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Abstract Human bone marrow mesenchymal stem

cells (HBMSCs) has been the gold standard for bone

regeneration. However, the low proliferation rate and

long doubling time limited its clinical applications.

This study aims to compare the bone tissue engineer-

ing efficacy of human dental pulp stem cells

(HDPSCs) with HBMSCs in 2D, and 3D anorganic

bone mineral (ABM) coated with a biomimetic

collagen peptide (ABM-P-15) for improving bone-

forming speed and efficacy in vitro and in vivo. The

multipotential of both HDPSCs and HBMSCs have

been compared in vitro. The bone formation of

HDPSCs on ABM-P-15 was tested using in vivo

model. The osteogenic potential of the cells was

confirmed by alkaline phosphatase (ALP) and

immunohistological staining for osteogenic markers.

Enhanced ALP, collagen, lipid droplet, or

glycosaminoglycans production were visible in

HDPSCs and HBMSCs after osteogenic, adipogenic

and chondrogenic induction. HDPSC showed stronger

ALP staining compared to HBMSCs. Confocal images

showed more viable HDPSCs on both ABM-P-15 and

ABM scaffolds compared to HBMSCs on similar

scaffolds. ABM-P-15 enhanced cell attachment/

spreading/bridging formation on ABM-P-15 scaffolds

and significantly increased quantitative ALP specific

activities of the HDPSCs and HBMSCs. After 8 weeks

in vivo implantation in diffusion chamber model, the

HDPSCs on ABM-P-15 scaffolds showed extensive

high organised collagenous matrix formation that was

positive for COL-I and OCN compared to ABM alone.

In conclusion, the HDPSCs have a higher proliferation

rate and better osteogenic capacity, which indicated

the potential of combining HDPSCs with ABM-P-15

scaffolds for improving bone regeneration speed and

efficacy.
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Introduction

The increasing clinical demand for bone regeneration

and repair in the context of our ageing population

poses a challenge both to healthcare providers and

Y. Mohanram � J. Zhang � X. B. Yang (&)

Biomaterials & Tissue Engineering Group, Department of

Oral Biology, School of Dentistry, University of Leeds,

Level 7, Wellcome Trust Brenner Building, St. James’s

University Hospital, Leeds LS9 7TF, UK

e-mail: X.B.Yang@leeds.ac.uk

J. Zhang

The Second Clinical Medical College, Guangdong

Medical University, Dongguan 523808,

Guangdong, China

E. Tsiridis

Academic Orthopaedic Department, Aristotle University

Medical School, 54124 Thessaloniki, Greece

123

Cytotechnology (2020) 72:715–730

https://doi.org/10.1007/s10616-020-00414-7(0123456789().,-volV)( 0123456789().,-volV)

http://orcid.org/0000-0002-0144-2826
http://crossmark.crossref.org/dialog/?doi=10.1007/s10616-020-00414-7&amp;domain=pdf
https://doi.org/10.1007/s10616-020-00414-7


society (Iaquinta et al. 2019). There is also increasing

demand for the implant osseointegration, which is

crucial for successful implantology in both orthopae-

dics and dentistry (Chandran and John 2019; Liu et al.

2019). Tissue engineering provides a promising strat-

egy to meet this clinical demand by developing

functional bone construct using stem/stromal cells,

biomimetic biomaterial scaffolds, with/without

growth factors (Abdulghani and Mitchell 2019).

However, the main challenge is to identify the most

appropriate combination of the three elements that can

be used to achieve optimum regeneration of damaged

bone tissue (Panetta et al. 2009).

Under in vitro conditions, mesenchymal stem cells

(MSCs) exhibit the ability to form fibroblastic

colonies on tissue culture plastic (Gothard et al.

2013) and can differentiate alone osteoblast, chondro-

cyte, adipocytes, and other different lineages when

cultured under the appreciate inductive media (Garcia-

Sanchez et al. 2019). HBMSCs has been considered as

one of the most popular stem cell sources for stem cells

therapy and bone tissue engineering (Connolly et al.

1989; Kern et al. 2006; Squillaro et al. 2016; Yoshii

et al. 2009). However, bone marrow biopsy/aspiration

itself is an invasive procedure, and in elderly patients,

they often lack good quality and quantity of desired

stem cells within the bone marrow (Yamada et al.

2014). It has been documented that the poor response

of these cells is due to the loss of potential to

proliferate and differentiate with increasing donor age

(Jones and Schafer 2015; Kern et al. 2006; Muschler

et al. 2001; Yamada et al. 2010; Yoshii et al. 2009).

