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All roads lead to the default-mode network—global source of
DMN abnormalities in major depressive disorder
Andrea Scalabrini1,2, Benedetta Vai2,3,4, Sara Poletti 2,3, Stefano Damiani5, Clara Mucci1, Cristina Colombo3,6, Raffaella Zanardi3,6,
Francesco Benedetti 2,3 and Georg Northoff7,8,9,10

Major depressive disorder (MDD) is a psychiatric disorder characterized by abnormal resting state functional connectivity (rsFC) in
various neural networks and especially in default-mode network (DMN). However, inconsistent findings, i.e., increased and
decreased DMN rsFC, have been reported, which raise the question for the source of DMN changes in MDD. Testing whether the
DMN abnormalities in MDD can be traced to either a local, i.e., intra-network, or a global, i.e., inter-network, source, we conducted a
novel sequence of rsFC analyses, i.e., global FC, intra-network FC, and inter-network FC. Moreover, all analyses were conducted
without global signal regression (non-GSR) and with GSR in order to identify the impact of specifically the global component of
functional connectivity on within-network functional connectivity within specifically the DMN. In MDD our findings demonstrate (i)
increased representation of global signal correlation (GSCORR) in DMN regions, as confirmed independently by degree of centrality
(DC) and by an independent DMN template, (ii) increased within-network DMN rsFC, (iii) highly increased inter-network rsFC of both
lower- and higher order non-DMN networks with DMN, (iv) high accuracy in classifying MDD vs. healthy subjects by using GSCORR
as predictor. Further supporting the global, i.e., non-DMN source of within-network rsFC of the DMN, all results were obtained only
when including the global signal, i.e., non-GSR, but not when conducting GSR. Together, we show for the first time increased global
signal representation within rsFC of DMN as stemming from inter-network sources as distinguished from local sources, i.e., within-
or intra-DMN.

Neuropsychopharmacology (2020) 45:2058–2069; https://doi.org/10.1038/s41386-020-0785-x

INTRODUCTION
Major depressive disorder (MDD) is a complex psychiatric
syndrome characterized by pervasive disturbances, such as mood
dysregulation, impaired cognitive control, suicidal thought and
behavior [1]. MDD is ranked as one of the most burdensome
disease and cause of disability world-wide [2] affecting more than
300 million of individuals [3]. This high prevalence of MDD makes
brain-imaging investigation to obtain proper diagnosis and
therapy urgent. However, major yet unresolved problems concern
inconsistent findings in network abnormalities [4] and our lacking
knowledge of their source, i.e., local vs. global sources.
The default-mode network (DMN) [5, 6] emerges as a critical

circuit in MDD [4, 7–9]. However, findings are inconsistent as both
resting state hyper- and hypo-functional connectivity (rsFC) within
the DMN itself have been reported, i.e., intra-network rsFC: (1)
some studies highlighted increased rsFC within DMN and
specifically in anterior portions of the network [10–13]; while
others (2) showed decreased rsFC within DMN [14–17].
Moreover, the DMN also showed aberrant connectivity patterns

with other large-scale neural networks in MDD. Indeed, various

researchers highlighted significant changes in DMN functional
connectivity with other networks, i.e., inter-network rsFC, like
salience network, central executive network, and visual, sensor-
imotor, and auditory networks [18–24]. The findings of alterations
in both, intra- and inter-network DMN rsFC [4, 25], leaves open the
source of abnormalities in DMN. Either DMN changes can be
traced to a local source, i.e., related to changes within-network
rsFC of DMN itself, or alternatively, to more global changes of
networks outside the DMN that, based on inter-network rsFC,
impact within-network rsFC of the DMN.
Global brain activity can be investigated with global signal

correlation (GSCORR), where GS is defined as the spatial average
of time varying BOLD signal across the brain [26–33]. The GS has
been a matter of debate since it was hypothesized to reflect non-
neuronal source of noise [34, 35] and thus it is often removed
together with other “nuisance” signals, i.e., global signal regression
(GSR) [36]. However, recent data show a physiological basis of the
GS [31, 32]; these data suggest that removal of GS by GSR may
eliminate one important source of neural activity, i.e., its global
component that is also represented in local activity [26, 27, 30, 37].
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This is further supported by studies showing relationship of GS to
psychological features, e.g., trait personality [33, 38], as well as
abnormalities in schizophrenia [26, 37, 39], autism [40, 41], and
bipolar disorder [27]. While recent findings show changes in
global rsFC in MDD [42–45], the impact of global rsFC on inter-
network rsFC between DMN and non-DMN networks remains to
be investigated—that is the focus of our study.
Our main aim is to investigate the global vs. local source of

abnormal rsFC DMN changes in MDD. For this purpose, a novel
sequence of rs-fMRI analyses was performed in four steps:

(1) Our primary aim was to investigate the global brain
topography of MDD as compared with a healthy control
group. For that purpose, we applied two measures of global
neuronal activity, that is, GSCORR, a measure based on global
signal [27, 37], and, for independent confirmation, degree
centrality (DC) [46, 47]. Moreover, we used an independent
template of DMN [48–50] to validate the anatomical location
of DMN. We hypothesized increased representation of global
signal in MDD in specifically anterior and posterior midline
regions of the DMN and in parahippocampal gyrus as
suggested by previous GS investigation [27].

(2) The second aim consisted in investigating intra-network rsFC
within DMN. We hypothesized that those regions showing
increased GS representation (particularly anterior and poster-
ior DMN) would also be abnormally connected with each
other in MDD, thus exhibiting increased intra-network rsFC.
Moreover, we hypothesized that this would be manifest only
in analysis without GSR while this difference would disappear
when applying GSR.

(3) The third specific aim was to explicitly test for the inter-
network source of increased DMN rsFC in MDD. If DMN rsFC
changes in MDD are globally based, one would expect
increased rsFC from the various networks to the DMN. That
was validated in various steps to demarcate the difference
between the internal, i.e., within DMN, and external, i.e., non-
DMN, components of within-network rsFC of the DMN.

(4) A fourth aim was to test whether the hypothesized global
changes could classify individual subjects (MDD vs. HC)
implementing a multivariate pattern recognition analysis.

Importantly, we conducted all analyses with both inclusion
(non-GSR) and exclusion (GSR) of the global signal that served the
purpose to identify the specifically global, i.e., inter-network,
component in local, i.e., intra-network, DMN activity. We
hypothesized that, by eliminating the global component in the
fMRI signal through the application of GSR in our analysis will
abolish or reverse the differences between groups. However, this
should hold only though if the DMN changes can be traced to a
global (rather than local) source. Finally, we included as a proof of
principle an additional MDD data set for replication where we
conducted all of the above-mentioned analyses in the same way
to further support our hypotheses and findings.

METHODS
Subjects were recruited from the in-patients services of the
Psychiatric Clinic of “IRCCS San Raffaele Turro” of Milano. After a
complete description of the study, written informed consent was
obtained. All research activities were approved by the local ethical
committee. Clinical assessment, fMRI data acquisition, and prepro-
cessing [51–63] are reported in Supplementary materials. Descriptive
statistic and difference between MDD and HC are reported in
Table S1. The local ethical committee approved all research activities.

fMRI data analysis
A graphical representation of the design of the study analysis can
be found in Fig. S1 in Supplementary materials.

