández et al., 2018 ). 
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Fig. 1. Disruption propagation mechanism. 
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Therefore, we implement agent-based simulation (ABS) in this 

tudy for the following benefits. Firstly, ABS allows us to re-create 

nd predict the performance of complex systems or phenomenon 

hrough simulating the simultaneous interactions of agents ( Basole 

 Bellamy, 2014 ; Li & Zobel, 2020 ; Zhang, Adomavicius, Gupta & 

etter, 2020 ), and the SCN is such a complex system. Second, ABS 

llows us to explore and investigate separate effects of factors and 

nteractions among factors through numerical experiments under 

 variety of settings ( Zhang et al., 2020 ). Moreover, ABS provides a

isual and easy-to-understand approach that both researchers and 

ractical audience can comprehend, which leads to a broader prac- 

ical prospect of application. This approach can also be extended 

o other purposes. For example, it can easily extend to the het- 

rogeneous setting of FR, BR and RC to observe the behavior of a 

etailed SCN. 

To explore the disruption propagation within the SCN, we con- 

uct our main analysis using the Japan automotive industry SCN 

ith two focal firms. To make sure the findings can apply to 

oarder types of networks, we generate two comparable random 

etworks as the robustness check. Compared with studies using 

ne focal firm’s ego network, our setup allows us to compare the 

mpacts of disruption propagation on different focal firms, as well 

s other entities inside the SCN. 

We choose Honda and Toyota as the focal firms. Both of them 

re the largest automobile makers in Japan. Their supply chains are 

ypical and highly interacting complex networks exposed to vari- 

us disruption risks ( Wagner, & Bode, 20 06, 20 08 ). We construct 

he supply network using the Bloomberg SPLC database and select 

he first- and second-tier suppliers of the focal firms. We select 

nly COGS (Cost of Goods Sold), which refers to direct costs of pro- 

ucing the goods sold, relationships where the percentage of COGS 

s over 0.5%, in order to get the most significant material flows. 

his gives us a network with 121 nodes and 193 links. There are 

3 common suppliers at both tiers 1 and 2 for Toyota and Honda. 

ig. 2 illustrates this network where the two red nodes stand for 

he two focal firms. 
1121 
We conduct experiments on the automobile supply network 

o discover how the node-level factors result in the disruption 

ropagation and cause disruption at both node and network lev- 

ls. “Experimentation is a powerful methodology that enables re- 

earchers to establish causal claims empirically” ( Imai, Tingley & 

amamoto, 2013 ). By designing and implementing experiments, we 

re able to mitigate the concern of endogeneity ( Antonakis, Ben- 

ahan, Jacquart & Lalive, 2014 ), which is usually a challenging of 

ausal inference in studies using observational data ( Ho, Lim, Reza 

 Xia, 2017 ). In this study, we integrate experimental design with 

he agent-based simulation to obtain the data for analysis. Agent- 

ased simulation is capable to simulate interactive agents’ behav- 

ors in an attempt to understand complex phenomena ( Basole & 

ellamy, 2014 ; Li et al., 2020 ; Nair & Vidal, 2011 ; K. Zhao et al.,

019 ). 

For the simulation, we set the initial disruption probability at 

%, which indicates the initial disruption is small and regional. For 

he node-level influencing factors, we focus on the aforementioned 

orward disruption diffusion rate F R 

t 
ki , backward disruption diffu- 

ion rate BR 

t 
i j , and recovery rate RC t i . Due to companies’ distinc- 

ive resilience capacities and different dependency levels between 

rms, disruption propagation varies by firm, time, and network in 

eality. However, we assume a homogeneous setting in which the 

alues of the three parameters F R 

t 
ki , BR 

t 
i j , and RC t i are constant 

cross agents and over time in our analysis. This is because al- 

hough heterogeneous local settings can provide more accurate es- 

imation of one particular case, it also offsets general findings of 

hese influencing factors. As our main research objective is to in- 

estigate how these factors influence disruption propagation, we 

ssume homogeneous node-level factors to avoid noises of other 

actors ( Li & Zobel, 2020 ). Therefore, we denote F R 

t 
ki , BR 

t 
i j , and RC t i 

y F R , BR , and RC . Based on formulas (3.1) and (3.2), for a node 

hat has n disrupted suppliers and m disrupted customer, the inte- 

rated disruption probability at time t is 1 − ( 1 − F R ) n ( 1 − BR ) m 

or a healthy node, and the recovery probability at time t is 

C ( 1 − F R ) n ( 1 − BR ) m for a disrupted node. 
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Fig. 2. Dual-focal firms supply network and random network. 

Table 1 

Parameters in the analysis. 