Taken together, these factors have led to the search for

an alternative adult stem cell sources which can be

easily accessed with minimal invasion and provide the

stem cells with similar or better regenerative potential

as HBMSCs. In nature, every individual, during their

lifetime, experiences teeth loss (80% of subjects had

lost one or more tooth, and the mean tooth loss was

5.09)(Ribeiro et al. 2015), which provides an oppor-

tunity to access dental tissues with minimal invasion

making the option of isolating of stem cells from

dental pulp a promising alternative source to

HBMSCs. Pulp tissues can be obtained from either

permanent or deciduous teeth, however, wisdom teeth

(third molars) have long been a preferred choice of the

permanent teeth (Ledesma-Martinez et al. 2016). This

may due to the third molars are routinely extracted due

to impaction caused by the lack of jaw space, and it is

also the last permanent teeth to erupt, and their pulp

tissue is considered to be rich in unspecialised cells

(Gronthos et al. 2000; Ledesma-Martinez et al. 2016).

A number of studies showed that HDPSCs is a small

population of cells residing in the pulp tissue which

exhibits a highly proliferative and multi-lineage

differentiation ability (Cui et al. 2014; Gronthos

et al. 2000; Mortada and Mortada 2018). These cells

are thought to play a role in the repair of damaged pulp

and dentine by differentiating into specialised cells—

odontoblasts secreting dentine matrix. Extensive

research has since been carried out pursuant to a good

understanding of HDPSCs and their potential in tissue

engineering (Kawashima and Okiji 2016).

In natural conditions, type I collagen is predomi-

nantly present in the bone extracellular matrix. It not

only provides the substrate for cell attachment and

migration but also influences the osteogenic differen-

tiation of the adhered cells. Thus, there has been an

increasing interest in the application of type I collagen

for bone tissue engineering (Weisgerber et al. 2016).

Structurally, individual type I collagen molecules are

triple helical structures, comprising of two a1 and one
a2 polypeptide chains. Each of these chains contains

approximately 1000 amino acid residues and is twisted

into a right-handed helix. A number of studies have

shown that the exposed half turns of the helical

structure act as cell-binding sites, through which

collagen interacts with cell surface integrin receptors

(Murray et al. 2003; Rodwell and Kennelly 2000; Xu

et al. 2000). As a result, collagen triggers the

signalling pathway to direct the cells in attachment,

migration and osteogenic differentiation (Bhatnagar

et al. 1999b; Emsley et al. 2000). A synthetic analogue

of this cell-binding domain was produced syntheti-

cally to mimic the function of the collagen molecule

under in vitro conditions for osteogenic induction in

cells. This synthetic protein is referred to as ‘‘peptide

15’’ or ‘‘P-15’’ (Bhatnagar et al. 1999b, 1997; Scaria

et al. 1989). The function of P-15 on its own has been

tested on osteoblastic cell lines—MG63 and HBMSCs

(Carinci et al. 2004; Sollazzo et al. 2009). Based on

microarray analysis, osteoblastic cells were observed

to up-regulate fibronectin, cell cycle and signal

transduction related genes after culture in P-15

(Carinci et al. 2004). P-15 peptide under in vitro

conditions was observed to function similar to the

collagen by influencing the up-regulation of bone-

specific proteins in HBMSCs.
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In the case of bone regeneration, it is anticipated

that an ideal bone graft substitute provides all the

essential features of an autologous bone graft, includ-

ing both the organic and inorganic components of the

natural bone. With this concept in mind, a three-

dimensional scaffold material was designed by incor-

porating P-15 peptides on ABM particles, a natural

xenogenic source of hydroxyapatite (HA) (Bhatnagar

et al. 1999b). These bovine bone chips are pre-treated

at high temperatures to remove the organic compo-

nents of the bone, leaving only the inorganic compo-

nents (Bhatnagar et al. 1999b; Hofmann et al. 2007;

Yuan et al. 2007), which is the major inorganic

constituent of natural bone (Neshati et al. 2012).

ABM-P-15 mimics the structural framework of the

autologous bone graft by supplying both the cell-

binding domain of type I collagen and HA for the

growth of the cells. To date, ABM-P-15 scaffolds have

been successfully tested on both animal models and on

humans (Emecen et al. 2009), which demonstrated

that P-15 adsorbed on ABM scaffolds enhanced

attachment, growth and osteogenic differentiation of

the tested cells when compared with ABM scaffolds

alone. By far, extensive work has been carried out on

the application of ABM-P-15 scaffolds on its own and

using different cell types for bone tissue engineering

application (Barboza et al. 2002; Lindley et al. 2010;

Mardas et al. 2008; Matos et al. 2011; Sarahrudi et al.