Calculation of global brain activity—GSCORR and DC. As a first
step GSCORR was calculated as the Pearson correlation between
the GS and all the other voxels in the whole brain gray matter with
Fisher z transformation [57].
Second, to validate our results we calculated DC [64]. The DC

analysis was performed for each subject by AFNI program
3dDegreeCentrality. As a further step a voxelwise group compar-
ison in this study was carried out by AFNI’s function “3dttest++”
for the two-sample t-test. The results were thresholded at p <
0.001 (FDR corrected; with a minimum cluster size of 40 voxels).
The same procedure was controlled with a ROI-based approach
applying GSR to the above-described analysis. Moreover we
calculated the difference between Δ-(that is MDD-HC) non-GSR vs.
Δ-GSR.
Third, for an independent confirmation, we compared the

GSCORR values between MDD and HC extracted from a DMN
template from existing literature [48, 50].
Fourth, the results of the GSCORR and DC were combined

through an intersection analysis to establish the global topogra-
phy specific for MDD (Global MDD network) and according to our
hypothesis we tested for similarity between the Global MDD
network and the DMN template [48, 50] (see Supplementary
materials).
As a control analysis for measure specificity (see Supplementary

materials), it was also calculated a similar analysis based on
connectivity, e.g., global brain functional connectivity and a
different analysis based on amplitude variance standard deviation
of BOLD signal. Several control analysis for the impact of motion
(Figs. S2 and S3), medication, number of depressive episodes, age,
and sex are reported in Supplementary material.

Intra-DMN resting state functional connectivity. According to our
hypothesis, for the intra-network FC analysis, the two key-nodes of
the anterior and posterior DMN, i.e., the PACC and the PCC were
expected to show a stronger FC in MDD when compared to HC.
First we localized the two regions from the MNI provided with
AFNI binaries since the two regions have been shown to be highly
connected in the DMN [48, 53, 65–68]. Specifically, we used a seed
region in the PACC (right and left are combined; x= ±8 y= 36 z=
3) and in PCC (right and left are combined; x= ±10 y= 56 z= 14).
Next, FC maps were computed as maps of temporal correlation

coefficients between the BOLD time-course averaged across
voxels in the seed region and all the other voxels of the mask
of our resulting global analysis [69–71]. The correlation coefficients
were then transformed into z-values by means of the Fisher r-to-z
transformation, to improve normality for group-level analysis. This
procedure produced spatial maps in which the values of voxels
represented the strength of the correlation with the ROIs.
As a second step a group comparison was carried out by AFNI’s

function “3dttest++” for the two-sample t-test. The results were
thresholded at p < 0.001 (FDR corrected; with a minimum cluster
size of 40 voxels). The same procedure was controlled with a ROI-
based approach applying GSR. Moreover we calculated the
difference between Δ-non-GSR vs. Δ-GSR. As a further control a
set of correlation matrices between ROIs defined from previous
step is reported for MDD and HC for both conditions (non-GSR
and GSR; see also Supplementary material and Tables S1 and S2)

Between-network functional connectivity. For the inter-network FC
analysis, we used as seed various defined functional networks
from a previous study [52, 72]. The original template consisted of
11 functional networks [52, 73, 74]. For the aim of this study, we
included the DMN and (1) three functional networks correspond-
ing to “primary sensory functions”, namely sensory/somatomotor
(SS), auditory (Audi), and visual networks (Vis), (2) three functional
areas corresponding to “attentional functions”, namely salience
(Sal), ventral attention (VA) and dorsal attention (DA), (3) two
“higher order cognitive functions” such as frontoparietal task
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control (FPTC), cingulo-opercular task control (COTC). The func-
tional mask of the selected networks’ union was defined as the
global mask, which was used to extract the global value for each
of the following measurements.
First we generated a functional connectivity matrix [48] for each

group (MDD and HC) and for each condition (non-GSR and GSR) to
calculate the degree of connectivity between DMN and non-DMN
networks and the difference between MDD and HC.
Second, a voxelwise FC map for each non-DMN network was

computed as a map of temporal correlation coefficients between
BOLD time course in each voxel of the brain and BOLD time
course averaged across voxels in the seed regions. The correlation
coefficients were then transformed into z-values by means of the
Fisher r-to-z transformation, to improve normality for group-level
analysis. This procedure produced spatial maps in which the
values of voxels represented the strength of the correlation with
the networks. A group comparison was carried out by AFNI’s
function “3dttest++” for the two-sample t-test. The results were
thresholded at p < 0.001 (FDR corrected; with a minimum cluster
size of 40 voxels).
The same procedure was controlled with a ROI-based approach

applying GSR. In addition, we calculated the difference between
Δ-non-GSR vs. Δ-GSR.
Third, we tested for the connectivity within DMN (Intra-DMN

FC), the connectivity between all other non-DMN network (non-
DMN FC) and, finally, the correlation between DMN and non-DMN
networks. We thus calculated for all three, (1) Intra-DMN FC, (2)
nonDMN FC, (3) DMN–non-DMN corr: (a) a group comparison
between MDD and HC and between non-GSR and GSR; (b) a
group comparison for the Δ of non-GSR–GSR between MDD
and HC; (c) a comparison between the three groups for the Δ of
MDD-HC for non-GSR and GSR separately. Finally, (d) we
correlated the DMN with the non-DMN signal for each group
and each condition.

Individual classification of subjects—machine learning as support
vector machine. To test whether the global origin of increased
global connectivity in DMN allows to predict single subject data
including differentiation of MDD vs. HC subjects, we conducted
machine learning performing a multivariate pattern analyses on
GSCORR by using Support Vector Machine for binary classification
of MDD and HC as implemented in PRoNTo software version 2.1
(http://www.mlnl.cs.ucl.ac.uk/pronto). Two separate SVM were
performed on GSCORR measures with non-GSR and GSR to test
whether the hypothesized group difference between MDD and HC
is lost or attenuated in the case of GSR.
In supervised pattern recognition analysis, the predictive

function is usually defined during a training phase where the
algorithm learns patterns from the provided data in order to
predict a label or a target. Then, during a test phase, the algorithm
is used to predict outcome in an independent data set. Predictions
obtained are then compared to the true labels, providing
measures of algorithm accuracy. In our study we performed a
fivefold nested cross validation on subjects per group in order to
optimize the model’s hyperparameter (i.e. soft-margin C ranged
0.01, 0.1, 1, 10, 100, 1000) and to compute model performance.
Nested cross-validation scheme has been shown to provide more
reliable estimate than other validation procedures such as leave-
one-out [75].
Predictions obtained in the test set allow defining balanced

accuracy (BA) value, computed as the average of the class
accuracies (corresponding to the sensitivity for MDD and
specificity for HC), positive and negative predictive values and
area under the receiver operator curve (AUC). Each class accuracy
was calculated averaging classification results across the fivefold
of cross validation [76]. We also estimated the statistical
significance (p < 0.05) of accuracies by using 1000 permutations
of the labels during training phase.

