
Evolution of vertebrate gill covers via shifts in an
ancient Pou3f3 enhancer
Lindsey Barskea,b,c,1, Peter Fabiana

, Christine Hirschbergerd, David Jandzike,f, Tyler Squaree,g, Pengfei Xua
,

Nellie Nelsona
, Haoze Vincent Yua

, Daniel M. Medeirose, J. Andrew Gillisd,h, and J. Gage Crumpa,1


aDepartment of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W. M.
Keck School of Medicine, University of Southern California, Los Angeles, CA 90033; bDepartment of Pediatrics, University of Cincinnati College of Medicine,
Cincinnati, OH 45229; cDivision of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229; dDepartment of Zoology, University
of Cambridge, Cambridge CB2 3EJ, United Kingdom; eDepartment of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309;
fDepartment of Zoology, Comenius University in Bratislava, 84215 Bratislava, Slovakia; gDepartment of Molecular and Cell Biology, University of California,
Berkeley, CA 94720; and hMarine Biological Laboratory, Woods Hole, MA 02543

Edited by Robb Krumlauf, Stowers Institute for Medical Research, Kansas City, MO, and approved August 22, 2020 (received for review June 4, 2020)

Whereas the gill chambers of jawless vertebrates open directly
into the environment, jawed vertebrates evolved skeletal append-
ages that drive oxygenated water unidirectionally over the gills. A
major anatomical difference between the two jawed vertebrate
lineages is the presence of a single large gill cover in bony fishes
versus separate covers for each gill chamber in cartilaginous fishes.
Here, we find that these divergent patterns correlate with the
pharyngeal arch expression of Pou3f3 orthologs. We identify a
deeply conserved Pou3f3 arch enhancer present in humans
through sharks but undetectable in jawless fish. Minor differences
between the bony and cartilaginous fish enhancers account for
their restricted versus pan-arch expression patterns. In zebrafish,
mutation of Pou3f3 or the conserved enhancer disrupts gill cover
formation, whereas ectopic pan-arch Pou3f3b expression generates
ectopic skeletal elements resembling the multimeric covers of carti-
laginous fishes. Emergence of this Pou3f3 arch enhancer >430 Mya
and subsequent modifications may thus have contributed to the ac-
quisition and diversification of gill covers and respiratory strategies
during gnathostome evolution.

Pou3f3 | gill cover | vertebrate evolution | neural crest | enhancer deletion

Jawed vertebrates have evolved different anatomical structures
to protect and ventilate their gills (Fig. 1 A and G). In bony

fishes, the second pharyngeal arch (hyoid) grows caudally over
the posterior gill-bearing arches to form a single large gill cover
(operculum) supported by intramembranous bones. Although
humans and other tetrapods lack functional gills, growth of the
hyoid arch over the posterior arches is conserved. The hyoid
outgrowth ultimately merges with the trunk to close off the
pharyngeal cavity, with defects in this process resulting in bran-
chial cysts and fistulae in humans (e.g., in branchiootorenal
syndrome) (1, 2). By contrast, in elasmobranch cartilaginous
fishes (sharks, skates, and rays), the hyoid and four posterior
arches each undergo posterior-directed growth to generate five
separate gill covers supported by cartilaginous rays. In hol-
ocephalans, the other extant group of cartilaginous fishes, five
separate gill covers also form initially, yet subsequent stalled
growth of the four posterior covers results in a single hyoid-
derived gill cover (3). Gill cover formation is stimulated by an
epithelial signaling center called the posterior ectodermal mar-
gin (PEM) that develops along the caudal rim of the hyoid arch
in bony fishes and arches 2 to 6 in cartilaginous fishes (later
refined to just arch 2 in holocephalans) (Fig. 1G) (2–4). The
PEM is a source of Shh, Fgfs, and Bmps (4–7) that are believed
to act on the underlying neural crest-derived mesenchyme that
generates the gill cover skeleton and connective tissues. Whether
this mesenchyme possesses a prepattern for single versus multi-
ple gill covers, or simply receives instructive information from
the PEM, had not been examined.