2008; Scarano et al. 2003; Thorwarth et al. 2005;

Vastardis et al. 2005; Yang et al. 2004). The aim of this

study was to compare the osteogenic potential of

HDPSCs with HBMSCs and the effect of P-15 on the

bone-forming capacity of HDPSCs in vitro and in vivo

for the potential of combining these two to improve the

bone regeneration efficacy in the clinical setting.

Materials and methods

Tissue culture reagents were obtained from Corning

Life Sciences B.V. (The Netherlands). Alpha-modi-

fied minimal essential media (a-MEM) without L-

glutamine was purchased from Lonza (UK) and fetal

bovine serum (FBS) was from Biosera (UK). Molec-

ular biology reagents were purchased from Invitrogen

(UK). Dexamethasone, alkaline phosphatase kits, and

all other biochemical reagents were of analytical grade

from Sigma (UK) unless otherwise stated.

Scaffold synthesis and preparation

Two types of scaffolds were used in this study:

anorganic bovine mineral (Osteo-Graf/N-300)

absorbed with/without P-15, which are FDA approved

for the dental application and are commercially

available as PepGen P-15� (Cerapedics, Inc. CO,

USA). The particles are described in our previous

paper (Yang et al. 2004). The 48 well tissue culture

plates were coated with 12% poly(2-hydroxyethyl

methacrylate)(Poly Sciences, PA) to prevent cell

attachment to the plastic. 35 mg of ABM-P-15 or

ABM particles were transferred into the well and

sterilised using UV radiations for 30 min.

Isolation and culture of HDPSCs and HBMSCs

Sound third molar teeth were extracted at Leeds

School of Dentistry with patients’ informed consent

and ethical approval (LREC 07/H1306/93). A total of

20 human teeth was collected (average age:

24 ± 4 years). HDPSCs were isolated and in vitro

expanded as previously described (El-Gendy et al.

2013, 2015; Gronthos et al. 2000; Ricordi et al. 1992).

4 human bone marrow samples (average age:

59 ± 16 years) were obtained from routine total hip

replacement patients at Leeds General Infirmary and

Chapel Allerton Hospital with patients’ informed

consent ethical approval by the NHS local ethical

committee (COREC: 06/Q1206/165). HBMSCs were

isolated and in vitro expanded as previously described

(Yang et al. 2001). HDPSCs and HBMSCs were

seeded at 2 9 105 cells/well on 35 mg ABM-P-15

and/or ABM particles and were cultured in 500 lL of

basal media (a-MEM supplemented with 10% FBS,

1% penicillin/streptomycin, 2 mM L-glutamine) in an

incubator (Binder, Germany) at 37 �C with 5% CO2.

Multi-lineage inductive culture of HDPSCs

and HBMSCs

For osteogenic culture, HDPSCs and HBMSCs were

seeded in 24 well plates (2 9 104 cells/well, P3,

n = 3) and cultured for 3 weeks at 37 �C, 5% CO2 in

osteogenic media (basal media supplemented with

10 nM dexamethasone and 100 lM L-ascorbic acid

2-phosphate). Basal medium alone was used as the

controls for both cell groups. The media were changed
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every 5 days until the cells were harvested for alkaline

phosphatase staining.

For adipogenic culture, hDPSCs were seeded onto

24 well plates (2 9 104 cells/well, P3, n = 3) and

cultured for 3 weeks at 37 �C and 5% CO2 in

adipogenic induction media—basal medium supple-

mented with 1 lM dexamethasone (Sigma), 200 lM
indomethacin, 0.5 mM isobutyl-methyl xanthine

(Sigma) and 10 lg/mL insulin. The basal medium

alone was used as the control. The cells were fixed in

10% neutral buffered formalin (NBF) and were then

stained with 0.6%Oil red O (Sigma) for 15 min for the

identification of lipid droplets.

For chondrogenic culture, HDPSCs and HBMSCs

(5 9 105 cells/mL; P3; n = 3) were cultured as pellets

in the basal media for 48 h before transferring into

chondroinductive media and maintained at 37 �C, 5%
CO2 for 3 weeks with media changes every 3 days.

Basal medium alone was used as the control group.

The chondroinductive medium was prepared by

supplementing the basal media with 0.1 lM dexam-

ethasone (Sigma, UK), 10 ng/mL TGF b3, 50 lg/mL

L-ascorbic acid 2-phosphate (Sigma, UK) and 5 lg/
mL insulin transferrin selenium (ITS) (Sigma, UK).

All cell pellets were, paraffin-embedded, sectioned

and stained with Alcian blue/Sirius red for the

detection of GAG and collagenous matrix. HDPSCs/

HBMSCs growth on the ABM-P-15 and/or ABM

scaffold materials was investigated using a confocal

microscope, where a series of X–Y–Z images were

taken through the scaffold particles permitting 3D

reconstruction.