RESULTS
Increased representation of global activity in DMN in MDD
To investigate the specific alteration in GS topography of MDD, we
first investigated GSCORR (non-GSR) topographical distribution in
MDD by comparing it with healthy controls.
The two-sample t-test with GSCORR maps yielded a very

significant difference (t= 3.333; p= 0.001; FDR corrected; cluster
size voxels > 40) indicating a strongest increase of a distributed
cluster (Fig. 1) comprising typical DMN regions, e.g., PACC and
PCC.
To further independently validate the global topographical

patterns yielded by GSCORR findings, we conducted analysis using
DC. A very similar topography was further confirmed by the DC
distribution in MDD showing a prominent role of DMN regions in
differentiating MDD from HC (t= 3.333; p= 0.001; FDR corrected;
cluster size voxels >40).
We replicated the same results yielded by extracting GSCORR

values from a DMN template [48], which confirmed that there is a
significant difference in MDD vs. HC for the non-GSR condition
(t= 4.158; p < 0.001, 95% CI: [0.153 0.257]; SE= 0.22).
Given the difference of the two measures (GSCORR is based on

the degree of synchronization between time-series while DC is
based on how many connections, i.e., edges, a node has), we first
checked for their spatial similarity in representing the global brain
topography. Our results confirm a similarity between GSCORR and
DC topography (voxel based Pearson correlation: r= 0.88; p=
0.0001; FDR corrected). Secondly, we performed an intersection
analysis (3dMean function in AFNI with the option
–mask_inter) applying the same statistical threshold for the two-
sample t-test (t= 3.333; p= 0.001; FDR corrected; cluster size
voxels > 40). The result shows a network composed only by voxels
shared by the two different analysis and differentiating MDD from
HC. This specific “Global MDD network” (See Table S2 for more
regional information) as the result of the intersection of the
GSCORR and the DC maps allows establishing that the global
abnormalities of MDD are independent from the calculation
methodology, i.e., GSCORR and DC.
Finally, to check whether the regions obtained in the “Global

MDD network”, as based on converging GSCORR and DC maps,
really correspond to the DMN, we compared them with an
independent DMN template [48]. We calculated the correlation
between the GSCORR values of global MDD network and the DMN
template, which was highly significant (for MDD r= 0.86 p < 0.001
95% CI: [0.772 0.921]; SE= 0.038 and for HC r= 0.90, p < 0.001
95% CI: [0.854 0.942]; SE= 0.023) (see also Supplementary
Materials).
These analyses were conducted without regressing the GS (non-

GSR). To investigate the impact of the global activity, i.e., GS on
the topographical representation of DMN differences in MDD (vs.
healthy), we conducted the same analyses with GSR. Applying
GSR, no significant difference between the MDD and HC were
found in the “Global MDD network” (for GSCORR; t= 0.64; p= 0.52;
95% CI: [0.031 0.247]; SE= 0.013; for DC t= 0.44; p= 0.65; 95% CI:
[−0.001 0.001]; SE= 0.001; for GSCORR of the independent DMN
template; t= 0.99; p= 0.32; 95% CI: [0.026 0.227]; SE= 0.003). This
suggests global origin of DMN changes in MDD as also confirmed
by our significant difference found between Δ-group non-GSR vs.
Δ-group GSR both for GSCORR (t= 8.067; p < 0.001; 95% CI: [0.131
0.222]; SE= 0.22); for DC GSCORR (t= 7.256; p < 0.001; 95% CI:
[0.11 0.247]; SE= 0.13) and for GSCORR of the independent DMN
template (t= 3.325; p < 0.001; 95% CI: [0.191 0.268]; SE= 0.25).
Moreover, we performed several control analysis to confirm our
results on global brain connectivity (See Supplementary material).

Increased intra-DMN rsFC in MDD
According to our hypothesis, we defined independently from our
previous analysis PACC and PCC as ROIs and, in a second step, we
used them consecutively as seed to calculate FC within the DMN
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Fig. 1 Global Level. Global brain topography of MDD. a Global signal correlation (GSCORR) topography of MDD vs. HC. b Degree centrality
(DC) topography of MDD vs. HC c Independent DMN template MDD vs. HC d correlation between GSCORR Global MDD Network and the
GSCORR of the DMN template.
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network. We thus obtained PACC-FC within-DMN and PCC-FC
within-DMN maps. The group comparison was carried out by
AFNI’s function “3dttest++” for the two-sample t-test. The seed-
based PACC rsFC connectivity within the DMN was significantly
increased with all the other regions of the global MDD network,
particularly posterior regions, in the case of MDD (t= 2.592, p <
0.01, FDR corrected). The same pattern was found for the seed-
based PCC rsFC connectivity showing increased connectivity with
anterior regions (t= 2.592; p < 0.01, FDR corrected).
We then repeated the same procedure with a ROI-based

approach applying GSR. Interestingly, the two-sample t-test
comparing the rsFC (GSR) between PACC and PCC in MDD vs.
HC did not yield any significant difference (t= 1.601, p= 0.11;
95% CI: [−0.048 0.104]; SE= 0.037). Moreover, we found a
significant difference between Δ-group non-GSR vs. Δ-group
GSR (t= 3.559; p < 0.001; 95% CI: [0.041 0.146]; SE= 0.26).
We also calculated correlation coefficient matrices of the ROIs

(resulting from global brain topography of step1) for both groups,
i.e., MDD and HC and for both conditions, i.e., non-GSR and GSR.
Thus, a group comparison between MDD and HC was carried
(Fig. 2a–d, see Supplementary materials Step 2—Table S3a for
non-GSR results and Table S3b for GSR results). These results
indicate that in the case of non-GSR there is a significant
difference between MDD and HC in almost of the ROI-dyads,
while, on the opposite, this difference is lost or attenuated in the
case of GSR.
Altogether these findings suggest that the increased within-

DMN rsFC is related to the global activity of the brain as the
removal of the latter annulated the former. If, in contrast,
increased within-DMN rsFC were of local source, removal of GSR
should have no effect on MDD vs. HC within-network differences.

Increased rsFC between different networks and DMN in MDD
The findings so far show increased global activity presentation in
DMN as well as increased intra-DMN rsFC in MDD. Both findings
were only obtained in those analyses where the global signal was
maintained. In contrast, both findings disappeared when regres-
sing the GS. This strongly suggests that increased rsFC within the
DMN is from global rather than local source, i.e, it stems from
increased activity contribution between networks outside the
DMN with the DMN itself. If so, one would expect that the
networks other than the DMN should exhibit increased rsFC with
the DMN. To test that hypothesis, we conducted three main lines
of analyses.
First, we correlated the rsFC of all networks with each other with

both non-GSR and GSR. This yielded correlation maps on the left
of Fig. 3. As can be seen in the first vertical column/row (marked),
we obtained high correlation of DMN with almost all
other networks in MDD during non-GSR, which differed signifi-
cantly from HC (t= 3.456; p < 0.001, 95% CI: [0.195 0.293]; SE=
0.22). In contrast, that difference disappeared when using GSR as
now the DMN–non-DMN network correlation no longer differed
between MDD and HC (see also Fig. 4). These data suggest
that within-network DMN rsFC is strongly connected with
non-DMN rsFC.
To further support that assumption of the non-DMN source of

increased within-DMN rsFC, we, in a second step, took various
networks (other than DMN) as seed and investigated their rsFC to
the rest of the brain including the DMN. A voxelwise FC map for
each seed-networks was computed as a map of temporal
correlation coefficients between BOLD time-course in each gray
matter brain voxel and BOLD time-course averaged across voxels
in the seed regions. We used as seed-networks different well
established node template corresponding to SS, Audi, Vis (for
primary sensory functions), Sal, VA, DA (for attentional functions),
FPTC, COTC (for higher order cognitive functions).
In Fig. 3 (right part) it can be seen how, for almost all networks

rsFC maps (non-GSR), there is a significant difference between

MDD and HC (MDD > HC) in regions like PACC, PCC, and
parahippocampal gyrus (t= 3.456, p < 0.001; FDR corrected;
cluster size voxels >40).
We performed the same analysis with a ROI/network-based

approach by excluding global signal, i.e., GSR; interestingly this
difference in DMN is lost or attenuated and it shows a pattern
indicating increased negative correlation of other networks with
DMN in HC when GSR was applied. In addition, we calculated the
difference between Δ-non-GSR vs. Δ-GSR (see Supplementary
material Step 3).
Interestingly, in all cases of different networks-DMN FC (GSR) we

