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“You can’t let your failures define you. You have to let your
failures teach you.”

(Barack Obama)

The National Institute on Drug Abuse (NIDA) recently
completed a Phase 2 clinical trial to evaluate the serotonin 5-
HT2C receptor agonist lorcaserin as a pharmacotherapy for
cocaine use disorder (CUD), and at present, the only publicly
available data are posted on https://clinicaltrials.gov/ct2/show/
study/NCT03007394. The results are negative; the study did not
show any significant difference between lorcaserin and placebo.
The primary outcome measure for this study was the proportion
of participants achieving self-reported abstinence confirmed by
negative urine samples during the last 3 weeks of the 13-week
trial. Only 1 of the 91 lorcaserin-treated participants who
completed the trial met the abstinence criterion compared to
4 of 91 completers in the placebo group. Additional analyses are
ongoing in subsets of participants and on outcomes of reduced
cocaine use as opposed to abstinence, and a more detailed
picture of lorcaserin effects on cocaine use will emerge as these
analyses are completed and published by NIDA. Nonetheless,
the trial was notable for its large size (272 total participants, 182
completers), its execution across 12 sites in 7 states and the
District of Columbia, and its strong experimental design, which
included not only a placebo control and triple blinding (of
participants, care providers, and investigators), but also strate-
gies to monitor and encourage compliance with the treatment
regimen. The negative results, together with the withdrawal of
lorcaserin as a weight-loss drug due to concerns about
increased cancer risk [1, 2], suggest that lorcaserin will not gain
approval as a CUD treatment.
Of course, the lorcaserin trial was not intended to fail.

Lorcaserin’s advancement to a Phase 2 clinical trial capped more
than a decade of preclinical research that framed a plausible
mechanistic hypothesis supported by a substantial body of
preclinical data from laboratory animals [3–5]. These preclinical
findings were generally interpreted to predict that lorcaserin
maintenance had potential to safely and effectively decrease
cocaine use and relapse by humans; hence the clinical trial.
However, rather than fulfilling this prediction, the trajectory of
translational research with lorcaserin to treat CUD seems destined
to resemble the failed translation of other candidate medications
for other disorders, e.g., [6]. The question we can begin to ask now
is this: what will this failure in translation teach us. This
Perspectives article focuses on two lessons and suggests a range
of possible future directions.

LESSON 1: “ANTAGONIST” MEDICATIONS HAVE A POOR
TRACK RECORD AS CANDIDATE CUD MEDICATIONS
Two major categories of substance use disorder treatments have
been described as “antagonist” medications intended to block
effects of the abused drug and “agonist” medications intended to
mimic effects of the abused drug [7, 8]. In the treatment of opioid
use disorder, the mu opioid receptor antagonist naltrexone is the
prototype antagonist medication, whereas the high-efficacy mu
agonist methadone is the prototype agonist medication. The
ascent of lorcaserin as a candidate CUD treatment was founded on
behavioral neuroscience studies interpreted to suggest that it
might functionally antagonize effects that underlie cocaine’s
abuse potential [3, 5]. Specifically, the monoamine neurotrans-
mitters dopamine (DA), norepinephrine, and serotonin (5-HT) are
cleared from the extracellular space by presynaptic transporter
proteins. Cocaine binds to and blocks all three transporters to
prevent monoamine uptake and increase extracellular mono-
amine concentrations, but cocaine-induced increases in DA
concentrations at the terminals of mesolimbic DA neurons
projecting from ventral tegmental area (VTA) to nucleus accum-
bens (NAc) are thought to be especially important for cocaine’s
high abuse potential. Lorcaserin does not bind to monoamine
transporters, but instead functions as an agonist at serotonin 5-
HT2C receptors. These are Gq-coupled receptors whose activation
generally increases neuronal excitability, and among their other
locations and functions, they are located on inhibitory gamma
aminobutyric acid (GABA) neurons in VTA that innervate and
inhibit mesolimbic DA neurons. Both electrophysiological and
neurochemical studies have found that 5-HT2C agonists activate
these VTA GABA neurons, inhibit mesolimbic DA neurons, and
attenuate cocaine-induced increases in NAc DA. This effectiveness
of 5-HT2C agonists to attenuate cocaine-induced enhancement of
NAc DA signaling suggested that lorcaserin or other 5-HT2C
agonists might also be useful to block abuse-related behavioral
effects of cocaine and be useful for treating CUD [3, 5].
Although this type of antagonist approach is superficially