Parameter Associated Investment Examples Setting 

FR Increasing safety stock 

Increasing supply chain visibility 

Increasing backup resources 

{0.2, 0.5, 0.8} 

BR Increasing production flexibility 

Effective demand management effort s 

Increasing supply chain visibility 

{0.2, 0.5, 0.8} 

RC Implementing effective risk mitigation plan {0.2, 0.5, 0.8} 
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We conduct a full factorial design. The value combinations of 

R, BR, and RC serve as experiment treatments. We control over 

he parameters as listed in Table 1 . The parameter settings repre- 

ent three different levels for each parameter: low, medium, and 

igh. The networks receive one treatment condition at a time. To 

ontrol for the impact of the random disruption, we conduct each 

xperimental run of a treatment condition 50 times. Each time we 

ollect the status of each node (disrupted or healthy) at every time 

oint. By averaging across the 50 times, we obtain node-level vul- 

erability and network-level health defined in Section 5 . 

In addition to the main analysis, to increase the robustness of 

he findings, we create two random networks with the same num- 

er of nodes and links and compare their results to the results of 

he Japanese automotive industry network. We find the results of 

he two random networks are consistent with each other. For the 

implicity of presentation, we only report results of one random 

etwork. Fig. 2 shows the plot of the reported random network. 

. Analysis and discussion 

To begin, we visualize the network-level disruption propagation 

ehavior in Fig. 3 using the number of healthy firms ( Basole & Bel-

amy, 2014 ) with respect to different settings of parameters. We set 

he max period to be 10 0 0, which is long enough for disruption

ropagation to reach a steady state. 

From Fig. 3 , first, we can observe that a small initial disrup- 

ion can cause significant turmoil in the whole supply chain net- 

ork. With an initial disruption probability at p = 0.05, the number 

f healthy nodes decreases in all scenarios. This means that more 

rms become disrupted after the initial disruption. Second, the 

umber of healthy nodes becomes steady after around 50 steps, 
1122 
hich signifies that, for a given set of parameters, the disruption 

ropagation tend to reach a steady state after a fixed number of 

eriods ( Basole & Bellamy, 2014 ). Thus, in the following analysis, 

e only focus on the steady state found from time stamps 101 

o 10 0 0. Third, as expected, both forward and backward disrup- 

ion diffusion rates are negatively associated with the number of 

ealthy nodes, and the recovery rate is positively associated with 

t. However, it is still unclear how these influencing factors inter- 

ct with the network structure to determine the performance of 

he supply chain and individual firms. It is also unclear how the 

esilience investment can improve the supply chain performance. 

o explore these questions, we conduct the following analyses. 

.1. Network-level performances 

First, we investigate how the node influencing factors deter- 

ine the SCN performance. We use two network-level ripple ef- 

ect performances: network health and propagation period. Net- 

ork health describes the overall health status of the SCN. We 

ollow Basole and Bellamy (2014) and measure it using the num- 

er of healthy nodes at the stable status, which is operational- 

zed as the average number of healthy nodes from step 101 to 

0 0 0 in our case. Propagation period is the number of periods 

he SCN used to disperse the disruption risks to a steady status, 

hich describes the propagation speed that lower propagation pe- 

iod means quicker propagation speed. 

To rigorously demonstrate the effects of node-level influenc- 

ng factors on network health and propagation period, we perform 

he OLS regression analysis using the model 5.1.1 and model 5.1.2. 

he dependent variable, network health or propagation period, has 

een log-transformed to conform to the OLS regression assump- 

ions. To mitigate multi-collinearity due to the interaction effects, 

e have standardized the independent variables in the analysis. 

he variance inflation factors (VIF) analysis reveals that VIFs for 

ll variables (including the interaction terms) are below 4, which 

s lower than the critical value of 10 ( Kutner, Nachtsheim, Neter & 

i, 2005 ), indicating that multicollinearity is not a concern. 

etwork healt h i = β0 + β1 F R i + β2 B R i + β3 R C i + ε i (5.1.1) 

 ropagation perio d i = γ0 + γ1 F R i + γ2 B R i + γ3 R C i + ε 

′ 
i (5.1.2) 
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Fig. 3. Visualization of disruption propagation. 

Table 2 

Regression results for the automotive industry network and random network. 

Dependent Variable Network Health Propagation Period 

(Auto Industry Network) (Random Network) (Auto Industry Network) (Random Network) 

Model (1) Model (2) Model (3) Model (4) 

FR −0.062 ∗∗∗ −0.656 ∗∗∗ −0.930 ∗∗∗ −6.001 ∗∗∗

(0.006) (0.009) (0.208) (0.458) 

BR −0.839 ∗∗∗ −0.667 ∗∗∗ −5.427 ∗∗∗ −7.037 ∗∗∗

(0.006) (0.009) (0.208) (0.458) 

RC 0.413 ∗∗∗ 0.535 ∗∗∗ −2.899 ∗∗∗ −1.183 ∗∗

(0.006) (0.009) (0.208) (0.458) 

Constant 3.114 ∗∗∗ 2.759 ∗∗∗ 11.902 ∗∗∗ 18.026 ∗∗∗

(0.006) (0.009) (0.187) (0.412) 

Obs. 1350 1350 1350 1350 

Adj. R 2 0.949 0.917 0.389 0.220 

F Stat 8620.4 ∗∗∗ 4958.4 ∗∗∗ 299.2 ∗∗∗ 138.1 ∗∗∗

Standard errors in parentheses. 
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. 
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he subscript i stands for each observation. Table 2 shows the re- 

ults. 