see a pattern indicating an increased anticorrelation between
different networks and DMN in HC when compared to MDD.
Third, to better distinguish the different sources of within-

network rsFC of DMN, we compared three estimates including (1)
intra-DMN rsFC, (2) non-DMN rsFC, and (3) DMN–non-DMN
correlation with and without GSR for the two groups, i.e., MDD
and HC. This yielded significant differences between MDD and HC
in all three estimates in non-GSR, whereas these differences
disappeared when applying GSR (upper row of Fig. 4).
To identify the global source of these differences, we compared

the difference between non-GSR and GSR for all three estimates;
that again yielded significant differences between MDD and HC
for all three estimates—this suggests that the differences in MDD
for all three estimates are really stemming from a global rather
than local source (upper middle row of Fig. 4).
Finally, we calculated the MDD-HC differences of all three

estimates (for non-GSR and GSR) in order to compare which of the
three estimates differs the most: this showed that the DMN–non-
DMN correlation showed the strongest difference in MDD when
compared to intra-DMN rsFC and non-DMN rsFC only for the non-
GSR condition (but not for the GSR analysis; lower middle of
Fig. 4). Finally, we plotted the DMN–non-DMN correlation for MDD
and HC in both non-GSR and GSR; that yielded significantly
positive correlation of DMN–non-DMN only in MDD but not in HC
for non-GSR (lower Fig. 4). Whereas GSR introduced negative
correlation or anticorrelation of DMN with non-DMN in both MDD
and HC, which no longer showed any difference. This strongly
suggests that the significantly higher DMN–non-DMN rsFC in MDD
stems from a global, i.e., inter-network rather than local, i.e.,
within-DMN, source.

Machine learning: support vector machine (SVM)
To test whether the global origin of increased connectivity in DMN
allows to predict single subject data including differentiation of
MDD vs. HC subjects, through a machine learning approach we
performed multivariate pattern analyses on GSCORR first with
non-GSR expecting to find a robust differences between the two
groups. Secondly, we performed the same analysis on GSCORR
with GSR hypothesizing that the difference between groups is
attenuated or even annulated.
SVM for GSCORR non-GSR produced a BA of 85,94% (p= 0.001),

MDD sensitivity of 93.88% (p= 0.001), HC specificity of 78% (p=
0.001) and the AUC was 90% (Fig. 5). Class predictive value for
MDD was 80.70% and HC was 92.86%. Thus, model performance
significantly exceeds the one expected by randomly guessing the
labels, suggesting that the algorithm has successfully learned a
predictive function [77]. Margin C= 1 obtained the best perfor-
mance (Frequency of selection 100%).
SVM with GSCORR GSR produced a BA of 50.45% (p= 0.44),

MDD sensitivity of 44.90% (p= 0.42), HC specificity of 56% (p=
0.56) and the AUC was 45% (Fig. 5). Class predictive value for MDD
was 50% and HC was 50.91%. The model was not able to predict
the differences between groups.
Altogether these findings demonstrated that the presumed

global origin of increased connectivity in DMN allows a highly
accurate classification of individual subjects. GSCORR non-GSR,
differently from GSR, might not only characterize the functional
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organization of brain networks in MDD but might also contain a
certain degree of information that seems to be clinically relevant
in distinguishing MDD from HC. That further supports the
importance and the relevance of our findings.

Replication data set
We applied the same sequence of analyses to another MDD data
set for replicating the findings. As described in Supplementary
material, all findings could be replicated showing also the

Fig. 2 Intra-network level. Intra network functional connectivity analysis in DMN. a Voxelwise PACC-FC of MDD vs. HC (non-GSR). b Voxelwise
PCC-FC of MDD vs. HC (non-GSR). c Roi-based PACC-PCC-FC of MDD vs. HC (GSR) and a comparison of Δ-non-GSR vs. Δ-GSR. d Intra-network
correlation matrices for both groups, i.e., MDD and HC, and for both conditions, non-GSR and GSR. *p < 0.01.
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Fig. 3 Inter-network level. Left side of the figure: Correlation matrices for DMN and non-DMn networks in MDD and HC and in both
conditions non-GSR and GSR. Right side of the figure: voxelwise (non-GSR) FC using as seed different networks (other than DMN) a priori
defined. Roi/Networknetowork-based (GSR) FC of different networks with DMN. Δ-non-GSR vs. Δ-GSR at a roi/network-based level. a It shows
the results for the analysis of primary sensory functions network, which are Somatosensory (SS), Auditory (Audi), and Visual (Vis)
networknetowork. b It shows the results for the analysis of attentional functions networks, which are salience (Sal), dorsal attention (DA) and
ventral attention (VA) network. c It shows the results for the analysis of higher order cognitive functions, which are CinguloCigulo-Opercular
task control (COTC) and FrontoParietal task control (FPTC) networks. *p < 0.001.
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discrepancy when either including or excluding the global signal
in the data analyses. Hence, this further highlights the global
source of increased within-DMN rsFC in MDD.

DISCUSSION
We here investigated global, intra- and inter-networks rsFC in
order to identify the local or global source of within-networks rsFC
changes of DMN in MDD. Our results showed the following: (1)
increased representation of resting state global signal in DMN and
especially its cortical midline regions as further supported by DC
and the use of an independent DMN template; (2) increased
within-DMN rsFC, that is particularly between its anterior and
posterior midline regions in MDD, which hold only in the analysis
without GSR (non-GSR) but not with GSR; (3) increased inter-
network rsFC connectivity of non-DMN networks with DMN that
was obtained only in the analyses without GSR (non-GSR), while
being abolished when applying GSR; and (iv) high individual
classification of increased representation of global connectivity in
DMN. Altogether these findings suggest a global rather than local
source of within-network rsFC changes of DMN in MDD.

Global source of within-network DMN changes in MDD
Previous findings in psychiatric disorders like schizophrenia
[26, 37, 39, 78], bipolar disorder [27], and MDD [42–45]
demonstrated changes in global brain activity. Schizophrenia
showed increased global activity [26, 39] as well as its abnormal
representation in sensory and higher order association cortical
networks [37]. While bipolar disorder was featured by abnormal,
i.e., increased or decreased representation of global brain activity
in specific regions likes motor cortex (mania), hippocampus
(depression), or medial prefrontal cortex (euthymia) [27]. Studies
in MDD, analyzing only GSR data, showed changes in global FC in
medial prefrontal cortex [79] and other regions [42–45]. These
findings in MDD leave open though the source of especially GS
changes in DMN, are they due to within-network rsFC changes of
DMN or, alternatively, do they stem from abnormally increased
inter-network rsFC of DMN with non-DMN networks; that was the
main focus in our study.
Changes in DMN activity have been most consistently observed

in MDD [4, 25]. However, the direction of changes remains
inconsistent [10–17, 76, 79]. Focusing on specific networks,
these and other more globally oriented [42–45] studies mostly
neglected the investigation of the global brain activity and
specifically how it impacts within-network rsFC in DMN. Following
the findings in schizophrenia and bipolar disorder, we here
instead investigated the topography of global activity in MDD. For
that purpose, we applied two measures for testing the topo-
graphic representation of global brain activity, i.e., GSCORR and
DC. Both measures yielded similar results showing increased
global connectivity within DMN in MDD. This concerned
specifically the midline portion of the DMN, that is, anterior and
posterior regions like PACC and PCC, that together shape a
dynamic core within both the DMN and the brain as whole
[48, 49, 80, 81] Our findings suggest that this dynamic core is
abnormally strong in MDD as it is abnormally strong connected
with the regions and networks outside this dynamic core, i.e., the
non-DMN and their inter-network rsFC with DMN. That suggests a
global, i.e., inter-network, rather than local, i.e., within-network,
source of elevated DMN rsFC in MDD.
Our results extend previous data in various aspects. First, we