plausible, lorcaserin is just the latest in a series of antagonist-
based strategies to fail in humans as candidate CUD medications.
Previous examples include: (1) “DA-sparing cocaine antagonists”
(intended to bind DA transporters and have no effect on DA
transport themselves while blocking cocaine binding to and
inhibition of DA transporters, e.g., [9]), (2) DA receptor antagonists
(intended to block effects of cocaine-enhanced extracellular DA at
DA receptors [7]), and (3) kappa opioid receptor agonists
(intended to bind Gi-coupled kappa receptors on mesolimbic DA
neurons to inhibit activity and DA release from those neurons, e.g.,
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[10]). To our knowledge, the concept of a viable DA-sparing
cocaine antagonist remains a theoretical possibility that has yet to
be realized, and as a result, no drugs in this class have advanced to
testing in humans. However, as with lorcaserin, both DA receptor
antagonists and kappa receptor agonists advanced at least as far
as human laboratory studies and failed to reduce cocaine intake
up to medication doses that produced undesirable side effects.
Accordingly, one cumulative lesson from decades of CUD
medication development would appear to be that antagonist
approaches have been consistently ineffective.
A full consideration of the basis for poor performance by

candidate CUD antagonist medications is beyond the scope of this
commentary, but one contributing factor will be mentioned here:
antagonist medications designed to block effects of cocaine-
enhanced DA signaling can also impede basal DA signaling in the
absence of cocaine. This basal DA signaling in the mesolimbic and
nigrostriatal pathways is essential for normal movement, normal
mood, and normal reinforcement learning maintained by nondrug
reinforcers such as food, sex, and social interaction [11]. CUD itself
impairs basal DA signaling [12], and further decreases in DA
signaling produced by antagonist medications can exacerbate this
hypodopaminergic state to produce dose-limiting side effects. A
challenge in developing an effective antagonist medication for
treating any substance use disorder is identification of antagonist
dosing regimens that block reinforcing effects of the abused drug
without blocking essential endogenous neurotransmission invol-
ving the receptor to which the abused drug binds. In the case of
opioid use disorder, relatively high doses of antagonists like
naltrexone can be used because basal signaling in opioid systems
is low and opioid receptor blockade has relatively modest effects,
but even here, undesirable effects are sufficient to impede
compliance with therapeutically effective naltrexone treatment
regimens, rendering naltrexone ineffective for most opioid use
disorder patients [13, 14]. In the case of CUD, basal DA signaling is
higher, interruption of basal DA signaling is more problematic, and
medication strategies have yet to be identified that can effectively
block effects of cocaine-enhanced DA without also producing
problematic disruption of basal DA signaling.

LESSON 2: DRUG-CHOICE PROCEDURES CAN IMPROVE
TRANSLATION IN CUD MEDICATION DEVELOPMENT
The promotion of lorcaserin to a multi-site clinical trial depended
not only on a plausible mechanistic hypothesis, but also on
supportive preclinical data from many types of behavioral
procedures routinely used in laboratory animals to assess
candidate medications for substance use disorders [4]. A full
description of the different types of behavioral procedures is
beyond the scope of this commentary (for reviews, see [15–18]),
but the most important have been versions of drug self-
administration procedures, in which rodents or nonhuman
primates responded on a lever or response key to receive
intravenous cocaine infusions, and lorcaserin was evaluated for
its effectiveness to decrease cocaine-maintained responding. In
one study, for example, rhesus monkeys were trained to press a
lever under a fixed-ratio 30 schedule of cocaine self-administration
(i.e., 30 lever presses for each injection) during daily 90-min
sessions [19]. Once responding stabilized, monkeys were treated
with a range of intragastric lorcaserin doses administered 90min
before session onset, and each lorcaserin dose was evaluated for
14 consecutive days. Lorcaserin produced a dose-dependent
decrease in both rates of responding and in the number of
cocaine injections earned per session. This decrease in cocaine
self-administration was apparent on the 1st day of treatment and
sustained throughout the 14-day treatment period. In addition, in
separate groups of monkeys, the lorcaserin dose (3.2 mg/kg) that
significantly reduced cocaine self-administration did not signifi-
cantly decrease overall activity (assessed with accelerometers

attached to the monkeys’ collars), altered only one of 24 other
observed behaviors (an increase in yawning), and produced a
significant but small decrease in operant responding maintained
by a non-drug reinforcer (food pellets). Overall, the results were
interpreted to be “…consistent with the view that [lorcaserin]
might have utility in treating cocaine abuse” [19]. Table 1
summarizes results from several other studies interpreted to be
supportive of this view.
This preponderance of preclinical data and the interpretations

