Skip to main content
. 2020 Oct 9;7(1):11. doi: 10.1186/s40708-020-00112-2

Table 2.

Summary of DL-based studies for prediction and classification of AD from MRI

Ref. Reg. DL Arch. Pre-Proc. Features Dataset Size Accuracy
[33] WB SAE-3D, CNN NM CBF ADNI 755 (AD, MCI, HC) 3-way 89.47%, AD vs. HC 95.39%, AD vs. MCI 86.84%, HC vs. MCI 92.11%
[31] CNN MC, STC, SS, HPF, SN, WMS, MD SSIF ADNI 52 AD3, 92 HC3, 211 AD1, 91 HC1 99.9%3, 5α, 98.84%1, 5α
[53] CNN MC, SST, HPF SSIF ADNI 28 AD, 15 NC 96.86%5α
[43] CNN SN, BC, MD CBF ADNI 33 AD, 22 LMCI, 49 MCI, 45 HC 98.88%
[42] CNN INUC, DC, NM ADNI 193 AD, 151 HC Class Score 95%5α
[69] DNN HPCV, CFV, LVV, ECT, MMSE ADNI 60 AD, 60 HC, 60 cMCI 60 MCI 34.8%10α
[36] 3D-CNN CR, TE, IRE, IN 3D CBF ADNI 199 AD, 141 NC; 3D MRI AD 600 NC 598 98.74%
[56] 3D-CNN SST, NM CBF ADNI 50 AD, 43 LMCI, 77 EMCI, 61 NC
[8] PNN IR, WF GLCM, SED ADNI 85%
[70] VAE, MLP SG Shape feature ADNI 150 NC, 90 AD, 160 EMCI, 160 LMCI NC-AD 84%, NC-EMCI 56%, NC-LMCI 59%. AD-EMCI 81%, AD-LMCI 57%, EMCI-LMCI 63%
[60] DBN VBM VV 3611, MSD 24 OASIS 49 AD, 49 HC MSD 0.736010α, VV 0.917610α
[47] CNN BE, MC, STC, IM, SS, THPF, NM, SN CBF ADNI 25 CN, 25 SMC, 25 EMCI, 25 LMCI, 13 MCI, 25 AD CN 100%, SMC 96.85%, EMCI 97.38%, LMCI 97.43%, MCI 97.40%, AD 98.01%
[39] BL 3D-CNN NNM, BE, IR 4D features, clinical features ADNI 192 AD, 184 HC, 181 pMCI, 228 sMCI 86%5α
[38] HPC CNN IR, SG HPC shape, texture, CBF ADNI-1, ADNI- GO&2, AIBL ADNI: 1711, AIBL: 435
[71] LSTM-RNN LSTM-based features ADNI-1, ADNI-GO&2 822 MCI
[40] CSA SAE-DNN MC, NUC, IN, SST, VL 310 Vol., CorTh, SAF, 5000 FDCM ADNI, CAD- Dementia 171 CN, 232 MCI, 101 AD Model-1 ADNI 56.6%10α, CAD-Dementia 51.4%10α Model-2 ADNI 58%10α, CAD-Dementia 56.8%10α
[41] MCS CNN INUC CBF ADNI 47 AD 34 NC
[72] SCS CNN CBF OASIS 100 AD, 100 HC VGG16: 92.3%5α, Inception-V4: 96.25%5α
[37] CNN NM, IR, MD CBF ADNI, Milan ADNI: 294 PAD, 763 MCI, 352 HC Milan: 124 PAD, 50 MCI, 55 HC ADNI: 99%10α, MILAN: 98%10α
[73] CNN CBF, 64 OASIS 416 80.25%
[46] VB CNN SST, DA, CE, F CBF OASIS, MIRIAD OASIS: 30 AD, 70 MCI, 316 HC MIRIAD: 46 MCI, 23 HC 0.8

Ref reference, Reg region, DL Arch deep learning architecture, Pre-Proc pre-processing technique used in the study, WB whole brain, BL-brain lobes HPC–hippocampus, CSA cortical surface area, MCS middle cross section, SCS single cross section, SSIF shift and scale-invariant features; Vol.-volume; CorTh-cortical thickness; SAF-surface area features; HPCV-hippocampal volumes; CFV-cerebrospinal fluid volume; LVV-lateral ventricle volume; ECT-entorhinal cortex thickness; MMSE-baseline scores of Mini-Mental State examination; nα-n-fold cross-validation, 4DF 4D features, CF clinical features, GLCM gray-level co-occurrence matrix, SED Sobel edge detector, MSD-maximal self-dissimilarity, VV voxel values