For this auto supply network, we find that backward risk dif- 

usion rate reduces supply network health and propagation period 

equivalent to increase propagation speed) at a higher rate than 

orward risk diffusion rate, as the absolute value of the coefficient 
1123 
f BR is much higher than that of F R . To demonstrate the signifi- 

ant difference between the coefficients of F R and BR , we conduct 

 linear hypothesis test (F-test, null hypothesis: β1 = β2 ). The re- 

ult supports the significant difference between the effects of BR 

nd F R ( F = 10,845 ∗∗∗, df = (1, 1342)). Although this result is based

n one specific SCN, it indicates that it is necessary and impor- 
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ant to separate backward and forward disruption diffusion rates 

hen investigating the impacts of the disruption propagation be- 

avior. From a practical perspective, evaluating their impacts sep- 

rately can support effective decision-making as investments on 

ecreasing forward disruption diffusion can be very different from 

ecreasing backward diffusion. Thus, we formulate the following 

roposition: 

roposition 1a. Forward and backward disruption propagation can 

educe supply network health at different rates. 

roposition 1b. Forward and backward disruption propagation can 

ncrease propagation speed (decrease propagation period) at different 

ates. 

We conduct further analysis to look into the reasons that make 

he impacts of F R and BR vary. As the settings of F R and BR are 

he same, the firm disruption probability and recoverability is de- 

ermined by the number of disrupted suppliers n and the num- 

er of disrupted customers m at each period. While the number 

f disrupted suppliers and customers largely depend on the net- 

ork structure, we believe this difference in effects, both for net- 

ork health and propagation period, may come from the network 

onfiguration. With this in mind, we compare the results of the 

utomobile industry network with the results of the comparable 

andom network. Table 2 also shows that for the random network, 

he coefficients of F R and BR are very close, which indicates the 

mpacts of F R and BR are not differentiable. 

The auto supply network is a typical supply network with the 

haracteristic that a majority of nodes have higher out-degree 

han in-degree and very few nodes has higher in-degree than out- 

egree. Thus, the majority nodes are subject to higher impacts of 

R and few nodes are subject to higher impacts of F R . As a re- 

ult, the overall supply network is subject to higher impacts from 

R than F R . Comparatively, the random network has most nodes 

ith balanced in-degree and out-degree, so the impacts of BR and 

 R on the network are similar. Thus, we can derive the difference 

n the impacts of BR and F R comes from the network configura- 

ion, which is the distribution of in-degrees and out-degrees across 

odes in the network. In general, a typical supply network is sub- 

ect to higher impact of BR , a balanced network such as random 

etwork is subject to balanced impact of BR and F R , and a typical 

istribution network is subject to higher impact of F R . Below we 

ropose the following. 

roposition 2a. Network configuration, i.e. , the distribution of in- 

egrees and out-degrees across nodes in the network, leads to dif- 

erent effects of forward vs . backward disruption propagation on net- 

ork health. 

roposition 2b. Network configuration, i.e. , the distribution of in- 

egrees and out-degrees across nodes in the network, leads to differ- 

nt effects of forward vs . backward disruption propagation on propa- 

ation speed. 

.2. Node-Level vulnerability 

In practice, supply chain managers not only concern about the 

erformance of their supply networks, but also pay great attention 

o the performance of individual suppliers. In this section, we use 

ode vulnerability to describes how vulnerable an individual node 

s when exposed to disruption risks inside the SCN. In a specific 

etwork, some firms are more vulnerable than others, thus the 

upply chain manager should be more cautious of the vulnerable 

odes and make proper investment to decrease their vulnerability. 

n our context, we measure node vulnerability as the percent of 

isrupted periods for a node after disruption propagation becomes 
1124 
table. 

ode v ul nerabil ity = 

Disruption periods between steps 101 and 10 0 0

900 

Fig. 4 depicts the overlay plot of node vulnerability when FR = 

R = RC = 0 . 2 , where the dots stand for suppliers. Fig. 4 shows

hat some firms have higher vulnerability than other firms for this 

articular network in the scenario. Examining other scenarios of 

ifferent values of FR, BR and RC, we find that the variation of 

ode vulnerability is not in a consistent scale, that is, the varia- 

ion of node vulnerability is high in the scenario of high FR and 

R. Nonetheless, we find some nodes are consistently vulnerable 

cross all scenarios. Table 3 lists the firms whose vulnerability is 

bove 90% of all the scenarios, as well as their centrality informa- 

ion. Compared with the average degree of the supply network that 

s 1.60, average betweenness centrality of 30.24, and average close- 

ess centrality of 0.369, these highly vulnerable firms have higher 

entrality measures in the supply network. Considering that the 

cale of node vulnerability varies at different scenarios, we conjec- 

ure that node position in the network and node-level influencing 

actors can interact and affect node vulnerability. 