Assessment of cells viability and growth on ABM-

P-15 and ABM scaffolds

At different time points (24 h, 14 days and 6 weeks),

HDPSCs and HBMSCs cultured on ABM-P-15 and

ABM particles were fluorescently labeled with

CellTrackerTM Green (CMFDA). Viable cells were

imaged under an inverted fluorescent microscope or

the Leica confocal microscope (AOBS, UK).

Scanning electron microscopy

After 6 weeks culturing of HDPSCs and HBMSCs on

ABM-P-15 and/or ABM scaffolds, the samples were

vacuum dried for 16 h and sputter-coated with gold

using an E5000 sputter coater (Polaron, UK) to a

thickness of 20 nm prior being imaged under a Hitachi

S-3400 N/Nx scanning electron microscope (Hitachi

High Technologies, Japan).

Alkaline phosphatase staining

After fixation in 98% ethanol, the scaffold constructs

were incubated in a solution containing 400 lL 0.25%

Naphthol AS-MX phosphate (Sigma, UK), 2.4 mg of

Fast Violet salt in 10 mL distilled water at 37 �C for

30 min (in darkness). Cells expressing alkaline phos-

phatase enzymes were stained in red colour.

Alkaline phosphatase specific activity (ALPSA)

quantification

ALP was quantified in HDPSCs and HBMSCs

cultured either as monolayers or on 3D ABM-P-15

and/or ABM scaffolds as described previously (Lu

et al. 2014; Yang et al. 2003) using a fluorescence

spectrophotometer (Fluoroskan ascent, Thermo UK)

at 520 nm. Then the ALP activities were normalised to

the relevant total DNA content to get the ALPSAs.

Statistical analysis was carried out using one-way

analysis of variance test with Tukey–Kramer multiple

comparisons test. The software used for statistical

comparison was GraphPad Instant Software (Graph-

Pad Software, Inc., SanDiego).

In vivo implantations

Previously, we have reported that ABM-P-15

enhanced HBMSCs bone formation in vivo compared

to the ABM scaffold alone (Yang et al. 2004). In this

study, we investigated the osteogenic capacity of

HDPSCs on ABM-P-15 particles to explore its poten-

tial for bone tissue engineering under the Home Office

project license (40/2953). Briefly, HDPSCs (130 mL

containing 5 9 106 cells per chamber) were injected

into diffusion chambers (Millipore, Bedford, MA)

containing ABM-P-15 or ABM alone (n = 4), which

were implanted intraperitoneally in MF1 Nu/Nu mice

as previously described (Lu et al. 2014) for up to

8 weeks.

Alcian blue/Sirius red staining

The samples were partially demineralised in 10%

EDTA (pH 7.4) for 2 weeks and embedded in paraffin.
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The sections were stained with Alcian blue (0.5 g in

1% acetic acid in water; Sigma, UK) for 10 min and

then immersed in 1% aqueous phosphomolybdic acid

(Fluka, UK) prior to being stained with 0.3% picrosir-

ius red (Fluka, UK) for an hour.

Immunofluorescence staining

The sections were firstly incubated in primary anti-

bodies including COL1 (1/50, overnight), OCN (1/50,

1 h) and OPN (1/100) which were followed by

incubation for 1 h in FITC-labelled secondary anti-

bodies (goat anti-mouse for COLI, and/or swine anti-

rabbit for OCN). The omit of primary antibody was

used as the negative control. The sections were then

washed in 1 9 PBS with agitation for 2 h and the

nuclei stained with TO-PRO-3� at 1/100 in PBS for

20 min. The images were taken under a confocal

microscope.

Results

Multi-lineage differentiation capacity of HDPSCs

compared to HBMSCs in monolayer culture

After 3 weeks of culture, HDPSCs showed much

stronger ALP positive staining (red colours. Black

arrows) in both osteogenic conditions (Fig. 1a), and

basal medium (Fig. 1b) compared to that of HBMSCs

in the same culture conditions (Fig. 1c & d) respec-

tively. Osteogenic inductive culture enhanced the ALP

staining in both cell groups compared to the same cells

in the basal medium culture. After 3 weeks of culture

in adipogenic inductive media, Oil red O staining

showed that adipogenic culture condition induced

lipid droplet formation in both HDPSCs (Fig. 1e) and

HBMSCs (Fig. 1g) groups compare to the same cells

in basal medium culture condition (Fig. 1f, h) respec-

tively. However, there was no notable difference in

staining between HDPSCs and HBMSCs. After

3 weeks of pellet culture in chondrogenic media, both

HDPSCs (Fig. 1i) and HBMSCs (Fig. 1k) samples

were stained strongly positive for Alcian blue staining

probably reflecting sulphate glycosaminoglycans

(GAGs: blue colours) with the sparse presence of

collagen (red colours) which was indicated when the

pellets were stained up by Sirius red (red colour).