they inspired failed to predict the definitively negative outcome of
the clinical trial. However, Table 1 also shows that one preclinical
research approach was predictive of clinical results. Specifically,
studies in rhesus monkeys and humans that evaluated lorcaserin
effects on choice between cocaine and an alternative nondrug
reinforcer (food in monkeys, money in humans) found no effect of
lorcaserin on cocaine choice [20, 21]. The study in monkeys
concluded that results “…do not support the clinical utility of 5-
HT2C agonists as candidate anti-cocaine use disorder pharma-
cotherapies” [20]. The study in humans concluded that results “…
do not support a direct therapeutic benefit on drug-reinforced
behavior for the currently marketed dose of lorcaserin” [21].
Cocaine-vs.-food choice procedures have also predicted negative
results with other candidate antagonist medications, including DA
receptor antagonists and kappa opioid receptor agonists [22–26],
as well as positive results with amphetamine maintenance (an
“agonist” medication [7, 27, 28]) and a host of environmental
manipulations that are known to modify clinical drug use and
have been incorporated into treatment strategies such as
contingency management [23, 29–38]. Taken together, these
findings suggest that drug-choice procedures in both laboratory
animals and humans may improve preclinical-to-clinical transla-
tion of effects with candidate CUD medications by virtue of
combining both sensitivity to effective treatments and selectivity
for effective vs. ineffective treatments.
Two features of drug-choice procedures may contribute to their

utility for translational research on medications development for
CUD and other substance use disorders [30, 39, 40]. The first is the
primary dependent variable: drug choice. Most of the drug self-
administration procedures represented in Table 1 provide access
at any given time to only a single reinforcer option (i.e., only
cocaine), and the primary dependent variable is a measure of drug
self-administration rate. Rates of drug self-administration in these
single-option procedures can be decreased by treatments that
produce the intended decrease in drug reinforcement, but drug
self-administration rates can also be decreased by treatments that
produce undesirable impairment of motor function, cognition, or
general motivation. In contrast, choice procedures provide
simultaneous access to two different reinforcer options (e.g., drug
vs. food in laboratory animals, drug vs. money in humans), and the
primary dependent variable is a measure of behavioral allocation
between those two options. Effective treatments not only
decrease drug choice, but also promote behavioral reallocation
and increased choice of the nondrug alternative. Choice
procedures also measure overall rates of operant behavior as a
secondary dependent variable, and these two dependent
variables facilitate interpretation of treatment effects. Treatments
that produce a desirably selective decrease in reinforcing effects
of the abused drug will decrease drug choice and increase choice
of the nondrug alternative without decreasing overall behavioral
rate. Conversely, treatments that produce motor/cognitive/moti-
vational impairment without altering reinforcing effects of the
abused drug will decrease overall rates without altering drug
choice. Lorcaserin produced this latter profile of effects in drug-
choice procedures [20, 21].
A second feature of choice procedures that promotes transla-

tional validity is that human drug abuse occurs in complex
environments containing both drug and nondrug reinforcers, and
a goal of any drug abuse treatment is not only to reduce drug use,
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but also to increase more adaptive behaviors maintained by
nondrug reinforcers [8]. Choice procedures provide a simplified
but powerful tool for investigating medication effects on
behavioral allocation in animal or human laboratory settings.

FUTURE DIRECTIONS
Completion of the Phase 2 clinical trial with lorcaserin is only the
latest milestone in an ongoing effort to discover safe and effective
medications for substance use disorders in general and CUD in
particular. This effort will continue, and here we consider four
possible future directions. First, one likely direction of future
research will be founded on the interpretation that, despite its
many strengths, the recently completed clinical trial was not
adequate to test lorcaserin as a CUD treatment. Clinical trials can
fail for many reasons other than lack of medication efficacy, and
possible reasons for failure in this case will certainly be explored.
These include (1) inadequate compliance with the intended
dosing regimen [41], (2) focus on a rigorous primary outcome
measure (abstinence for the final 3 weeks of the trial) that may
have missed clinically relevant decreases in cocaine use [42], and
(3) clinical testing of a lorcaserin dose (10 mg/kg twice a day;
equivalent to 0.35 mg/kg/day in a 70 kg human) lower than that
found to be effective in preclinical studies (e.g., 3.2 mg/kg/day for
rhesus monkeys in [19]). The first two of these issues can be
explored by data mining in the current data set, whereas the third
issue would require new clinical trials with higher lorcaserin doses.
New studies with higher lorcaserin doses are unlikely given
concerns about cancer risk and evidence for emergence of
undesirable effects at higher lorcaserin doses in humans [43];
however, lorcaserin was selected for the clinical trial in part
because it had been developed and approved independently for a
different clinical indication (treatment of obesity) [44, 45]. Other 5-
HT2C agonists with higher selectivity for 5-HT2C receptors vs. other
targets (e.g., 5-HT2A receptors) are available as alternatives to
lorcaserin, and positive allosteric modulators have also been
developed [46]. Studies with new 5-HT2C ligands would also
require new clinical trials as well as a more general commitment
to the ill-fated “antagonist” strategy for CUD treatment.
A second direction of future research will be continued