Identifying the most vulnerable firms and understanding what 

ontributes to the node vulnerability can support decision-making 

gainst disruptions in practice. For a given SCN, changing a node’s 

entrality is usually difficult, especially in a short time frame, as 

he centrality is determined by the node’s market position, busi- 

ess nature, and competitor status. In this sense, to decrease the 

ode vulnerability, supply chain managers can and are more inter- 

sted in adjusting node-level influencing factors that interact with 

he centrality to affect node vulnerability. This requires us to un- 

erstand how node-level influencing factors interact with the net- 

ork structure to impact the node vulnerability. 

We investigate the following OLS regression model and present 

n Table 4 the results of both the auto industry network and a ran- 

om network. In this analysis, we introduce two new variables to 

escribe the node position in a network. The first variable is total 

egree ( TD = in _ degree + out _ degree ) as the measure of centrality. 

 robustness check shows the results using TD are consistent with 

hose using betweenness or closeness centrality. The second vari- 

ble is degree difference ( DD = in _ degree − out _ degree ), which de- 

cribes the net flow direction of the node. A positive DD means 

igher in-flow and negative DD means higher out-flow. 

ode V ul nerabil it y i = β0 + β1 F R i + β2 B R i + β3 R C i + β4 T D i 

+ β5 D D i + β6 F R i · T D i + β7 F R i · D D i 

+ β8 B R i · T D i + β9 B R i · D D i + ε i 

Table 4 clearly shows that both node-level factors and node po- 

ition contribute to the node vulnerability. Specifically, nodes with 

igher centrality ( T D ) tend to have higher vulnerability. Forward 

nd backward disruption diffusion rates (FR and BR) positively im- 

act node vulnerability. Recovery rate (RC) negatively influences 

ode vulnerability. Besides, there is another interesting observa- 

ion that the impacts of forward and backward risk diffusion rates 

n node vulnerability vary by the degree difference ( DD ) . A node 

ith a positive DD is more serving as an assembly role in the net- 

ork, and then its vulnerability is more due to forward propaga- 

ion (coefficient of F R ∗ DD is positive). Practically, firms who play 

n important assembly role have more connections with suppliers 

han with customers. Thus, those firms are more vulnerable to dis- 

uption propagation from the supplier side than from the customer 

ide. Therefore, to decrease the vulnerability, they should increase 

he safety stock level, build close relationships with suppliers, and 

nvest in backup resources against forward disruption propagation. 

Comparatively, a node with a negative DD has more links with 

ustomers and is more like to fulfill the tasks of distribution in the 

etwork. Thus, its disruption mostly stems from backward propa- 
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Fig. 4. Firm vulnerability scatter plot. 

Table 3 

Most vulnerable firms list. 

Company name Number of Scenarios 

this company has high 

vulnerability ( > 90%) 

(Total 27 scenarios) 

In-Degree Out-Degree Betweenness- 

Centrality 

Closeness- 

Centrality 

Toyota Motor Corp 27 22 5 1009 0.5 

Honda Motor Corp 27 23 2 204.8 1 

Daihatsu Motor Corp 27 21 1 149 0.3409 

Denso Corp 27 7 7 177.9 0.5357 

Nippon Steel & Sumi 27 14 3 270.3 0.4545 

Toyoda Gosei Corp 24 7 8 584.9 0.5769 

Mitsui OSK Lines 20 10 2 221 0.3409 

JTEKT Corp 20 6 3 57.3 0.4286 

Table 4 

Regression results for node vulnerability analysis. 

Dependent 

Variable 

Node Vulnerability 

(Auto Industry Network) 

Node Vulnerability 

(Random Network) 

Model (5) Model (6) Model (7) Model (8) 

FR 0.026 ∗∗∗ 0.026 ∗∗∗ 0.142 ∗∗∗ 0.142 ∗∗∗

(0.003) (0.002) (0.003) (0.003) 

BR 0.222 ∗∗∗ 0.222 ∗∗∗ 0.152 ∗∗∗ 0.152 ∗∗∗

(0.003) (0.002) (0.003) (0.003) 

RC −0.100 ∗∗∗ −0.100 ∗∗∗ −0.116 ∗∗∗ −0.116 ∗∗∗

(0.003) (0.002) (0.003) (0.003) 

TD 0.220 ∗∗∗ 0.220 ∗∗∗ 0.122 ∗∗∗ 0.122 ∗∗∗

(0.005) (0.005) (0.003) (0.003) 

DD −0.103 ∗∗∗ −0.103 ∗∗∗ −0.007 ∗ −0.007 ∗∗

(0.005) (0.005) (0.003) (0.003) 

FR ∗ TD 0.009 −0.024 ∗∗∗

(0.005) (0.003) 

BR ∗ TD −0.079 ∗∗∗ −0.006 ∗

(0.005) (0.003) 

FR ∗ DD −0.0002 0.045 ∗∗∗

(0.005) (0.003) 