There were some chondrocyte-like cells within the

pellets and somewhere, the chondrocyte-like cells

aligned in column-oriented in certain directions

(Fig. 1i, k and the inserts: black arrows). In compar-

ison, both cells in the basal medium culture condition

appeared to lack of blue staining (Fig. 1j and l).

HDPSCs/HBMSCs viability and spreading

on ABM-P-15 and ABM scaffolds

After 24 h of cell seeding (n = 3), CMFDA fluores-

cent labelling showed that the majority of both cells on

ABM-P-15 and ABM alone are viable. HDPSCs

(Fig. 2a) and HBMSCs (Fig. 2c) were observed to

have more cell attachment and better spreading on the

scaffolds in ABM-P-15 groups in comparison to that

of the ABM alone group (Fig. 2b and d), where the

most of the particles only have a few cells attached.

After 14 days of culture in basal media, HDPSC

showed better cell spreading, and proliferation (cell

density), cell bridging formation on ABM-P-15

(Fig. 2e) compare to HBMSCs on the ABM-P-15

scaffolds (Fig. 2g). Both cells’ growth on ABM alone

was shown in Fig. 2f and h. After 6 weeks in culture

(n = 3) in basal media, Live/dead labelling and

confocal images showed that extensive HDPSCs on

both ABM-P-15 and ABM scaffolds after 6 weeks of

culture (Fig. 2i and j). For both scaffold types,

HDPSCs were seen to be spread across scaffold

particles to form cell bridges. The clustering of the

scaffolds particles was observed in the case of the

ABM-P-15 scaffolds (Fig. 2i) in comparison with the

same cells on ABM scaffolds (Fig. 2j). However,

there was much less HBMSCs growth on both scaffold

types compared to the HDPSCs. Similarly, it can be

seen that P-15 enhanced the growth of HBMSCs on

ABM-P-15 (Fig. 2k) in comparison to the same cells

on the ABM alone scaffolds (Fig. 2l).

SEM imaging to show cells growth and matrix

deposition on ABM-P-15 and ABM scaffolds

After 6 weeks of culture in basal medium, Scanning

electron micrographs showed that HDPSCs and

HBMSCs had formed clusters, presumably related to

cell bridging and matrix deposition on ABM-P-15

(Fig. 3a and c) and ABM scaffolds (Fig. 3b and d).

The cells on the scaffolds appeared to have formed a

thick sheet-like layer encasing the scaffold particles.

This was observed for both cell types and for ABM-P-
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15 and ABM alone scaffolds, respectively. Figure 3e

and f showed the ABM-P-15 and ABM scaffolds

without cells.

ALP staining and ALP Specific activity

of HDPSCs and HBMSCs on ABM-P-15 and/

or ABM particles

After 6 weeks of culture in basal medium, ABM-P-15

groups for both HDPSCs and HBMSCs showed

enhanced ALP staining compared to that of the same

cell types on ABM scaffolds (Fig. 4). There was no

visible difference between HDPSCs (Fig. 4a) and

HBMSCs groups on the ABM-P-15 scaffolds

(Fig. 4c). For the ABM alone groups, the HBMSCs

group (Fig. 4d) showed stronger ALP stain than that of

the HDPSCs group (Fig. 4b). However, these were not

a significant difference in the ALPSA (P[ 0.05).

Biochemical quantitative assays confirmed that

HDPSCs cultured on ABM-P-15 scaffolds had the

highest ALPSA compared to HDPSCs on ABM alone

scaffolds (200% increase) (P\ 0.001, Fig. 4e).

Similarly, HBMSCs cultured on ABM-P-15 scaffolds

also had significantly higher ALPSA compared to the

cells cultured on ABM scaffolds alone (100%

increase) (P\ 0.05, Fig. 4e). The mean of ALPSA

of HDPSCs was 30% higher than that of HBMSCs on

the ABM-P-15 group. However, there was no statistic

difference in the ALPSA between the two cell types

(P[ 0.05).

Sirius red staining and Birefringence images

to show the fibrous collagen matrix present

in HDPSC-ABM-P-15 and/or ABM scaffold

construct in vivo

After 8 weeks of in vivo implantation (n = 4), three

out of four HDPSCs-ABM-P-15 constructs showed

positive staining for Sirius red (Fig. 5a). In compar-

ison, only one out of four HDPSCs-ABM constructs

showed positive stinging for Sirius red (Fig. 5b). In the

negative control groups, ABM-P-15 and ABM scaf-

folds without cells, there was no indication of the

presence of cells or tissues within the constructs.