assessment of 5-HT2C agonists as candidate treatments for other
substance use disorders. The strongest evidence for lorcaserin
effectiveness to treat substance abuse is for tobacco use disorder.
Although lorcaserin was ineffective to promote abstinence from
cocaine use, a randomized, double-blind, and placebo-controlled
clinical trial found that a similar lorcaserin treatment regimen (10
mg/kg BID for 12 weeks) was effective to promote smoking
cessation [47]. Effects of lorcaserin or other 5-HT2C agonists on
nicotine/tobacco choice have not been examined in animal or
human laboratory studies, but lorcaserin did decrease nicotine
self-administration in single-option procedures measuring self-
administration rates (reviewed in [44]). Lorcaserin has also been
evaluated in preclinical assays of opioid, alcohol, and metham-
phetamine self-administration. Table 2 summarizes lorcaserin
effects on opioid self-administration, and as with cocaine,
lorcaserin decreased opioid self-administration in single-option
procedures measuring self-administration rates in laboratory
animals, but it failed to decrease opioid choice in rats, rhesus
monkeys, or humans. Insofar as this profile of lorcaserin effects on
opioid self-administration and choice is similar to the profile of
lorcaserin effects on cocaine self-administration and choice, these
results suggest that lorcaserin will not be effective to treat opioid
use disorder. Lastly, lorcaserin decreased both alcohol consump-
tion in rats [48] and methamphetamine self-administration in
monkeys [49]. Lorcaserin was modestly more potent to decrease
ethanol than water or sucrose consumption in rats, and this
decrease was sustained over 10 days of treatment. In contrast,
methamphetamine self-administration by monkeys was decreased Ta
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only by high lorcaserin doses that also decreased food-maintained
responding, and tolerance developed rapidly to lorcaserin-
induced decreases in methamphetamine self-administration. As
with CUD, any future studies for other substance use disorders
would involve a commitment to an “antagonist” strategy and
would likely need to use a different 5-HT2C ligand given the cancer
risk associated with lorcaserin.
A third future direction could be to reallocate federally funded

research from “antagonist” strategies for CUD treatment to
“agonist” strategies or other approaches. Research on treatments
for substance use disorders has long favored antagonist
approaches, e.g., [50], but as summarized above, this approach
has a poor track record for treatment of CUD. “Agonist”
approaches have been more controversial but more effective for
achieving clinical goals in treatment of opioid abuse (methadone
and buprenorphine [51, 52]) and nicotine/tobacco abuse (nicotine
formulations, varenicline [53]), and the most effective treatment
identified so far for CUD has been amphetamine maintenance
[7, 28, 54]. Continued research to understand, implement, and
improve agonist-based medications for CUD would seem to be
justified [27, 55]. Other approaches are also possible, such as
strategies to alleviate or reverse hyperkatifeia induced by drug
abuse and withdrawal [56].
In our view, a final direction of future research should be further

development and integration of drug-choice procedures into
preclinical medications-development research. Drug-choice pro-
cedures in rhesus monkeys and humans predicted failure of
lorcaserin to produce abstinence from cocaine in the clinical trial.
Moreover, drug-vs.-food choice procedures in both rats and rhesus
monkeys yielded results consistent with the failure of lorcaserin to
modify heroin-vs.-money choice in a human laboratory study.
These findings agree with other evidence to suggest that drug-
choice procedures in laboratory animals may be useful in reducing
false-positive effects in the medications development pipeline of
preclinical-to-clinical translational substance use disorder research
[16, 30]. For this reason, we propose that drug-choice procedures
could play a key role in prioritization of candidate medications for
advancement to essential but costly clinical trials.
In addition, the utility of drug-choice procedures could be

extended beyond medications development to research on basic
mechanisms of drug abuse [55]. Just as single-option self-
administration procedures are vulnerable to false-positive effects
with candidate medications, so they are also vulnerable to false-
positive effects in mechanistic research with commonly used
manipulations such as site-specific drug treatments, lesions, or
optogenetic/chemogenetic modulation of neural circuits. Precli-
nical choice procedures could improve translation of results from
such studies while also encouraging research on topics inacces-
sible to single-option procedures, such as vulnerability to drug
abuse resulting from impaired sensitivity to alternative reinforcers.
Lastly, while drug-choice studies in laboratory animals were
initially developed in nonhuman primates using food as the
alternative nondrug reinforcer [23, 29, 33, 57–59], technical
advances have now enabled development of drug-vs.-food choice
procedures in rats [60–69] and development of procedures that
use social reinforcement rather than food as the alternative
nondrug reinforcer [70]. These advances open new and exciting
opportunities in the use of drug-choice procedures for both
improving basic knowledge of substance use disorders and
developing new medications for their treatment.
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