show abnormal representation of global brain activity in MDD in
specifically the DMN and its midline regions. Most interestingly,
increased representation of global brain activity in DMN seems to
hold specifically for MDD (as it was not reported in the other
groups). This holds the promise that increased representation of
global activity in DMN may serve as diagnostic marker, which is
tentatively supported by our machine learning data where
GSCORR allowed for high accuracy in distinguishing healthy vs.
MDD subjects.
Second, our results show that intra-DMN rsFC does not stem

from within DMN itself. Instead, our novel sequence of analyses
strongly suggests that the source of increased DMN rsFC lies in the
brain’s global activity and specifically, in the increased rsFC of the
various networks (other than DMN) to the DMN. Thus, intra-DMN
activity is strongly shaped and influenced by the brain’s global
activity.
Figuratively put, the midline regions as dynamic core of DMN

and the whole brain [48, 49] seems to abnormally related to the
non-DMN regions and networks—hence, the title of our manu-
script, all roads lead to the DMN. Extending this metaphor, the
roads in the DMN seem to be abnormally strong in MDD. On the
clinical side, this may explain why the various functions associated
with non-DMN networks like executive function, movement/
action, memory, reward/Sal, perception, and emotion are strongly
tainted and shaped by those associated with the DMN as dynamic
core, that is, internally oriented cognition like rumination and
increased self-focus [82–84], in depressed subjects. The abnor-
mally strong shaping of the various forms of externally oriented
cognition (non-DMN) by internally oriented cognition (DMN) may

Fig. 4 Comparison of i) Intra-DMN rsFC, ii) non-DMN rsFC and iii)
DMN–non-DMN correlation. a For i) intra-DMN rsFC F (1, 98)= 5.94,
p < 0.01; for ii) non-DMN rsFC F (1, 98)= 57,32, p < 0.001; for iii)
DMN–non-DMN correlation F (1, 98) = 62.81, p < 0.01) Bonferroni
post hoc test revealed that there was a significant difference
between MDD and HC in non-GSR condition, this difference
disappeared for the GSR condition. b For Δ non-GSR–GSR we found
a significant difference between MDD and HC for all i) intra-DMN FC
(t= 3.445, p < 0.001) for ii) non-DMN rsFC (t= 32,26, p < 0.001) and
for iii) DMN–non-DMN rsFC (t= 3,56 p < 0.001). c For Δ MDD-HC we
found a significant difference between DMN and non-DMN
correlation with Intra-DMN FC (t= 2,43, p= 0.19) between
DMN–non-DMN rsFC and non-DMN rsFC (t= 2,44, p= 0.18) while
no differences were observed between Intra-DMN rsFC and non-
DMN rsFC (t=−1399 p= 0.168). d scatter plot for DMN–non-DMN
correlation for MDD non-GSR (r= 0.33, p= 0.19), for HC non-GSR
(r=−27, p= 0.058); for MDD GSR (r=−29, p= 0.048); for HC GSR
(r=−47, p= 0.0005).

All roads lead to the default-mode network—global source of DMN. . .
A Scalabrini et al.

2065

Neuropsychopharmacology (2020) 45:2058 – 2069



thus be traced to spatio-temporal dysbalance of non-DMN and
DMN, i.e., their abnormally positive inter-network rsFC, as
postulated in the “resting state hypothesis of depression”
(RSHD) [83]
The positive inter-network correlation of DMN with non-DMN

in MDD stands in contrast to the usually observed negative
correlation of DMN with other networks in the healthy brain. Our
findings extend and differentiate previous observation of the
loss of DMN-DAN (dorsal attention network) in various
unconscious states [85] to the realm of mental disorder.

Specifically, we observe that the whole network structure, that
is, the anticorrelation of DMN with non-DMN networks including
sensory and attentional networks is lost and replaced by their
abnormally positive correlation. That suggests that the topo-
graphy of the global brain activity, as measured by GS, is altered
in MDD in a way that apparently is non-optimal for computa-
tional spatio-temporal processing considering the various
symptoms. The impact of the abnormal spatio-temporal
topography in MDD is supported by the fact that the positive
DMN–non-DMN inter-network correlation is diminished when

Fig. 5 Machine learning diagnostic prediction. a GSCORR non-GSR results showing a high diagnostic discrimination between MDD and HC,
area under the curve-AUC= 0.90. b GSCORR GSR results showing no diagnostic discrimination between MDD and HC, area under the curve-
AUC= 0.45.
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applying GSR like particularly in the case of DMN-SS, - Vis and -
COTC.
We therefore propose that the topography of global brain

activity may play a key role in MDD pathophysiology and other
psychiatric disorders like schizophrenia [26] and bipolar disorder
[27]. Their potential characterization by altered GS topography
may distinguish psychiatric disorders from disorders of conscious-
ness that show extreme reductions in the level of the overall GS
corresponding to reduced levels of arousal [86]. Accordingly, albeit
tentatively, we conceive psychiatric disorders as disorders of GS
topography while disorders of consciousness may be disorders of
the whole brain level of the overall GS.

Methodological implications and limitations
Methodologically, our results point out the need for including the
global brain activity in the analyses of local vs global network
changes in psychiatric disorders like MDD. Our results show that
the comparison of the same data with and without GSR contains
physiologically meaningful information results about the source of
local within-network changes. That is supported by the fact that
the removal of the global signal introduced some changes if not a
complete reversal in some of our findings as well as by the various
alternative ways of analyses we included.
Some limitations shall be mentioned. It can be possible that

medications have a certain influence on the global signal and
different connectivity patterns observed. However, medication
effects are rather unlikely, as our results were not affected by their
inclusion as co-variate. Future studies might want to extend these
findings on psychiatric cohorts that are drug-free. Moreover,
future studies may want to extend our results by investigating the
representation of GS in task and, particularly, in rest-task relation
[87–89]. These will shed new lights on the relevance of GS in
understanding the physiological mechanism behind psychiatric
disorders.

CONCLUSION
A major problem in brain imaging of psychiatric disorders like
MDD is the inconsistency of findings. Conducting a novel
sequence of global, intra- and inter-network analyses without
(non-GSR) and with GSR, we demonstrate that increased rsFC
within-DMN stems mainly from sources outside the DMN, i.e., non-
DMN networks being abnormally strong connected to DMN. Such
global-, rather than purely local source of increased within-
network rsFC of DMN in MDD was further confirmed by the fact
that all results only hold when including the global signal in the
data (non-GSR) while they were abolished or reversed when
removing the global signal, i.e., GSR. On the more methodological
side, our results show the importance of including both type of
analyses, with and without GSR as, otherwise, one important
source of within-network rsFC, i.e., inter-network rsFC as global
contribution to local within-network activity is excluded.
Together with our machine learning data, we here provide

evidence for a predominantly global rather than local source of
within-network rsFC changes of DMN in MDD. Our machine-
learning results and the replication of these findings in an
independent data set strongly suggests the utility of inter-network
rsFC operating as global source of within-network DMN changes
as potential biomarker for the diagnosis of MDD. Our data
provide evidence that MDD may be a disorder of spatial
topography of the brain’s global activity, as postulated in the
RSHD [83]. More generally, this strongly supports the idea that
psychopathological symptoms are driven by and based on
abnormal spatio-temporal structure and organization with spatial
dynamics, as in our case of GS topography in MDD, providing the
“common currency” of neuronal and mental levels [90, 91]–this
entails what recently has been introduced as “Spatio-temporal
Psychopathology” [82, 92–98].