Results and Discussion
Pharyngeal Arch Pou3f3 Expression Correlates with Gill Cover
Formation. POU Class 3 Homeobox 3 (POU3F3), also known
as BRN1, is a proneural transcription factor with widespread
expression in the developing central nervous system (CNS) (8) as
well as in dorsal pharyngeal arch mesenchyme. We noted that
zebrafish (9), mouse (10), and frog (11) Pou3f3 homologs are
atypical among arch-enriched genes in that they are expressed
only in the mandibular (first) and hyoid arches and not in the
more posterior gill-forming arches (Fig. 1 E and F; compare with
dlx2a, dlx6a, and hand2 in SI Appendix, Fig. S1 A and B). At later
stages, the two zebrafish paralogs, pou3f3a and pou3f3b, are re-
stricted to the growing gill cover (SI Appendix, Fig. S1 C and D).
This restriction to the forming gill cover prompted us to examine
the expression of Pou3f3 orthologs in species with divergent gill
cover patterns. In the sea lamprey (Petromyzon marinus), a
jawless vertebrate lacking gill covers, we detected robust ex-
pression of the three Pou3 homologs Pou3a, Pou3b, and Pou3c in
the brain but not the pharyngeal arches (Fig. 1B and SI Appendix,
Fig. S2). Diffuse Pou3c expression was detected throughout the
pharyngeal region at later stages, although it was not enriched in
arch mesenchyme. In the little skate (Leucoraja erinacea), an
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elasmobranch with five gill covers, Pou3f3 is expressed in the
brain and arches 1 to 6 (Fig. 1C). In the elephant fish (Cal-
lorhinchus milii), a holocephalan, Pou3f3 initially displayed ex-
pression in arches 1 to 5 and the brain but later became
restricted to the hyoid and mandibular arches, consistent with
the secondary regression of the posterior covers (3) (Fig. 1D).
These patterns collectively indicate ancestral expression of
Pou3f3 homologs in the brain, with cooption of Pou3f3 into arch
mesenchyme in jawed vertebrates tightly correlating with the
presence, number, and developmental progression of gill covers
across diverse species.

A Deeply Conserved Pou3f3 Enhancer Drives Differential Expression in
Bony and Cartilaginous Fish. We next sought to identify cis-
regulatory elements that could explain the distinct Pou3f3 ex-
pression patterns. Assay for transposase-accessible chromatin
sequencing (ATAC-seq) on sorted zebrafish sox10:DsRed+;
fli1a:EGFP+ arch mesenchyme versus control double-negative
cells revealed differentially accessible regions downstream of
pou3f3a (“Dr4”; 380 base pairs [bp] in length; 11,919 bp 3′ to the
transcription start site [TSS]) and pou3f3b (“Dr1”; 2,033 bp in
length; 21,728 bp 3′ to the TSS) (Fig. 2A and SI Appendix, Fig.
S3A and Table S1). These elements have no sequence homology
with each other and do not appear to be paralogs of an ancestral
regulatory element present before the teleost whole genome
duplication. In transgenesis assays, both pou3f3b-Dr1 and
pou3f3a-Dr4 drove GFP expression in neural crest-derived
mesenchyme of the dorsal mandibular and hyoid arches at
36 h post fertilization (hpf), with limited or no expression in the
posterior arches (Fig. 2 C and D and SI Appendix, Fig. S3C).
Neither Dr1 nor Dr4 drove CNS expression, in contrast to a
pou3f3bGal4ff; UAS:nlsGFP knock-in reporter line that recapitu-
lates endogenous pou3f3b expression in the CNS as well as the
dorsal first and second arches (Fig. 2D and SI Appendix, Fig.
S4 A–C). At 6 to 7 d post fertilization (dpf), pou3f3b-Dr1 but not
pou3f3a-Dr4 continued to drive robust expression in the oper-
culum (Fig. 2E and SI Appendix, Fig. S3C), consistent with the

broader endogenous expression of pou3f3b during opercular
outgrowth (SI Appendix, Fig. S1 C and D). We focused on
pou3f3b-Dr1 for further analysis, as pou3f3a-Dr4 is conserved
only in the teleost fish species most closely related to zebrafish
(e.g., cavefish, catfish, and piranha) (SI Appendix, Fig. S5). Within
pou3f3b-Dr1, we identified a 515-bp 5′ fragment (“Dr1A”) that
drove expression in only the maxillary domain, similar to
pou3f3a-Dr4 (SI Appendix, Fig. S3 B–D). We also identified a
central 610-bp sequence (“Dr1B”) that drove robust expression in
the dorsal mandibular and hyoid arches starting at 36 hpf and the
growing operculum at 7 dpf (Fig. 2 A, D, and E). Whereas Dr1A is
found only in teleost fish (n = 43 of 45 genomes; SI Appendix, Fig.
S5), Dr1B is exceptionally well conserved across gnathostomes
(Fig. 2B). Homologous sequences were recovered in syntenic re-
gions of all mammalian (n = 20), avian (n = 5), reptilian (n = 5),
amphibian (n = 1), and cartilaginous fish (n = 4) genomes eval-
uated (SI Appendix, Table S1). Zebrafish Dr1B was the most di-
vergent in an alignment of 11 vertebrate 1B sequences, and no 1B
sequence could be retrieved in 13 of 45 teleosts (SI Appendix, Figs.
S5 and S6), in line with previous work showing rapid evolution of
regulatory sequences following the teleost whole-genome dupli-
cation ∼300 Mya (12). We also did not identify homologous 1B
sequences in lamprey or two invertebrate chordates (amphioxus
and tunicate) that lack gill covers. In addition, we independently
predicted the human “Hs1B” and mouse “Mm1B” sequences as
enhancers by virtue of their open chromatin and 25-state epi-
genomic annotation in published datasets for human and mouse
neural crest-derived cells (Fig. 2A) (13–16).
We next examined the ability of 1B sequences from diverse