Fig. 1 Histological staining of HDPSCs (a, b, e, f, i, j) and
HBMSCs (c, d, g, h, k, l) after 3 weeks of culture under

osteogenic (a, c), adipogenic (e, g), chondrogenic (i,

k) inductions and basal conditions (b, d, f, h, j, l). a–d ALP

staining; e–h Oil red O staining; i–l) Alcian Blue/Sirius red

staining. Scale bars-100 lm

123

720 Cytotechnology (2020) 72:715–730



Under polarized light microscopy, the Sirius red-

stained collagen matrix exhibited birefringence, and

the fibres appeared green/red/orange in colour (Fig. 5c

and d). A denser and more highly organised collagen

matrix was observed in the HDPSCs-ABM-P-15

constructs (Fig. 5c) compared to that in the

HDPSCs-ABM constructs (Fig. 5d).

Immuno fluorescent characterisation

of the extracellular matrix of HDPSCs-ABM-P-15

and/or HDPSCs-ABM scaffolds constructs in vivo

After 8 weeks of in vivo implantation, immunofluo-

rescent staining showed that HDPSCs-ABM-P-15

groups appeared to have more and stronger positive

stains (green colour, red arrows) for COL1 and OCN

within the cells and extracellular matrixes, the

collagen matrixes were dense and organised around

individual ABM-P-15 scaffold (Fig. 6a and b) com-

pared to that of ABM alone group (Fig. 6e and f)

respectively, in which the matrixes were less organ-

ised between the scaffold particles while the most of

organised matrixes were observed around the periph-

eral layer. In comparison, there were less staining for

OCN than COL1 within the same group. The nuclei

were stained as blue colour, and the ABM particles

were shown as the grey colour (blue arrows). The

HDPSCs on both ABM-P-15 (Fig. 6c) and ABM

scaffold groups showed strong positive stains for OPN

(Fig. 6g). There was no clear difference between the

two groups. There were not positive stains in the

negative control groups (without primary antibodies)

on ABM-P-15 (Fig. 6d) and ABM alone (Fig. 6h).

Fig. 2 Fluorescent micrographs from an inverted fluorescent

microscope (a–h) and confocal microscope (i–l) of CMFDA

labelled HDPSCs (a, b, e, f, i, j) and HBMSCs (c, d, g, h, k,
l) after 24 h (a–d), 4 days (e–h) and 6 weeks (i–l) of in vitro

cultures on ABM-P-15 (a, e, i, c, g, k) and ABM scaffolds (b, f,
j, d, h, l) (n = 3). Red arrows: viable cells; blue arrows: ABM-P-

15/ABM particle. Magnifications: 9100
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Discussion

Translational research on bone tissue engineering

aims to develop cell-based bone graft material that

could be employed as a substitute for the traditional

grafts for bone augmentation. However, one of the

current challenges in this field is the identification of

an ideal combination of stem cells, scaffold material

and growth factors that could be used for faster repair/

regeneration of damaged bone (Panetta et al. 2009)

and/or improve the implant-bone osseointegration

(Jayesh and Dhinakarsamy 2015; Ting et al. 2016).

In this study, the effect of ABM-P-15 on HDPSCs

osteogenesis was investigated both in vitro and in vivo

compared with HBMSCs with the aims of developing

novel stem cell-biomaterials combinations for enhanc-

ing bone tissue repair/regeneration efficacy and

improve the implant-bone interface for clinical

application.

Although HBMSCs has been considered as one of

the most popular stem cell sources (Squillaro et al.

2016; Yoshii et al. 2009), however, due to the

limitation of getting a good quality of HBMSC and

considerable very long doubling time of this cell

population, resulting in a slow or low efficacy bone

formation procedure. In fact, for clinical therapy, the

speed for bone formation may be more important than

the amount of bone formation itself (e.g. taking longer

Fig. 3 Scanning electron

microscopy images of

HDPSCs (a, b) and
HBMSCs (c, b) after
6 weeks of in vitro culture

on ABM-P-15 (a, c) and
ABM (b, d), as well as both
scaffolds without cells (e, f).
HDPSCs and HBMSCs on

both ABM -P-15 and ABM

scaffolds were observed to

deposit matrix (red arrows)

around the scaffolds

particles (blue arrows)
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Fig. 4 ALP staining (a–d) and quantification of ALP specific activities (e) for HDPSCs (a, b) and HBMSCs (c, d) after 6 weeks of

culture on ABM-P-15 (a, c) and ABM (b, d) scaffolds (n = 3). *P\ 0.05; ***P\ 0.001

Fig. 5 Alcian blue/Sirius red staining (a, b) and birefringence

(c, d) of the fibrous collagenous matrix present in HDPSC-

ABM-P-15 (a, c) and/or HDPSC-ABM (b, d) scaffold con-

structs after 8 weeks of in vivo implantation in a diffusion

chamber model. Yellow arrows: collagen matrix formation (red

or bright colour) and orientation; Blue arrows: ABM particles.