FUNDING AND DISCLOSURE
The authors declare no potential conflicts of interest. This work
was supported by the grant RF-2011-02349921 from the Italian
Ministry of Health (to FB), by the, Michael Smith Foundation, EJLB-
Canadian Institute of Health Research, Canada Research Chair (to
GN), by the National Natural ScienceFoundation of China (No.
31271195), by the grant from the Ministry of Science and
Technology of China, National Key R&D Program of China
(2016YFC1306700) and from the European Union’s Horizon 2020
Framework Programme for Research and Innovation under the
Specific Grant Agreement No. 785907 (Human Brain Project SGA2).

AUTHOR CONTRIBUTIONS
AS and GN designed the framework and the logic of the analysis, AS analyzed the
fMRI data; BV performed the machine learning analysis; SD supported for the fMRI
analysis; SP and FB defined the fMRI protocol and scanned the patients; RZ and CC
selected the patient and followed the ethical approval processing; AS and GN wrote
the first draft of the manuscript, which was critically revised by FB, BV, SP, SD and CM.
AS and GN reviewed the last version of the manuscript. Financial support was
provided by FB (patients’ recruitment and scanning), CM and GN (data analysis). All
authors approved the final version of the manuscript.

ADDITIONAL INFORMATION
Supplementary Information accompanies this paper at (https://doi.org/10.1038/
s41386-020-0785-x).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

REFERENCES
1. American Psychiatric Association. Diagnostic and statistical manual of mental

disorders. 5th ed. Washington, DC: American Psychiatric Publishing; 2013.
2. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-

adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010:
a systematic analysis for the Global Burden of Disease Study 2010. Lancet.
2012;380:2197–223.

3. World Health Organization. Depression. 2017. https://www.who.int/en/news-
room/fact-sheets/detail/depression.

4. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-scale network
dysfunction in major depressive disorder: a meta-analysis of resting-state func-
tional connectivity. JAMA Psychiatry. 2015;72:603–11.

5. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A
default mode of brain function. Proc Natl Acad Sci USA. 2001;98:676–82.

6. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anat-
omy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.

7. Hamilton JP, Etkin A, Furman DJ, Lemus MG, Johnson RF, Gotlib IH. Functional
neuroimaging of major depressive disorder: a meta-analysis and new integration
of baseline activation and neural response data. Am J Psychiatry.
2012;169:693–703.

8. Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharma-
cology. 2010;35:192.

9. Siegle GJ, Thompson W, Carter CS, Steinhauer SR, Thase ME. Increased amygdala
and decreased dorsolateral prefrontal BOLD responses in unipolar depression:
related and independent features. Biol Psychiatry. 2007;61:198–209.

10. Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, et al. Resting-
state functional connectivity in major depression: abnormally increased con-
tributions from subgenual cingulate cortex and thalamus. Biol Psychiatry.
2007;62:429–37.

11. Sheline YI, Price JL, Yan Z, Mintun MA. Resting-state functional MRI in depression
unmasks increased connectivity between networks via the dorsal nexus. Proc
Natl Acad Sci USA. 2010;107:11020–25.

12. Zhou Y, Wang K, Liu Y, Song M, Song SW, Jiang T. Spontaneous brain activity
observed with functional magnetic resonance imaging as a potential biomarker
in neuropsychiatric disorders. Cogn Neurodyn. 2010;4:275–94.

13. Hamilton JP, Furman DJ, Chang C, Thomason ME, Dennis E, Gotlib IH. Default-
mode and task-positive network activity in major depressive disorder: impli-
cations for adaptive and maladaptive rumination. Biol Psychiatry.
2011;70:327–33.

14. Bluhm R, Williamson P, Lanius R, Théberge J, Densmore M, Bartha R, et al.
Resting state default‐mode network connectivity in early depression using a seed

All roads lead to the default-mode network—global source of DMN. . .
A Scalabrini et al.

2067

Neuropsychopharmacology (2020) 45:2058 – 2069

https://doi.org/10.1038/s41386-020-0785-x
https://doi.org/10.1038/s41386-020-0785-x
https://www.who.int/en/news-room/fact-sheets/detail/depression
https://www.who.int/en/news-room/fact-sheets/detail/depression


region‐of‐interest analysis: decreased connectivity with caudate nucleus. Psy-
chiatry Clin Neurosci. 2009;63:754–61.

15. Anand A, Li Y, Wang Y, Wu J, Gao S, Bukhari L, et al. Activity and connectivity of
brain mood regulating circuit in depression: a functional magnetic resonance
study. Biol Psychiatry. 2005;57:1079–88.

16. Veer IM, Beckmann CF, Van Tol MJ, Ferrarini L, Milles J, Veltman DJ, et al. Whole
brain resting-state analysis reveals decreased functional connectivity in major
depression. Front Syst Neurosci. 2010;4:41.

17. Yan CG, Chen X, Li L, Castellanos FX, Bai TJ, Bo QJ, et al. Reduced default mode
network functional connectivity in patients with recurrent major depressive
disorder. Proc Natl Acad Sci USA. 2019;116:9078–83.

18. Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ, et al. The
default mode network and self-referential processes in depression. Proc Natl
Acad Sci USA. 2009;106:1942–94.

19. Menon V. Large-scale brain networks and psychopathology: a unifying triple
network model. Trends Cogn Sci. 2011;15:483–506.

20. Hamilton JP, Chen MC, Gotlib IH. Neural systems approaches to understanding
major depressive disorder: an intrinsic functional organization perspective.
Neurobiol Dis. 2013;52:4–11.

21. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2. 0: decoding miRNA-ceRNA,
miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq
data. Nucleic Acids Res. 2013;42:D92–7.

22. Manoliu A, Riedl V, Zherdin A, Mühlau M, Schwerthöffer D, Scherr M, et al.
Aberrant dependence of default mode/central executive network interactions on
anterior insular salience network activity in schizophrenia. Schizophr Bull.
2014;40:428–37.

23. Sambataro F, Wolf ND, Giusti P, Vasic N, Wolf RC. Default mode network in
depression: a pathway to impaired affective cognition? Clin Neuropsychiatry.
2013;10:212–6.

24. Zeng LL, Shen H, Liu L, Wang L, Li B, Fang P, et al. Identifying major depression
using whole-brain functional connectivity: a multivariate pattern analysis. Brain.
2012;135:1498–507.

25. Zhong X, Pu W, Yao S. Functional alterations of fronto-limbic circuit and default
mode network systems in first-episode, drug-naive patients with major depres-
sive disorder: a meta-analysis of resting-state fMRI data. J Affect Disord.
2016;206:280–6.

26. Yang GJ, Murray JD, Repovs G, Cole MW, Savic A, Glasser MF, et al. Altered global
brain signal in schizophrenia. Proc Natl Acad Sci USA. 2014;111:7438–43.

27. Zhang J, Magioncalda P, Huang Z, Tan Z, Hu X, Hu Z, et al. Altered global signal
topography and its different regional localization in motor cortex and hippo-
campus in mania and depression. Schizophr Bull. 2018;45:902–10.

28. Liu TT, Nalci A, Falahpour M. The global signal in fMRI: nuisance or information?
Neuroimage. 2017;150:213–29.

29. Liu X, de Zwart JA, Schölvinck ML, Chang C, Ye FQ, Leopold DA, et al. Subcortical
evidence for a contribution of arousal to fMRI studies of brain activity. Nat
Commun. 2018;9:395.

30. Murphy K, Fox MD. Towards a consensus regarding global signal regression for
resting state functional connectivity MRI. Neuroimage. 2017;154:169–73.