vertebrates to drive arch expression patterns corresponding to
their gill cover patterns. To do so, we cloned 1B sequences from
three bony vertebrates (zebrafish, spotted gar, and human) and
two cartilaginous fishes (little skate and elephant fish) and tested
their abilities to drive GFP expression in zebrafish stable trans-
genesis assays. At 36 hpf, 1B sequences from all five species directed
GFP expression in hyoid and mandibular arch mesenchyme, with
few or no GFP+ cells in the posterior arches (Fig. 2D). However,
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Fig. 1. Arch Pou3f3 expression correlates with gill cover formation. (A) Vertebrate phylogeny highlighting the gill cover type of each lineage. (B–F and B′–F′)
In situ hybridizations at two stages for Pou3f3 homologs in lamprey, little skate, elephant fish, zebrafish, and mouse show conserved expression in the CNS
but divergent patterns in the pharyngeal arches. Note the later suppression of Pou3f3 in the posterior arches of the elephant fish. The dotted lines in D′
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blue. E, embryonic day; st, stage.

Barske et al. PNAS | October 6, 2020 | vol. 117 | no. 40 | 24877

D
EV

EL
O
PM

EN
TA

L
BI
O
LO

G
Y

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011531117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011531117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011531117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011531117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011531117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011531117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011531117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011531117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011531117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011531117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011531117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011531117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011531117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011531117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011531117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011531117/-/DCSupplemental


these patterns conspicuously diverged by 7 dpf. Whereas the
zebrafish, gar, and human enhancers drove expression primarily
in the operculum, skate and elephant fish enhancers drove
strong expression in the operculum and all posterior gill-
bearing arches (Fig. 2E). The zebrafish but not gar or human
enhancers also recapitulated the clear restriction of GFP ex-
pression to the dorsal half of the operculum seen in the knock-
in line, suggesting divergence within bony fishes of the sequences
conferring ventral repression. These experiments demonstrate
that small shifts in the 1B enhancer, likely occurring after bony
and cartilaginous fish diverged ∼430 Mya (17), can explain, at
least in part, the unique arch expression patterns of vertebrate
Pou3f3 homologs.

Pou3f3 Is Required for Formation of the Entire Gill Cover Skeleton in
Zebrafish. Given the strong correlation of Pou3f3 expression with
gill cover pattern, we next assessed the requirement for Pou3f3 in
gill cover development. We generated zebrafish pou3f3ael489 and
pou3f3bel502 frame-shift alleles with TALENs and confirmed
total loss of protein expression in double mutants with a pan-
Pou3f3 antibody (SI Appendix, Fig. S7 A and B). The fan-shaped
opercle and adjacent subopercle intramembranous bones form

the primary skeleton of the operculum in teleost fishes (Fig. 3A).
Whereas adult pou3f3a mutants appear normal, adult pou3f3b−/−

and pou3f3a−/−; pou3f3b+/− mutants have variably truncated gill
covers associated with reduced opercles and missing or fused
subopercle bones (Figs. 3 B and C and 4B). The opercle is en-
tirely absent in compound pou3f3b mutants lacking one or both
copies of pou3f3a (Fig. 3D), which develop cardiac edema and
die at ∼6 to 7 dpf. By contrast, the branchiostegal ray bone,
derived from more ventral hyoid arch cells that do not express
pou3f3a/b (18), develops normally in double mutants, as assessed
by a RUNX2:mCherry osteoblast reporter line and endogenous
runx2b expression at 3 dpf (Fig. 3E and SI Appendix, Fig. S7C),
despite a failure of mineralization that is likely secondary to
edema. Double mutants also display reductions in the hyo-
mandibular cartilage (to which the opercle bone attaches) and its
sox9a+ progenitors (Fig. 3 D–F), as well as loss of the specialized
joint cells (trps1:GFP+) that connect the opercle to the hyo-
mandibula and disorganization of opercular muscles (SI Appen-
dix, Fig. S7 D and E). A requirement for Pou3f3 in bone and
cartilage development in the dorsal (i.e., proximal) mandibular
and hyoid arches is also conserved in mammals, as Pou3f3−/− mice
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Fig. 2. A deeply conserved Pou3f3 enhancer differentially regulates arch expression in bony and cartilaginous fish. (A) A conserved regulatory element
downstream of Pou3f3 genes. ATAC-seq data from zebrafish fluorescence-activated cell sorting-purified fli1a:EGFP; sox10:DsRed double-positive arch neural
crest cells (NCCs) and double-negative non-arch cells (Top), human in vitro-derived neural crest-like cells (data from ref. 15) (Middle), and mouse hyoid arch
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dicated. (B) mVista alignment (60, 61) of conserved 1B sequences relative to Hs1B. (C) Structure of reporter construct. (D) Compared with a pou3f3b knock-in
line (Left), Dr1 and 1B reporter lines show primarily arch-restricted GFP expression at 36 hpf (lateral perspective; arches are numbered), with an additional
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lack squamosal and jugal bones (mandibular derivatives) and
display an abnormal stapes cartilage (hyoid derivative) (10).
We next sought to uncover the cellular basis of gill cover de-