BR ∗ DD 0.021 ∗∗∗ −0.046 ∗∗∗

(0.005) (0.003) 

Constant 0.618 ∗∗∗ 0.618 ∗∗∗ 0.699 ∗∗∗ 0.699 ∗∗∗

(0.003) (0.002) (0.003) (0.003) 

Number of 

observations 

3267 3267 3267 3267 

Adj. R 2 0.790 0.828 0.708 0.755 

F Statistic 2452.3 ∗∗∗

(df = 5; 3261) 

1749.5 ∗∗∗

(df = 9; 3257) 

1582.5 ∗∗∗

(df = 5; 3261) 

1118.1 ∗∗∗

(df = 9; 3257) 

Standard errors in parentheses. 
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. 

1125 
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Table 5 

Focal firm vulnerability changes with investment level at 0.8. 

Toyota vulnerability 

Not invest Invest 

Honda vulnerability Not invest (0.96,0.96) (0.74,0.38) 

Invest (0.37,0.86) (0,0) 

Table 6 

Payoff table with investment level = 0.8. 

Toyota payoff

Not invest Invest 

Honda payoff Not invest (0, 0) (0.22 M H , 0.58 M T – 91 C T ) 

Invest (0.59 M H – 96 C H , 

0.1 M T ) 

(0.74 M H – 96 C H , 0.86 M T –

91 C T ) 
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ation (coefficient of BR ∗ DD is negative). These firms should in- 

est in monitoring market information closely and increasing pro- 

uction and operation flexibility against backward disruption prop- 

gation. Based on the above analysis, we present the following 

ropositions. 

roposition 3. Node-level influencing factors and the node’s struc- 

ural position in the supply network can interact and contribute to 

he node vulnerability. 

roposition 4a. A node with a positive degree difference (higher in- 

egree than outdegree) is affected more by forward disruption propa- 

ation than by backward propagation. Nodes with positive degree dif- 

erences (out-degree higher than in-degree) should invest in alterna- 

ive supply and sourcing. 

roposition 4b. A node with a negative degree difference (higher 

utdegree than indegree) is affected more by backward disruption 

ropagation than by forward propagation. Nodes with negative degree 

ifferences (out-degree lower than in-degree) should invest in opera- 

ional and product flexibility. 

.3. Resilience investment 

The purpose of understanding disruption propagation is to sup- 

ort effective decision-making of resilience investment against dis- 

uptions. In practice, the network-level resilience investment is 

sually initiated by focal firms, such as improving supply chain in- 

rastructure, enhancing supply chain visibility, and improving co- 

perative and learning abilities. Such kinds of investment can in- 

uence FR , BR and RC on every node inside the focal firm’s ego 

etwork. In a dual-focal supply network, one focal firm’s invest- 

ent can influence both itself and the other focal firm, because 

f the existence of the shared supply base. Thus, the investment 

ecision of one focal firm may be subject to the influence of the 

ther focal firm. In this section, we aim to discover how the in- 

estment of one focal firm influences itself, the other focal firm, 

nd the overall SCN health. Then we discuss the implications about 

nvestment decisions of focal firms in a competitive environment. 

We consider three types of investment: Honda-initiated invest- 

ent, Toyota-initiated investment, and collaborative investment. 

he Honda- and Toyota-initiated investment only influences the 

uppliers in their own ego supply chains, whereas the collabo- 

ative investment requires the collaboration of both focal firms 

nd can influence the whole auto industry supply network. We 

et up a benchmark setting of F R = BR = 0 . 4 and RC = 0 . 6 . Under

his setting, there is enough room for improvement (i.e., to re- 

uce FR and BR) from the perspectives of both network and in- 

ividual nodes. We assume the investment can decrease forward 

nd backward disruption diffusion rates in the same pattern. For a 

iven investment level, we have F R 

′ = F R∗( 1 − in v estment le v el ) 

nd BR 

′ = BR∗( 1 + in v estment le v el ) . The investment level ranges 

rom 0 to 1. 

Our numerical results are shown in Fig. 5 , which depicts how 

ifferent investments influence the focal firm’s vulnerability and 

he health of the whole supply network. From the perspective of 

etwork health, there is little difference between benefits from 

 Honda initiated investment and from a Toyota initiated invest- 

ent. Unsurprisingly, the collaborative investment has better per- 

ormance than Honda or Toyota initiated investments, even though 

he marginal benefits vary by investment levels. From the perspec- 

ive of focal firms, both Honda and Toyota can benefit from the 

ther focal firm’s investment, no matter whether they choose to 

nvest in their own ego supply networks. This benefit comes from 

he fact that they have common suppliers. Thus, one focal firm’s 

nvestment can affect the disruption diffusion rates on the other 

rm’s supply network by influencing common suppliers. 
1126 
From Fig. 5 , we further notice two factors that can affect the 

bility for a focal firm to benefit from the other focal firm’s in- 

estment: the focal firm’s relationship to the shared supply base 

nd the investment level. First, the focal firm’s relationship to the 

hared supply network affects the gain from the other’s invest- 

ent. For example, suppose both Honda and Toyota can choose to 

nvest at level 0.8. As shown in Table 5 , Honda’s gain from Toy- 

ta’s investment (0.96 - 0.74 = 0.22) is different from Toyota’s gain 

rom Honda’s investment (0.96 - 0.86 = 0.1). Having controlled the 

nvestment level and the disruption diffusion rates, we tease out 

he only variant – the focal firm’s relationship to the shared sup- 

ly network – as the contributing factor to such a difference in two 

rms’ benefits. We advocate future research on the mechanisms of 

his interesting phenomenon. 

