Skip to main content
. 2020 Oct 9;7(1):11. doi: 10.1186/s40708-020-00112-2

Table 4.

Summery of DL-based studies for prediction and classification of SZ from MRI

Ref. Regions DL Pre-Proc. Feature (count) Dataset Size Accuracy
[48] VFN, CN, DMN 3D-CNN MC, DN, STC, SS, TF, HPF 3D-ICA (15) COBRE 72 SZs,74 HCs 98.09%10α
[54] AUD, DMN 2D-CNN MC, SN, SS ICA(13) Self 42 SZs,40 HCs slice-level DMN-72.65%5α, AUD-78.34%5α, subject-level DMN-91.32%5α, AUD-98.75%5α
[78] WB DNN ICA FNC, SBM (10) MRN 69 SZs, 75 HCs 94.4%
[79] WB DNN ROI (116) OpenfMRI 50 SZs, 49 BD, 122 HCs 76.6%α
[34] WB RNN MC, DN, SF, TF, NM, LRg SPF FBIRN phase-II 87 SZs, 85 HCs 64%10α
[52] WB DNN STC, SN, SS FNC (116) COBRE 72 SZs,74 HCs 95.4%5α
[35] WB DNN FNC,SBM (410) MLSP
[32] WB DBN LR, ZN NMF Multisite 143 SZs,83 HCs 73.6%3α
[50] WB SAE STC, MC,SN, SM, F VTS COBRE 72 SZs,74 HCs 92%10α
[51] Atlas FFBPNN STC, MC, TF, NM, SS FNC (20) Hospital 39 SZs,31 HCs 79.3%10α
[55] WB DNN, LRP MC, SN FNC, ICA (1225) Multisite 558 SZs, 542 HCs 84.75%10α
[49] Cor., Str., Cere. DNN MC, NM, STC, SS, LD, TF FNC (116) Multisite 474 SZs,607 HCs 83%10α
[44] Vent. DBN SST, BC, SG SV, ROI COBRE 72 SZs,76 HCs ROI-83.3%3α, SV-90%3α
[80] WB MLP ICA, RV FBIRN 135 SZs,169 HCs AUC- 0.858α, SD-0.05
[59] WB MLP NM, SG, SS Multisite 198 SZs,191 HCs AUC-0.7510α, SD-0.04

WB whole brain, Cor. cortical, Str. striatal, Cere cerebellar, Vent. ventricle, MRN mild research network, VFN visual frontal network, AUD auditory cortex, CN cerebellar network, DMN default mode network, nα=n-fold cross-validation, SPF spatial feature, NMF neuro-morphometric features, VTS voxel time series, SV segmented ventricle, Self self-generated dataset