fects in Pou3f3 mutants by tracking the behaviors of Pou3f3-
expressing cells in living fish. To accomplish this, we inserted a
Gal4ff cassette into the endogenous pou3f3b 5′ untranslated
region (UTR) sequence and crossed this line with a transgenic
UAS:nlsGFP reporter as well as the original pou3f3a and pou3f3b
mutant lines. pou3f3a−/−; pou3f3bGal4ff/el502; UAS:nlsGFP embryos
display similar opercular defects as pou3f3a−/−; pou3f3bel502/el502

mutants, indicating that the knock-in behaves as a null or severely

hypomorphic allele (SI Appendix, Fig. S4 A and F). Sequential
confocal imaging in controls revealed posterior-directed migra-
tion of pou3f3b-labeled mesenchymal cells in the hyoid arch,
which contributed to both sox10:DsRed+ chondrocytes of the
hyomandibular cartilage and RUNX2:mCherry+ osteoblasts of
the opercle bone (Fig. 3G and SI Appendix, Fig. S4 D and E and
Movie S1). In double mutants, comparable amounts of pou3f3b-
labeled mesenchymal cells were present at 49 hpf, and yet out-
growth slowed by 72 hpf and completely stalled by 95 hpf,
reflected by a significant decrease in the area of the pou3f3b-
labeled dorsal hyoid arch as early as 72 hpf (Fig. 3 G and H).
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individually tracked control and pou3f3a−/−; pou3f3bGal4ff/− siblings (repeated-measures ANOVA: genotype P = 0.0069; time: P < 0.0001; genotype × time: P <
0.0001). (I) A trend toward moderately lower rates of proliferation in double mutants at 72 hpf becomes significant at 96 hpf (unpaired t test). Horizontal lines
denote the mean. (J) Representative BrdU-labeled control and mutant samples, with the quantified opercular region outlined. (K) PEM markers shha, bmp7b,
and fgf24 are expressed at normal levels in pou3f3a; pou3f3b double mutants at 48 hpf (white arrows). sox10:GFPCAAX labels arch mesenchyme. (L) Uni-
lateral transplantation of fli1a:EGFP donor neural crest cells into a pou3f3a+/−; pou3f3b−/− host rescued Op formation. Images in G, J, and L are maximum-
intensity projections; single optical sections are presented in K. (Scale bars: C, 500 μm; D and L, 50 μm; E–G, J, and K, 20 μm.)
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This failure of opercular outgrowth may be due in part to
reduced proliferation, as there was a trend toward fewer
bromodeoxyuridine-positive (BrdU+) pou3f3b-labeled cells at 72

hpf that became highly significant by 96 hpf (Fig. 3 I and J)
(confirmed by pHH3 and PCNA staining; SI Appendix, Fig. S8).
The failure of sustained opercular growth is likely due to defects
in the mesenchyme and not the PEM. Expression of PEM
markers shha, bmp7b, and fgf24 was unaltered in mutants at 48
hpf (Fig. 3K). Further, transplantation of wild-type neural crest
precursor cells into pou3f3a+/−; pou3f3b−/− mutants fully rescued
opercle bone formation, indicating that Pou3f3 function in arch
mesenchyme is sufficient for development of the gill cover
skeleton (Fig. 3L).

Requirement of the Dr1B Enhancer for Gill Cover Growth. Given the
essential roles for Pou3f3a/b in gill cover formation, we next set
out to assess the specific requirements of the deeply conserved
1B enhancer. To do so, we used CRISPR/Cas9 to create a 1,025-
bp deletion of the entire Dr1B sequence (pou3f3bci3010; Fig. 4A).
Adult fish carrying one copy of this allele and one copy of the
original el502 mutant allele developed normal bony gill covers
(n = 8 of 8). We therefore further assessed the effect on a sen-
sitized mutant background by comparing adult pou3f3a−/−;
pou3f3bel502/ci3010 fish with pou3f3a−/−; pou3f3bel502/+ siblings
that retained the enhancer. Compared with the mutants with the
wild-type enhancer, fish lacking the 1B enhancer showed a sig-
nificant reduction in the size of the gill cover opercle bone
(Fig. 4 B and C). The 1B enhancer is thus required for the
postlarval growth of the gill cover in zebrafish, although the fact
that its deletion does not phenocopy the null allele suggests the
existence of other complementary enhancers in the zebrafish
genomic locus. Consistent with this hypothesis, at embryonic
stages, arch pou3f3b expression is still detectable in homozygous
pou3f3bci3010/ci3010 mutants (Fig. 4D). The lack of conservation of
the 1B enhancer at the pou3f3a locus and its apparent absence
from the pou3f3b locus in several teleost genomes also point to
the presence of complementary arch mesenchyme enhancers for
Pou3f3 genes (SI Appendix, Fig. S5).