Magnifications: 9200
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time). Therefore, researchers are looking for different

alternatives for bone tissue regeneration. A number of

studies showed that HDPSCs from dental pulp tissue is

highly proliferative, short doubling time, multipo-

tency, in particular with high osteogenic potential,

which makes these cells alternative candidates for

bone tissue regeneration (El-Gendy et al. 2015;

Yamada et al. 2019). In this study, both HDPSCs

and HBMSCs showed low adipogenic and chondro-

genic potential but with some osteogenic potential in

basal medium culture conditions. However, when

cultured in inductive media, both HDPSCs and

HBMSCs showed the enhanced capacity for their

osteogenesis, adipogenesis, and chondrogenesis.

HDPSCs group showed stronger stain for Alcian blue,

which indicated more cartilage proteoglycans (Saha

et al. 2013; Ullah et al. 2012) were formed in this

group compared to that of HBMSCs group in basal.

Similarly, the HDPSCs group showed stronger ALP

positive staining than that of HBMSCs group in

osteogenic inductive culture condition. These results

were in agreement with the literature in supporting

HDPSCs as an alternative stem cell source for bone

tissue engineering (El-Gendy et al. 2013; El-Gendy

et al. 2015).

Although in this study, the difference in the number

of cells attached on both ABM scaffolds was not

quantified, morphological observations appeared that

P-15 increased the cell-binding after 24 h of seeding

and enhanced the cell proliferation/cell bridge forma-

tions after 14 days of seeding for both HDPSCs and

HBMSCs onto ABM-P-15 particles compared to

ABM scaffolds alone, which was consistent with our

previous study on HBMSCs (Yang et al. 2004) and the

work of others on different cell populations (Bhatna-

gar et al. 1999b; Emecen et al. 2009; Lallier et al.

2003). Following long term culture (6 weeks in the

basal medium in vitro), interestingly it was observed

that extensive viable HDPSCs were growing on both

ABM-P-15 and ABM alone scaffolds. In comparison,

there were much fewer HBMSCs on both groups

although there was a sign of more HBMSCs on the

ABM-P-15 scaffolds than that on ABM alone scaf-

folds. These may be due to the higher proliferation rate

and lower population doubling time for HDPSCs

(Eslaminejad et al. 2010; Pisciotta et al. 2015)

compared to that of HBMSCs. Bhatnagar et al.

(Bhatnagar et al. 1999c) showed that P-15 stimulated

ECM synthesis. In this study, both HDPSCs or

HBMSCs cultured on ABM-P-15 appeared to deposit

well organised ECM around the individual scaffold

particles after 14 days of seeding, which holds the

separate ABM particles together in clusters (Yang

et al. 2004). In contrast, the cells on ABM alone were

observed to be concentrated on individual scaffold

particles and formed fewer cell bridges with the

neighbouring scaffold particles. The enhanced cell

bridge formation in cells cultured on ABM-P-15might

be attributed to the development of traditional force by

the cells, which is important for the organisation of the

matrix and tissue morphogenesis (Bhatnagar et al.

1999a; Schwartz 2010). This study, however, has not

measured difference in the tractional force imparted

by the cells cultured in the presence of ABM-P-15 and

ABM scaffolds and also no characterisation of the

deposited matrix by HDPSCs/HBMSCs on ABM-P-

15 and ABM scaffolds.

P-15 functions as surrogate collagen in enhancing

osteogenic differentiation of the adhered cells, by the

up-regulation in growth factors expression such as

bone morphogenetic proteins (BMPs)-2, 6 and 7.

Enhanced expression of BMP-2, 6 and 7 are docu-

mented in influencing the cells’ osteogenic differen-

tiation in an autocrine or paracrine manner

(Bandyopadhyay et al. 2006; Li and Cao 2006;

Nguyen et al. 2003) and are involved in the synthesis

of collagen, OCN and other extracellular matrix

proteins (Bhatnagar et al. 1999a, b; Locklin et al.

1999; Warren et al. 2001). ALP is a widely studied

pre-osteoblastic marker that is expressed during the

end of osteoblast proliferation (Lian and Stein 1995;

Lu et al. 2014; Mendes et al. 2004). Immobilised P-15

on ABM scaffolds were observed to up-regulate the

ALP expression of human dermal fibroblasts,

HBMSCs and periodontal ligament fibroblasts (Qian

and Bhatnagar 1996; Yang et al. 2004; Yuan et al.

