Skip to main content
. 2020 Oct 9;7(1):11. doi: 10.1186/s40708-020-00112-2

Table 3.

Summary of DL-based studies for prediction and classification of PD from [s]-MRI

Ref. Regions DL Tech. Pre-Proc. Feature Dataset Size Accuracy
[75] Axial CNN-RNN CBFd NTUA 55 PD, 23 PD Synd 98%
[57] Sagittal, coronal, axial planes 3D-CNN SST, DA CNN based, age, sex PPMI 452 PD, 204 HC 100%
[76] Mild brain CNN CBF NIMHANS 45 PD, 20 APS, 35 HC 80%5α
[77] Lentiform nucleus CNN-RNN CNN based NTUA 66176 98%
[58] Whole brain CNN NM, F, SM CBF PPMI 100 PD, 82 HC 88.9%
[45] Basal ganglia, mesencephalon CNN AC, BR, SN, SM CNN based PPMI Control vs PD 94.5-96%, PD vs SWEDD 88.7%

Pre-Proc. pre-processing, Synd syndrome, nαn fold cross-validation, AC alignment correction, SWEDD scans without evidence for dopaminergic deficit, CBF CNN-based features