Misexpression of Pou3f3b in the Posterior Arches Induces Ectopic
Cartilages. Next, we tested whether forced expression of Pou3f3b
in the posterior arches was sufficient to induce the formation of
ectopic gill cover-like structures in zebrafish. To do so, we used a
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fli1a:Gal4VP16 transgene to drive a UAS:pou3f3b transgene
throughout postmigratory arch mesenchyme. At 4 dpf, Pou3f3b
misexpression resulted in ectopic posterior-directed cartilaginous
processes extending from the dorsal tips of the third and fourth
arch-derived ceratobranchial cartilages, consistent with ectopic
expression of pou3f3b observed in the third and fourth arches
at 36 hpf (Fig. 5 A and C). The facial skeleton, in particular the
jaws, was also hypoplastic, potentially reflecting that pou3f3b was
also ectopically expressed in the normally Pou3f3-negative ven-
tral jaw-forming region. We also observed similar ectopic carti-
laginous processes in zebrafish kat6a (moz) mutants, in which
Hox genes are down-regulated in the posterior gill-forming
arches (19) and pou3f3b becomes ectopically expressed in the
third and fourth arches (Fig. 5 B and E). Intriguingly, the central
200 bp of the 1B enhancer was the only sequence in the murine
Pou3f3 locus bound by HOXA2 and its Pbx/Meis cofactors in
chromatin immunoprecipitation-sequencing (ChIP-seq) assays
of hyoid arch cells (20) (Fig. 2A and SI Appendix, Fig. S6). Hox
transcription factors might therefore act through the 1B en-
hancer to prevent posterior arch expression of Pou3f3 orthologs
in the bony fish clade. The two predicted Hox-binding motifs
within this 200-bp HOXA2 peak are well conserved between
cartilaginous and bony fish (SI Appendix, Fig. S6), although
differences in the neighboring 5′ and 3′ sequences could affect
transcription factor binding (21). Whereas posterior arch ex-
pression of pou3f3b was linked to ectopic skeletal elements, le-
thality by 7 dpf in both pou3f3b-misexpression and kat6a mutant
embryos precluded us from assessing whether more extensive
ectopic gill covers might form. We also noted no ectopic shha+

PEMs in gill arch epithelia of pou3f3b-misexpression or kat6a−/−

embryos (Fig. 5 D and F) (19). Generation of the full multiple
gill cover state seen in cartilaginous fishes might therefore re-
quire the establishment of PEMs in posterior arch epithelia in
addition to expression of Pou3f3 orthologs in posterior arch
mesenchyme.
We propose that in an ancestral gnathostome, cooption of the

neural gene Pou3f3 into neural crest-derived mesenchymal cells
of the arches, through acquisition of the 1B enhancer, conferred
a capacity for mesenchymal growth and skeletal differentiation
that led to the formation of a gill cover (Fig. 6). Recent dis-
coveries of a stem gnathostome (22) and a stem chondrichthyan
(23) with prominent hyoid arch bony opercula are consistent
with a scenario in which the last common ancestor of extant
jawed vertebrates possessed a single, hyoid arch-derived gill
cover. The four posterior gill covers of cartilaginous fishes would
therefore have evolved after the two lineages diverged (24),

perhaps coincident with sequence changes in the 1B enhancer
permitting robust Pou3f3 expression in the posterior arches.
Additional enhancers reinforcing arch expression likely also
evolved during vertebrate diversification, at least in the teleost
fish lineage. Sequence modifications in otherwise highly con-
served enhancers have been linked to other more recent evolu-
tionary transitions, e.g., the loss of limbs in snakes (Shh ZRS
enhancer) (25) and the fin-to-limb transformation in tetrapods
(Gli3 intronic enhancer) (26). It remains to be determined
whether other opercular novelties are associated with modifica-
tions to the 1B sequence or Pou3f3 activity more generally, such
as the precocious opercular outgrowth with external gill devel-
opment observed in bichir (27) or the modification of the
opercular apparatus to seal off the neck when ancestral tetra-
pods migrated onto land (1, 28).

Materials and Methods
The Institutional Animal Care and Use Committees of the University of
Southern California (USC) (no. 10885, 20540), Cincinnati Children’s Hospital
Medical Center (no. 2018-0076), the University of Colorado at Boulder (no.
2392), and the Marine Biological Laboratory (no. 17-31, 18-32) approved all
of the animal procedures carried out in this study. Mice were housed in
accordance with NIH guidelines.

Husbandry and Specimen Collection. Zebrafish (Danio rerio) were reared in
embryo medium (29) at 28.5 °C and staged according to ref. 30. Mixed-
background wild-type mouse embryos were collected from timed-pregnant
females at 9.5 and 11.5 d post coitus. Adult sea lamprey (P. marinus) were
maintained and embryos were raised and collected as described (31), following
Tahara staging (32). Skate embryos (L. erinacea) were reared in a flow-through
seawater system at 15 °C at the Marine Biological Laboratory in Woods Hole,
MA, and fixed as described (33). Holocephalan embryos (C. milii) were col-
lected from the field and fixed as described (3).