31. Schölvinck ML, Maier A, Ye FQ, Duyn JH, Leopold DA. Neural basis of global
resting-state fMRI activity. Proc Natl Acad Sci USA. 2010;107:10238–43.

32. Li J, Kong R, Liegeois R, Orban C, Tan Y, Sun N, et al. Global signal regression
strengthens association between resting-state functional connectivity and
behavior. Neuroimage. 2019;196:126–41.

33. Li J, Bolt T, Bzdok D, Nomi JS, Yeo BT, Spreng RN, et al. Topography and beha-
vioral relevance of the global signal in the human brain. Sci Rep. 2019;9:1–10.

34. Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods
to detect, characterize, and remove motion artifact in resting state fMRI. Neu-
roimage. 2014;84:320–41.

35. Power JD, Plitt M, Laumann TO, Martin A. Sources and implications of whole-brain
fMRI signals in humans. Neuroimage. 2017;146:609–25.

36. Fox MD, Zhang D, Snyder AZ, Raichle ME. The global signal and observed
anticorrelated resting state brain networks. J Neurophysiol. 2009;101:3270–83.

37. Yang GJ, Murray JD, Glasser M, Pearlson GD, Krystal JH, Schleifer C, et al. Altered
global signal topography in schizophrenia. Cereb Cortex. 2017;27:5156–69.

38. Scalabrini A, Mucci C, Esposito R, Damiani S, Northoff G. Dissociation as a disorder
of integration - On the footsteps of Pierre Janet. Prog Neuropsychopharmacol
Biol Psychiatry. 2020;101:109928. https://doi.org/10.1016/j.pnpbp.2020.109928.

39. Yang GJ, Murray JD, Wang XJ, Glahn DC, Pearlson GD, Repovs G, et al. Functional
hierarchy underlies preferential connectivity disturbances in schizophrenia. Proc
Natl Acad Sci USA. 2016;113:E219–28.

40. Gotts SJ, Simmons WK, Milbury LA, Wallace GL, Cox RW, Martin A. Fractionation of
social brain circuits in autism spectrum disorders. Brain. 2012;135:2711–25.

41. Gotts SJ, Saad ZS, Jo HJ, Wallace GL, Cox RW, Martin A. The perils of global signal
regression for group comparisons: a case study of Autism Spectrum Disorders.
Front Hum Neurosci. 2013;7:356.

42. Han S, Wang X, He Z, Sheng W, Zou Q, Li L, et al. Decreased static and increased
dynamic global signal topography in major depressive disorder. Prog Neu-
ropsychopharmacol Biol Psychiatry. 2019;94:109665. https://doi.org/10.1016/j.
pnpbp.2019.109665.

43. Abdallah C, Averill L, Collins K, et al. Ketamine treatment and global brain con-
nectivity in major depression. Neuropsychopharmacology. 2017;42:1210–9.
https://doi.org/10.1038/npp.2016.186.

44. Scheinost D, Holmes S, DellaGioia N, et al. Multimodal investigation of network
level effects using intrinsic functional connectivity, anatomical covariance,
and structure-to-function correlations in unmedicated major depressive dis-
order. Neuropsychopharmacology. 2018;43:1119–27. https://doi.org/10.1038/
npp.2017.229.

45. Zhang L, Wu H, Xu J, Shang J. Abnormal global functional connectivity patterns in
medication-free major depressive disorder. Front. Neurosci. 2018;12:692. https://
doi.org/10.3389/fnins.2018.00692.

46. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of
structural and functional systems. Nat Rev Neurosci. 2009;10:186.

47. Cole MW, Pathak S, Schneider W. Identifying the brain’s most globally connected
regions. Neuroimage. 2010;49:3132–48.

48. de Pasquale F, Della Penna S, Snyder AZ, Marzetti L, Pizzella V, Romani GL, et al. A
cortical core for dynamic integration of functional networks in the resting human
brain. Neuron. 2012;74:753–64.

49. de Pasquale F, Corbetta M, Betti V, Della Penna S. Cortical cores in network
dynamics. Neuroimage 2018;180:370–82. https://doi.org/10.1016/j.neuroimage.
2017.09.063.

50. Raichle ME. The brain’s default mode network. Annu Rev Neurosci.
2015;38:433–47.

51. Cox RW. AFNI: software for analysis and visualization of functional magnetic
resonance neuroimages. Comput Biomed Res. 1996;29:162–73.

52. Huang Z, Liu X, Mashour GA, Hudetz AG. Timescales of intrinsic BOLD signal
dynamics and functional connectivity in pharmacologic and neuropathologic
states of unconsciousness. J Neurosci. 2018;38:2304–17.

53. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human
brain is intrinsically organized into dynamic, anticorrelated functional networks.
Proc Natl Acad Sci USA. 2005;102:9673–8.

54. Chai XJ, Castañón AN, Öngür D, Whitfield-Gabrieli S. Anticorrelations in resting
state networks without global signal regression. Neuroimage. 2012;59:1420–8.

55. He BJ. Scale-free properties of the functional magnetic resonance imaging signal
during rest and task. J Neurosci. 2011;31:13786–95.

56. Stephens GJ, Honey CJ, Hasson U. A place for time: the spatiotemporal structure
of neural dynamics during natural audition. J Neurophysiol. 2013;110:2019–26.

57. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but sys-
tematic correlations in functional connectivity MRI networks arise from subject
motion. Neuroimage. 2012;59:2142–54.

58. Van Dijk KR, Sabuncu MR, Buckner RL. The influence of head motion on intrinsic
functional connectivity MRI. Neuroimage. 2012;59:431–8.

59. Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ,
et al. Motion correction and the use of motion covariates in multiple‐subject fMRI
analysis. Hum Brain Mapp. 2006;27:779–88.

60. Yan CG, Craddock RC, Zuo XN, Zang YF, Milham MP. Standardizing the intrinsic
brain: towards robust measurement of inner-individual variation in 1000 func-
tional connectome. Neuroimage. 2013;80:246–62.

61. Hassel S, Almeida JR, Kerr N, Nau S, Ladouceur CD, Fissell K, et al. Elevated striatal
and decreased dorsolateral prefrontal cortical activity in response to emotional
stimuli in euthymic bipolar disorder: no associations with psychotropic medica-
tion load. Bipolar Disord. 2008;10:916–27.

62. Phillips ML, Travis MJ, Fagiolini A, Kupfer DJ. Medication effects in neuroimaging
studies of bipolar disorder. Am J Psychiatry. 2008;165:313–20.

63. Sackeim HA. The definition and meaning of treatment-resistant depression. J Clin
Psychiatry. 2001;62:10–17.

64. Zuo XN, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O, et al.
Network centrality in the human functional connectome. Cereb Cortex.
2012;22:1862–75.

65. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME. Spontaneous neuronal
activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad
Sci USA. 2006;103:10046–51.

66. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting
brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA.
2003;100:253–58.

67. Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-state functional con-
nectivity reflects structural connectivity in the default mode network. Cereb
Cortex 2009;19:72–78.

68. Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT. Investigating the func-
tional heterogeneity of the default mode network using coordinate-based meta-
analytic modeling. J Neurosci. 2009;29:14496–505.

All roads lead to the default-mode network—global source of DMN. . .
A Scalabrini et al.