2007) and this effect has been correlated with the

increase in BMP-2 expression (Spinella-Jaegle et al.

2001). The up-regulation of ALP is essential for

matrix mineralisation as it catalyses the hydrolysis of

phosphomonoesters at alkaline pH (Bellows et al.

1991; Gillette and Nielsen-Preiss 2004). In this study,

both HDPSCs and HBMSCs group showed much

stronger ALP positive staining compared to the same

cell types growth on the ABM scaffold alone after

6 weeks of in vitro culture in basal medium. Quanti-

tative biochemical assays confirmed that the ALPSA

of HDPSCs on ABM-P-15 group is 200% increase
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compared with that of the same cells on ABM along

group. There were 100% increasing in ALPSA in

HBMSCs cultured on ABM-P-15 group than that of

the same cells on ABM alone group. The ALPSA of

HDPSCs on ABM-P-15 group was higher than that of

HBMSCs on ABM-P-15 group (32%), which was

similar to the results of Kwon et al. (2015) (Kwon et al.

2015). These results may indicate that the response of

tested HDPSCs to ABM-P-15 was more sensitive than

the tested HBMSCs. However, there was no statistic

difference in the ALPSA between the two cell types

(P[ 0.05).

The diffusion chamber model has been used for

decades to test the tissue regenerative strategy (Ashton

et al. 1980; Gundle et al. 1995; Howard et al. 2002;

Nawata et al. 2005; Partridge et al. 2002; Yang et al.

2003, 2004). It can be implanted intraperitoneally in

mouse or rat and provide a permissive physiological

environment in supporting stem cell growth, function

and tissue regeneration in vivo. The enclosed system

allows the exchange of nutrients, oxygen and waste

across the membrane filters but prevents the entry of

host cells and tissue into the constructs (Horner et al.

2008; Lu et al. 2014). Previously, we have shown that

ABM-P-15 promoted HBMSCs forming bone matrix

after 6 weeks implantation (Yang et al. 2004). Sim-

ilarly in this study, after 8 weeks in vivo implantation

in MF1 Nu/Nu mice, the ABM-P-15 group showed

highly organised collagen matrix formation within the

diffusion chamber, which indicates that ABM-P-15

enhanced HDPSC bone formation compared to that of

ABM alone group. These results were supported by

enhanced immune fluorescent staining for COL-1 and

OCN, in the ABM-P-15 group, confirming terminal

differentiation of the HDPSCs. In comparison to the

normal light microscope, the use of polarised micro-

scopy for the identification of collagen orientation is

preferred as it increases the specificity and resolution

for the observation of the thin collagen fibres which

are not detectable under normal microscopy (Jun-

queira et al. 1979; Rich and Whittaker 2005; Spiesz

et al. 2011; Traini et al. 2006).

In the native microenvironment, the cells are under

constant interaction with the extracellular matrix

through the integrin receptors present in the cell

membrane (De Franceschi et al. 2015; Schwartz

2010). Integrin receptors, not only function as cell

adhesion molecules for the anchorage of the cells to

the matrix but are also involved in the transmission of

bidirectional signals across the cell, and the matrix

thereby helps in the regulation of the cell proliferation,

migration and differentiation (Carinci et al. 2004;

Emsley et al. 2000; Jokinen et al. 2004). Similar to the

native collagen fibre, the P-15 receptors have also

been identified to interact with the a2b1 integrin

receptors of the cells to enhance the attachment and

differentiation in different cell types. The biomimetic

scaffolds employed in this study mimics the autolo-

gous bone structure, where the surfaces of ABM

particles are immobilised with P-15 peptides, which

are molecules of the cell recognition sequence of the

type 1 collagen (Bhatnagar et al. 1998; Murray et al.

2003; Pountos et al. 2016; Xu et al. 2000; Yu et al.

2011) and can initiate the cascade events for bone

formation. A number of studies have also shown that

ABM-P-15 enhances osteogenic differentiation and

bone matrix formation using different cell types

(Lindley et al. 2010; Matos et al. 2011; Vastardis

et al. 2005; Yang et al. 2004; Yuan et al. 2007). The

combination of ABM with P-15 and autologous

HDPSCs is to mimic autologous bone graft.

Conclusion

The current study provided direct evidence that

HDPSCs contain multipotent stem cells that have a

high proliferation rate and osteogenic potential com-

pared to HBMSCs. ABM-P-15 promoted HDPSCs

osteogenic differentiation and bone matrix formation

both in vitro and in vivo, which indicated the potential

of combining HDPSC and ABM-P15 for enhancing

bone tissue engineering efficacy to meet the clinical

reality in tackling fracture non-union, critical bone

defect and/or implant loosening in orthopaedics and

dentistry.
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