Zebrafish Lines and Genotyping. Existing mutant and transgenic lines used in
this study include kat6a/mozb719 (19), trps ĵ1271aGt (referred to as trps1:GFP) (34),
Tg(fli1a:Gal4VP16)el360 (35), Tg(fli1a:eGFP)y1 (36), TgBAC(hand2:eGFP)pd24Tg (37),
Tg(RUNX2:mCherry) (gift of Dr. Shannon Fisher, Boston University, Boston, MA),
Tg(sox10:GFPCAAX) (38), and Tg(sox10:DsRedExpress)el10 (39). Three mutant
lines (pou3f3ael489, pou3f3bel502, and pou3f3bci3010), a targeted knock-
in line (pou3f3bGal4ff-el795), and two transgenic lines [Tg(UAS:pou3f3b;
α-crystallin:Cerulean)el578 and Tg(UAS:nlsGFP; α-crystallin:Cerulean)el609] were
generated as part of this study (see "Generation of Zebrafish Mutant and Trans-
genic Lines"). Transgenic lines were maintained by selectively raising larvae
expressing fluorescent marker proteins. To identify carriers of the mutant alleles,
the caudal fin was biopsied under tricaine anesthesia (Western Chemicals) at
14 or 90 dpf, and the tissue was digested with proteinase K and genotyped by
PCR/restriction fragment-length polymorphism assays using GoTaq DNA polymerase
(Promega). The primers used to genotype the pou3f3a and pou3f3b mutant and
Dr1B enhancer deletion lines were pou3f3a-F2 (5′-ACCACGCATACTTTTCCAGC-3′)
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and pou3f3a-R2 (5′-CTCCTTGCATGAAGTCGCTC-3′); pou3f3b-Fout (5′-TCGATAGTG-
CACTCGGACTC-3′) and pou3f3b-Rout (5′-CCAGGCTGCGAGTATATGAGA-3′);
and Dr1B-60F (5′-CCCCTCCAGGCAAATATTAGAT-3′) and Dr1B-58R (5′-TCAAAG-
CAAGCTCAACCCTG-3′). The reaction was run at 95 °C for 3 min, followed by
35 cycles of 95 °C for 15 s, 56 or 58 °C for 30 s, and 72 °C for 30 s, with a final
extension at 72 °C for 5 min. The 311- and 473-bp products for pou3f3a and
pou3f3b were digested with HinfI at 37 °C and ApaI at 25 °C, respectively,
which cut the wild-type alleles only. The Dr1B primers amplify a 542-bp
product in carriers of the deletion.

Generation of Zebrafish Mutant and Transgenic Lines. pou3f3a and pou3f3b
mutant lines were created with TALENs targeting the following sequences:
pou3f3a-L (5′-TCTCTCATCAGCCTCGCTCG-3′) and pou3f3a-R (5′-TCCCGGCTG-
CATGCCACCAC-3′); and pou3f3b-L (5′-TGCACTCTGGGACTGCGCTG-3′) and
pou3f3b-R (5′-TCTGGTGGGGACCTAAATGT-3′). TALEN constructs were as-
sembled using a PCR-based platform (40), digested with StuI, and used as
templates for RNA synthesis with the mMessage mMachine T7 Ultra kit
(Ambion/Life Technologies). Pairs of TALEN RNAs were injected into one-
cell-stage embryos at 100 ng/μL, and mosaic germline founders were iden-
tified by screening their offspring for frame-shift alleles using PCR and re-
striction digest assays followed by Sanger sequencing. The pou3f3ael489

(c.71_78del; p.Ser24Trpfs*41) and pou3f3bel502 (c.408_409del; p.Arg136Serfs*16)
mutations occur upstream of the conserved POU and homeobox domains. No
pou3f3a+/−; pou3f3b−/− or double mutants were recovered as adults, although
single pou3f3a and pou3f3b mutants and pou3f3a−/−; pou3f3b+/− fish were
fully viable and fertile.

To delete the Dr1B enhancer, we injected Cas9 RNA (100 ng/μL) with guide
RNAs (gRNAs) targeting flanking sequences 5′-GGGCTCCCCAACATCTGCAC-
3′ and 5′-GTGTGGGGAGCAATACTC-3′ (100 ng/μL) into embryos from an
outcross of pou3f3ael489/+; pou3f3bel502/+ double heterozygotes to wild-type
Tubingen. We screened for founders that passed on the predicted deletion
and were heterozygous for pou3f3ael489 and wild-type for the pou3f3bel502

allele. The pou3f3bci3010 allele (NC_007117.6:g.14845039_14846063del) is a
1,025-bp deletion that removes the ∼610-bp enhancer plus ∼400 bp of
flanking sequences. No subviability was noted in adult F2 pou3f3a−/−;
pou3f3bel502/ci3010 fish.

The pou3f3bGal4ff-el795 targeted knock-in line was made using a CRISPR/
Cas9-based protocol (41). Briefly, three gRNAs targeting sequences upstream
of the pou3f3b translational start site (5′-AAACATATTCATAAGGTTAA-3′, 5′-
GGTTAACGGAATGGCCACAG-3′, and 5′-AGCAAAGAGAAAGTATCTGC-3′) were
coinjected at 100 ng/μL into Tg(UAS:nls:GFP) embryos together with Cas9
RNA (100 ng/μL), a circular hsp70l:Gal4ff:pA construct, and a fourth gRNA
targeting a bait sequence within the construct, which linearized the donor
DNA in vivo (41). Germline founders that recapitulated the embryonic expression
pattern of pou3f3b were identified by crossing back to Tg(UAS:nls:GFP) upon
reaching maturity.