Second, the investment level affects a firm’s gain from the 

ther’s investment. From Fig-ure 5, in this same industrial net- 

ork with fixed network topology, low investment level ( < = 0.6) 

xhibits different patterns of vulnerability reduction to high invest- 

ent level ( > 0.6). In low investment level, the gains from these 

hree types of investments are indistinctive for both focal firms. 

omparatively, in high investment level, the marginal benefits in 

ll scenarios become significantly larger. This observation shows 

hat there is curvilinear effect for the investment level, and that 

nvestment return increases after a certain point, which indicates 

hat finding out the turning point in practice can greatly improve 

he investment effectiveness. Based on the preceding rationale, we 

ropose: 

roposition 5a. In the industrial supply network, focal firms can 

enefit from other focal firms’ resilience investment. 

roposition 5b. The focal firm’s gain from the other focal firm’s in- 

estment is affected by the focal firm’s relationship to the shared sup- 

ly base and the other focal firm’s investment level. 

Third, we investigate the boundary conditions in which the fo- 

al firm’s investment pays off by introducing the cost of invest- 

ent. The cost structure is presumably linear, which is parsimo- 

ious yet reasonable. We transform the investment benefit to an 

conomic value so that the gain and cost are comparable. Specif- 

cally, we use M H and M T as scalars to linearly monetize the vul- 

erability reductions for Honda and Toyota. The corresponding unit 

nvestment costs for each node inside their ego network are C H 
nd C T . In our example, there are 96 nodes in Honda’s ego supply 

etwork and 91 nodes in Toyota’s ego supply network. The pay- 

ff becomes the benefit minus the cost. Table 6 is derived from 

able 5 and presents the pay-off with an investment level of 0.8. 

or instance, 0 . 22 M H under the investment of Toyota payoff comes 

rom the difference between investment and non-investment of 

oyota vulnerability in Table 5 (i.e., 0.96 – 0.74). 
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Fig. 6. Space of dual focal firms’ resilience investment strategies. 
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We can derive the strategy space through game theoretical 

nalysis. Fig. 6 shows the strategies. It shows that when 

M H 
C H 

≥ 185 , 

onda always choose to invest, and when 

M H 
C H 

< 163 , Honda always 

hoose not to invest no matter Toyota’s decision. Similarly, when 

M T 
C T 

≥ 157 , Toyota always choose to invest, and when 

M T 
C T 

< 120 , 

oyota always choose not to invest regardless of Honda’s decision. 

owever, when 185 > 

M H 
C H 

≥ 163 , Honda’s decision is dependent on 

he value of 
M T 
C . And when 157 > 

M T 
C ≥ 120 , Toyota’s decision is 
T T 

1127 
lso dependent on the value of 
M H 
C H 

. This indicates that the invest- 

ent decision made by one focal firm should not only consider its 

enefit-cost ratio, but also consider the other focal firm’s benefit- 

ost ratio. Therefore, looking at the whole supply chain can sup- 

ort better decision-making than only focusing on one firm’s ego 

upply network. Here we propose: 

roposition 6a. The investment decision made by one focal firm 

hould consider the benefit-cost ratio of both itself and the other focal 

rm(s). 

roposition 6b. The focal firm can benefit from examining the in- 

ustrial or competitors’ SCNs as opposed to focusing on its own ego 

CN. 

. Managerial implications 

In the foregoing analysis, we show that differentiating between 

he forward and backward disruption propagation can support ef- 

ective decision-making to improve supply chain resilience as well 

s to reduce firm vulnerability. In this section, we provide the fol- 

owing managerial implications that intend to guide managers to 

etter mitigate propagating disruptions based on the simulation 

ndings. 

1. Managers should clarify the origin of the disruption and differ- 

entiate between the forward and backward disruption propaga- 

tion. 