2068

Neuropsychopharmacology (2020) 45:2058 – 2069

https://doi.org/10.1016/j.pnpbp.2020.109928
https://doi.org/10.1016/j.pnpbp.2019.109665
https://doi.org/10.1016/j.pnpbp.2019.109665
https://doi.org/10.1038/npp.2016.186
https://doi.org/10.1038/npp.2017.229
https://doi.org/10.1038/npp.2017.229
https://doi.org/10.3389/fnins.2018.00692
https://doi.org/10.3389/fnins.2018.00692
https://doi.org/10.1016/j.neuroimage.2017.09.063
https://doi.org/10.1016/j.neuroimage.2017.09.063


69. Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the
motor cortex of resting human brain using echo‐planar MRI. Magn Reson Med.
1995;34:537–41.

70. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with
functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8:700.

71. Zhang D, Raichle ME. Disease and the brain’s dark energy. Nat Rev Neurol.
2010;6:15.

72. Power JD, Fair DA, Schlaggar BL, Petersen SE. The development of human
functional brain networks. Neuron. 2010;67:735–48.

73. Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, et al. Functional
network organization of the human brain. Neuron. 2011;72:665–78.

74. Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE. Intrinsic and task-evoked
network architectures of the human brain. Neuron. 2014;83:238–51.

75. Varoquaux G. Cross-validation failure: small sample sizes lead to large error bars.
Neuroimage. 2018;180:68–77.

76. Zhu X, Wang X, Xiao J, Liao J, Zhong M, Wang W, et al. Evidence of a dissociation
pattern in resting-state default mode network connectivity in first-episode,
treatment-naive major depression patients. Biol Psychiatry. 2012;71:611–7.

77. Schrouff J, Mourão-Miranda J, Phillips C, Parvizi J. Decoding intracranial EEG data
with multiple kernel learning method. J Neurosci Methods. 2016;261:19–28.

78. Hahamy A, Calhoun V, Pearlson G, Harel M, Stern N, Attar F, et al. Save the global:
global signal connectivity as a tool for studying clinical populations with func-
tional magnetic resonance imaging. Brain Connect. 2014;4:395–403.

79. Murrough JW, Abdallah CG, Anticevic A, Collins KA, Geha P, Averill LA, et al.
Reduced global functional connectivity of the medial prefrontal cortex in major
depressive disorder. Hum Brain Mapp. 2016;37:3214–23.

80. Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G, et al.
Situating the default-mode network along a principal gradient of macroscale
cortical organization. Proc Natl Acad Sci USA. 2016;113:12574–9.

81. Huntenburg JM, Bazin PL, Margulies DS. Large-scale gradients in human cortical
organization. Trends Cogn Sci. 2018;22:21–31.

82. Northoff G. Psychopathology and pathophysiology of the self in depression—
neuropsychiatric hypothesis. J Affect Disord. 2007;104:1–14.

83. Northoff G, Wiebking C, Feinberg T, Panksepp J. The ‘resting-state hypothesis’ of
major depressive disorder-a translational subcortical-cortical framework for a
system disorder. Neurosci Biobehav Rev. 2011;35:1929–45. https://doi.org/
10.1016/j.neubiorev.2010.12.007.

84. Northoff G. Is the self a higher-order or fundamental function of the brain? The
“basis model of self-specificity” and its encoding by the brain’s spontaneous
activity. Cogn Neurosci. 2016;7:203–22.

85. Huang Z, Zhang J, Wu J, Mashour GA, Hudetz AG. Temporal circuit of macroscale
dynamic brain activity supports human consciousness. Sci Adv. 2020;6:eaaz0087
https://doi.org/10.1126/sciadv.aaz0087.

86. Tanabe S, Huang Z, Zhang J, Chen Y, Fogel S, Doyon J, et al. Altered
global brain signal during physiologic, pharmacologic, and pathologic
states of unconsciousness in humans and rats. Anesthesiology. 2020;
132:1392–1406.

87. Scalabrini A, Ebisch SJH, Huang Z, Di Plinio S, Perrucci MG, Romani GL, et al.
Spontaneous brain activity predicts task-evoked activity during animate versus
inanimate touch. Cereb Cortex. 2019;29:4628–45.

88. Scalabrini A, Huang Z, Mucci C, et al. How spontaneous brain activity and nar-
cissistic features shape social interaction. Sci Rep. 2017;7:9986.

89. Scalabrini A, Mucci C, Northoff G. Is Our self related to personality? a neu-
ropsychodynamic model. Front Hum Neurosci. 2018;12:346.

90. Northoff G. Wainio-Theberge S. Evers K. Is temporo-spatial dynamics the “com-
mon currency” of brain and mind? In Quest of “Spatiotemporal Neuroscience”.
Phys Life Rev. 2019. https://doi.org/10.1016/j.plrev.2019.05.002.

91. Northoff G. Wainio-Theberge S. Evers K. Spatiotemporal neuroscience—what is it
and why we need it. Phys Life Rev. 2020. https://doi.org/10.1016/j.
plrev.2020.06.005.

92. Northoff G. Spatiotemporal psychopathology I: no rest for the brain’s resting state
activity in depression? Spatiotemporal psychopathology of depressive symp-
toms. J Affect Disord. 2016;190:854–66.

93. Northoff G. Spatiotemporal Psychopathology II: how does a psychopathology of
the brain’s resting state look like? Spatiotemporal approach and the history of
psychopathology. J Affect Disord. 2016;190:867–79.

94. Damiani S, Scalabrini A, Gomez-Pilar J, Brondino N, Northoff G. Increased scale-
free dynamics in salience network in adult high-functioning autism. Neuroimage
Clin. 2019;21:101634. https://doi.org/10.1016/j.nicl.2018.101634.

95. Northoff G. Personal identity and cortical midline structure (CMS): do temporal
features of CMS neural activity transform into “Self-Continuity”? Psychol Inq.
2017;28:122–31.

96. Northoff G. The brain’s spontaneous activity and its psychopathological symp-
toms–“Spatiotemporal binding and integration”. Prog Neuropsychopharmacol
Biol Psychiatry. 2018;80:81–90.

97. Fingelkurts AA, Fingelkurts AA. Brain space and time in mental disorders: para-
digm shift in biological psychiatry. Int J Psychiatry Med. 2019;54:53–63.

98. Schrouff J, Monteiro JM, Portugal L, Rosa MJ, Phillips C, Mourão-Miranda J.
Embedding anatomical or functional knowledge in whole-brain multiple kernel
learning models. Neuroinformatics. 2018;16:117–43.

All roads lead to the default-mode network—global source of DMN. . .
A Scalabrini et al.

2069

Neuropsychopharmacology (2020) 45:2058 – 2069

https://doi.org/10.1016/j.neubiorev.2010.12.007
https://doi.org/10.1016/j.neubiorev.2010.12.007
https://doi.org/10.1126/sciadv.aaz0087
https://doi.org/10.1016/j.plrev.2019.05.002
https://doi.org/10.1016/j.plrev.2020.06.005
https://doi.org/10.1016/j.plrev.2020.06.005
https://doi.org/10.1016/j.nicl.2018.101634

	All roads lead to the default-mode network—global source of DMN abnormalities in major depressive disorder
	Introduction
	Methods
	fMRI data analysis
	Calculation of global brain activity—GSCORR and DC
	Intra-DMN resting state functional connectivity
	Between-network functional connectivity
	Individual classification of subjects—machine learning as support vector machine


	Results
	Increased representation of global activity in DMN in MDD
	Increased intra-DMN rsFC in MDD
	Increased rsFC between different networks and DMN in MDD
	Machine learning: support vector machine (SVM)
	Replication data set

	Discussion
	Global source of within-network DMN changes in MDD
	Methodological implications and limitations

	Conclusion
	Funding and disclosure
	Author contributions
	ADDITIONAL INFORMATION
	References