The UAS:Pou3f3b; α-crystallin:Cerulean and UAS:nlsGFP; α-crystallin:Cer-
ulean constructs were created with the Gateway Tol2kit (42) by combining
pMEs containing the pou3f3b or nlsGFP coding sequence with p5E-UAS,
p3E-polyA and pDestTol2AB2 in an LR reaction. The stable lines Tg(UAS:pou3f3b;
α-crystallin:Cerulean)el578 and Tg(UAS:nlsGFP; α-crystallin:Cerulean)el609 were
established by injecting each construct together with transposase RNA
(30 ng/μL each) into wild-type embryos and selecting for fish whose off-
spring expressed Cerulean in the lens.

To test the function of putative Pou3f3 enhancers, sequences downstream
of pou3f3a or pou3f3b that were enriched for open chromatin in
fli1a:EGFP+; sox10:DsRed+ versus fli1a:EGFP−; sox10:DsRed− cells (Dr4, Dr1,
Dr1A, and Dr1B) were PCR-amplified from genomic DNA and cloned into
pDONRp4p1r to generate p5E Gateway vectors. gBlocks were generated for
the human, spotted gar, little skate, and elephant fish 1B homologs (Inte-
grated DNA Technologies; SI Appendix, Table S1) and used to make p5E
vectors. All p5Es were combined with pME-E1B:GFP, p3E:polyA, and pDest-
Tol2AB2 to generate reporter constructs that use the minimal E1B promoter
to drive GFP expression and carry the α-crystallin:Cerulean marker. These
were microinjected with transposase as described above. Two independent
stable alleles per construct were analyzed in the F1 and/or F2 generation.

In Situ Hybridization. Published zebrafish probes include dlx2a (43), pou3f3a,
pou3f3b-3′UTR (9), runx2b (44), shha (45), and sox9a (46). Complementary
DNAs (cDNAs) for an exon-only pou3f3b probe, bmp7b, fgf24, lamprey
Pou3a, and mouse Pou3f3 were PCR-amplified by Herculase II Fusion DNA
Polymerase (Agilent) (SI Appendix, Table S2) and cloned into pCR-Blunt
II-TOPO or pJet1.2 (Thermo Fisher Scientific). Fragments of skate and
holocephalan Pou3f3 were PCR-amplified from total embryonic cDNA using
REDTaq DNA polymerase (Millipore Sigma) and cloned into the pGemT-easy

vector system (Promega). Lamprey Pou3b and Pou3c cDNA sequences were
purchased as fragments cloned into pUC57 (Synbio Technologies) (SI Ap-
pendix, Table S3), and RNA probe templates were PCR-amplified with M13
primers. In all other cases, plasmids were linearized, and antisense probes
incorporating digoxigenin- or dinitrophenol-labeled nucleotides were syn-
thesized with Sp6 or T7 polymerase.

Embryos were collected at the designated stages and fixed overnight in
4% paraformaldehyde (PFA), passed through a methanol gradient, and
stored at −80 °C until use. In situ hybridizations were performed as previ-
ously described for zebrafish (47), mouse (48) (modified to include maleic
acid buffers), skate, elephant fish (49, 50), and lamprey (51). A minimum of
three mutant or transgenic embryos was compared with a similar number of
control siblings, and representative images are presented.

Staining and Cell Proliferation Assays. The cranial musculature was labeled by
incubating PFA-fixed sox10:GFPCAAX+; pou3f3a; pou3f3b mutant and con-
trol larvae with Alexa633-conjugated phalloidin (1:100 in phosphate-
buffered saline [PBS]) following permeabilization in five 60-min washes of
1% Triton X-100. Alcian Blue and Alizarin Red staining to reveal cartilage
and bone structure was performed as previously described for larvae (52)
and juvenile/adult fish (53). For immunostaining, PFA-fixed embryos or lar-
vae were passed through a methanol gradient and permeabilized with cold
acetone at −20 °C for 7 to 13 min prior to immunostaining with anti-Pou3f3
(1:200; no. ab180094; Abcam), anti-pHH3 (1:500; no. 06-570; Millipore
Sigma), or anti-PCNA (1:150; no. 13-3900; Thermo Fisher) and anti-GFP
(1:200; no. ab13970; Abcam) primary antibodies and Alexa568- and
Alexa488-conjugated secondary antibodies.

To acquire a snapshot of proliferating cells in the growing operculum, 72
and 96 hpf larvae were incubated with 4.5 mg/mL BrdU in 15% dimethyl
sulfoxide for 10 min and then fixed in 4% PFA for 3 h at room temperature,
passed through a methanol gradient, and stored at −80 °C. Larvae were
subsequently rehydrated, genotyped, digested with proteinase K (20 μg/mL)
at 25 °C for 5 min, postfixed in 4% PFA for 20 min, permeabilized in cold
acetone for 13 min, and then treated with 2 N HCl for 1 h at 25 °C before
immunostaining with anti-GFP (1:300) and anti-BrdU (1:200; no. NB500-169;
Novus Biologicals) primary antibodies and Alexa568- and Alexa488-
conjugated secondary antibodies in blocking solution containing 0.5%
Triton X-100.