Our reasoning and analytical results show that forward and 

ackward disruption propagation is distinctive in the following 

spects: the origin, the mechanisms, the impacts on firm vulner- 

bility and network health, and the mitigation strategies of the 

isruption. In this sense, the first and foremost step is to clarify 
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he origin and differentiate between the two kinds of disruption 

ropagation. For example, the 2012 Japan earthquake caused dis- 

uptions to many Japanese suppliers of major automobile firms in 

he U.S. The disruption originated from the supply side and soon 

reaked havoc across the global automobile industry through the 

orward propagation. On the contrary, the COVID-19 pandemic has 

eft no rung of the fashion supply chain unharmed, mainly due to 

he demand-side disruption and backward propagation. Through 

larifying the origins and the types of disruption propagation, 

ffective mitigation and restore strategies can be established. 

his implication aligns with emphasizing knowledge of disruption 

rigin and severity in previous literature ( Craighead et al., 2007 ; 

ettit et al., 2010 ; Gupta, Ivanov & Choi, 2020 ), and also introduces

he practical importance of differentiating forward and backward 

isruption propagation that is largely neglected in the literature 

 Otto, Willner, Wenz, Frieler & Levermann, 2017 ). 

2. Managers need to consider different mitigation methods asso- 

ciated with forward and backward disruption propagation. 

The analysis reveals that the forward propagation causes more 

amage to the firms serving as an assembly entity while backward 

ropagation results in more loss to firms serving as a distribution 

ntity. The mitigation methods associated with forward and back- 

ard disruption propagation are different in the sense that safety 

tock and backup supply are used to mitigate forward disruption 

ropagation while flexible operation and demand management 

re generally used to manage backward disruption propagation. 

oreover, because resources to mitigate and recover from disrup- 

ions are limited, firms often invest more heavily in one kind of 

trategy that targets a specific source or direction of disruption. 

or example, automobile companies who suffered from the Japan 

arthquake have developed supplier relationship and business 

ontinuity programs that help them ensure a smooth supply, 

hereas fashion brands during the pandemic are implementing 

mni-channel retailing to promote the demand level. This impli- 

ation further enhances the practical importance of differentiating 

etween forward and backward disruption propagation. Hence, an 

ppropriate and targeted strategy is critical and can potentially 

ave firms millions of dollars ( Fiksel et al., 2015 ; Ivanov et al.,

014 a). 

3. Managers should consider the network topology of the industry 

and the structural position of the firm in the network, to cope 

with forward and backward disruption propagation. 

The simulation findings demonstrate that the network struc- 

ural properties moderate the impact of forward and backward 

isruption propagation on operational performance at both indus- 

ry and firm levels. At the network-level, a supply network or an 

ssembly network is more exposed to forward disruption propaga- 

ion whereas a distribution or logistics network is more exposed 

o backward disruption propagation. At the node-level, firms 

ith a higher degree centrality are more vulnerable. Specifically, 

 positive degree difference (higher in-degree than out-degree) 

s more vulnerable to forward disruption propagation, whereas 

 negative degree difference is more influenced by backward 

isruption propagation. In order to accurately assess the influence 

f the disruption on firms and the industry, managers should take 

 comprehensive consideration of the SCN structure. 

Echoing and extending the current literature that has put great 

mphasis on the impact of SCN structure on disruption propaga- 

ion ( Basole & Bellamy, 2014 ; Li & Zobel, 2020 ; Li et al., 2020 ), this

mplication supplements the current literature by explicating how 

he different directions of disruption propagation, interacted with 

etwork structure, influence both the firm vulnerability and net- 

ork health. This research also implies that a more comprehensive 
1128 
nderstanding of network structure and how it intertwined with 

ther factors is critical to determine the supply chain performance. 

4. Managers should integrate into account the information beyond 

the focal firm’s ego network. 

Researchers and practitioners widely acknowledge the phe- 

omenon of common suppliers shared by multiple ego networks of 

uying firms. We observe in the simulation that a small local dis- 

uption can propagate to other suppliers and even suppliers out- 

ide the focal firm’s ego network in the SCN. Thus, focusing only 

n one firm’s ego network underestimates the effect of disruption 

isks. Information beyond the ego network allows practitioners to 

etter evaluate the effect of operational risks and prepare for more 

ffective mitigation in advance. Moreover, our analysis indicates 

hat one supply chain can benefit from the resilience investment 

n other supply chains. Information beyond one focal firm’s ego 

etwork can introduce benefits regarding how to take advantage 

f other focal firms’ resilience investment. This implication aligns 

ith the advocation of looking at suppliers in deeper tiers ( Simchi- 

evi et al., 2015 ; Simchi-Levi, Schmidt & Wei, 2014 ; Zhao et al.,

019 ; Hosseini, Ivanov & Blackhurst, 2020 ), increasing supply chain 

isibility ( Basole & Bellamy, 2014 ; Ivanov, Dolgui & Sokolov, 2019 ), 

nd improving information accuracy ( Li, Zobel & Russell, 2017 ). 

5. Managers of a focal firm should consider the cost-performance 

of the resilience investment for not only that focal firm but also 

other focal firms (buyers). 

Due to the existence of common suppliers of multiple ego 

upply networks, one focal firm’s resilience investment decisions 

an affect and be affected by other focal firms. Our results 

resent the boundary conditions under which resilience invest- 

ent achieves its best outcome. Fig. 6 provides an example of ap- 

lying the “benefit-cost ratio” that is similar to the concept of cost- 

erformance to determine when a firm will be better off through 

ther firm’s resilience investment. In general, there is a threshold, 

eyond which managers of the focal firm should think to build 

heir own firm’s resilience, regardless of other firms’ risk strate- 

ies. It is critical for managers to map out the network, quantify 

he cost-performance, and figure out the threshold based on sup- 

ly networks and real contexts of disruption risks. 