Transplants.Unilateral cell transplants were performed as described (54), with
the contralateral side serving as an internal control. In brief, naïve ectoderm
from fli1a:EGFP donor embryos was transplanted into the neural crest fate-
mapped domain of pou3f3a; pou3f3b mutant hosts at 6 hpf. At 5 dpf,
transplanted larvae were live-stained with 140 μM Alizarin red for 30 min
prior to imaging, and host genotype was confirmed by tail biopsy.

Imaging. Colorimetric in situs and adult skeletons were imaged using LAS
software with a Leica S8APO or M165FC stereomicroscope and larval skele-
tons with a Leica DM2500 compound microscope. Adult pou3f3b fish were
imaged with an AxioCam MRm on a Zeiss StereoDiscovery microscope im-
mediately following euthanasia. Transgenic or fluorescently stained samples
were imaged with a Zeiss LSM800 or a Nikon A1R inverted confocal and are
shown as single optical sections or maximum-intensity projections, as indi-
cated. Brightness and contrast were modified evenly across samples using
Adobe Photoshop CS6 or CC2019. Time-lapse imaging of control pou3f3bGal4ff;
UAS:nlsGFP; sox10:DsRed fish was performed with a 20× objective be-
ginning at 56 hpf as previously described (54), with a 61.2-μm z-stack
imaged every 18 min.

ATAC-Seq. fli1a:EGFP; sox10:DsRed double-positive embryos were selected
under a fluorescent-dissecting microscope at 36 hpf, dechorionated, and
dissociated in batches of 25 as previously described (55). Cells were sorted based
on GFP and DsRed expression on a MoFlo Astrios instrument (Beckman-Coulter).
Approximately 15,000 double-positive cells and 20,000 double-negative cells
were collected into PBS with 5% fetal bovine serum and used to construct ATAC-
seq libraries using a low-input μATAC-seq protocol (modified from ref. 56).
Briefly, cells were centrifuged at 700 × g, and the supernatant was carefully
removed using a 200-μl pipette tip with a broad opening. Next, 20 μL lysis buffer
[10 mM Tris·HCl (pH 7.4), 5 mM MgCl2, 10% dimethylformamide (DMF), 0.2%
Nonidet P-40] was added to the cell pellet and mixed by pipetting up and down
5 to 10 times. A 30-μL aliquot of reaction buffer (10 mM Tris·HCl [pH 7.4], 5 mM
MgCl2, 10% DMF) containing homemade Tn5 transposase (57) was then im-
mediately added to the lysis, and the samples were incubated for 20 min at
37 °C. DNA fragments were extracted with the Qiagen MinElute kit and am-
plified by PCR for five cycles using NEBNext Master Mix and indexed primers.
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Additional cycles were determined by performing qPCR on 1 of 10 of the
amplified libraries. Following amplification, the libraries were cleaned using
AMPURE beads to preserve only those fragments longer than 100 bp. The
libraries were then pooled together before sequencing on an Illumina
NextSEq 550, generating 75-bp paired-end reads that were aligned to
GRCz10 with Bowtie2 and ENCODE settings. To identify potential regulatory
sequences, we uploaded the bigwig data files to the University of California,
Santa Cruz (UCSC) genome browser and visually scanned the intergenic se-
quences between pou3f3a/b and their respective nearest neighbors for
peaks that were highly enriched in fli1a:EGFP; sox10:DsRed double-positive
(i.e., arch neural crest cells) (55) versus double-negative cells from the rest of
the body. Sequences that retained conservation with other teleosts or more
deeply with other vertebrates were given priority for transgenic analysis.
Potential Hox-binding motifs in the 1B sequence were predicted using the
JASPAR core database (58).

Data Analysis. The numbers of BrdU+GFP+, PCNA+GFP+, or pHH3+/GFP+ cells
within the operculum were determined using the Spot Colocalization
MATLAB extension in Imaris (Bitplane). Genotypes (n > 6 each) were com-
pared using unpaired two-tailed t tests (assuming normal distributions), with
P < 0.05 deemed significant. Area of the dorsal hyoid arch was calculated
using the polygon tool in ImageJ (NIH) and analyzed by two-way repeated-
measures ANOVA (α = 0.05) followed by Bonferroni’s test for multiple
comparisons. Area of the adult opercle bone was also measured in ImageJ
and analyzed by one-way ANOVA with Tukey’s multiple-comparisons test.

Standard length, from snout to the base of the caudal fin, was measured as
described (59). Statistical analyses were performed using GraphPad Prism
Version 8.

Data Availability. The ATAC-seq data reported in this paper have been de-
posited in the National Center for Biotechnology Information Gene Ex-
pression Omnibus database (accession no. GSE140636) (62).
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