Although it is widely accepted that supply chains consist of 

ighly interactive business entities ( Christopher & Peck, 2004 ; 

imchi-Levi et al., 2014 ) and common supply base exists in differ- 

nt supply chains (K. Zhao et al., 2019 ), to the best of our knowl-

dge, current literature has not considered the influence of com- 

on supply base on the impact and outcome of resilience in- 

estment. This implication highlights the importance of consider- 

ng and incorporating common supply base and other focal firm’s 

esilience investment into the decision-makings process. To this 

nd, further analysis of the ripple effect in the settings of inter- 

wined supply networks, viable and reconfugurable supply chains 

s a promising and understudied research direction ( Wang, Dou, 

uddada & Zhang, 2018 ; Ivanov, 2020b ; Ivanov & Dolgui, 2020b ; 

olgui, Ivanov & Sokolov, 2020b ). 

. Conclusion 

This study explores disruption propagation that can originate 

rom either supply or demand side and can diffuse in both di- 

ections. First, we propose a theoretical framework for disruption 

ropagation mechanism, in which network structure, node-level 

isruption diffusion rate, recovery rate and firms’ investment influ- 

nce the supply chain disruption propagation behavior. Next, we 

esign an experiment and investigate how node-level influencing 

actors, especially forward and backward disruption diffusion rates, 
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nteract with the network structure and determine the firm vulner- 

bility and network health. Finally, we analyze how one focal firm’s 

nvestment influences itself, the other focal firm, and the overall 

CN. Based on the analysis, we generate several important man- 

gerial implications. 

The results are threefold. First, at the network-level, forward 

nd backward disruption diffusion rates do exert different effects 

n network health, moderated by the network structure. Generally, 

orward disruption diffusion rate has a more severe effect on a 

upply network, while backward disruption diffusion rate has 

ore impact on a distribution network. Second, at the node-level, 

e find that both node-level influencing factors and node posi- 

ion contribute to node vulnerability. Higher centrality leads to 

igher node vulnerability. The nodes with higher in-degree than 

ut-degree are more sensitive to forward disruption propagation, 

nd vice versa. Finally, for a network with two focal firms, one 

ocal firm can benefit from the other’s investment. The benefit is 

nfluenced by the relationship between the focal firm and the over- 

apped supply network, as well as the investment level. We de- 

ineate the relationship between the focal firms’ benefit-cost ratio 

nd their strategy space, which implies that one focal firm’s invest- 

ent decision should consider both focal firms’ benefit-cost ratios. 

This study contributes in many ways. Theoretically, our study 

s among the first to consider the difference in the effects of 

orward and backward disruption propagation, and map them to 

orresponding resilience investments. Moreover, this work extends 

he understanding of “triad” disruption propagation by using a 

etwork with multiple focal firms. Practically, this study implies 

hat firms should manage forward and backward propagation dif- 

erently because of their distinctive origins, associated investments, 

nd effects on node vulnerability and network health. Also, a focal 

rm’s interest is to map out not only its ego network, but also the 

ndustrial network. When making resilience investment decisions, 

ne focal firm should consider the counterparts’ decisions, its 

elationship to the shared network, and risk characteristics. 

There are several limitations of this study, which can be ex- 

ended in future work. The first limitation is related to the effects 

f network structure on disruption propagation. Our analysis is 

ased on one realistic SCN and two comparable random networks. 

t is enough to investigate the influence of node-level factors on 

isruption propagation, but has its limitation on addressing the 

ffects of network structure, which requires a sufficient number 

f samples of various network structures. Considering network 

tructure plays a critical role in disruption propagation, future 

tudies based on a large number of network structure samples 

re required for further understanding of disruption propagation. 

he second is about the assumption of the risk independency. 

s disruption impacts may be interdependent in reality, future 

tudies could relax this assumption and investigate how the inter- 

ependency of risks can influence the supply chain resilience. The 

hird is the homogeneous setting of node-level factors required 

y the experiment design. Although a homogenous setting allows 

s to effectively investigate the impacts of these factors on the 

ipple effect, this setting reduces the proximity to the real-world 

ituation, as agents in a real supply chain are essentially different 

n terms of disruption prevention and response activities. Future 

tudies can relax this setting and individualize the agent param- 

ter value to model a more realistic ripple effect given the supply 

hain structure. The fourth limitation is about the curvilinear 

ffect of investment levels. Our work shows that the effect exists 

n our specific setting. To derive the general curvilinear effect 

nd the rules of the turning point that can be broadly applied, 

 well-designed experiment including different settings of net- 

ork configurations and various FR, BR, and RC levels should be 

mplemented in a future study. 
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