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ABSTRACT

Environmental health studies relate how exposures (eg, chemicals) affect human health and disease; however, in most
cases, the molecular and biological mechanisms connecting an exposure with a disease remain unknown. To help fill in
these knowledge gaps, we sought to leverage content from the public Comparative Toxicogenomics Database (CTD) to
identify potential intermediary steps. In a proof-of-concept study, we systematically compute the genes, molecular
mechanisms, and biological events for the environmental health association linking air pollution toxicants with 2
cardiovascular diseases (myocardial infarction and hypertension) as a test case. Our approach integrates 5 types of curated
interactions in CTD to build sets of “CGPD-tetramers,” computationally constructed information blocks relating a Chemical-
Gene interaction with a Phenotype and Disease. This bioinformatics strategy generates 653 CGPD-tetramers for air
pollution-associated myocardial infarction (involving 5 pollutants, 58 genes, and 117 phenotypes) and 701 CGPD-tetramers
for air pollution-associated hypertension (involving 3 pollutants, 96 genes, and 142 phenotypes). Collectively, we identify 19
genes and 96 phenotypes shared between these 2 air pollutant-induced outcomes, and suggest important roles for
oxidative stress, inflammation, immune responses, cell death, and circulatory system processes. Moreover, CGPD-
tetramers can be assembled into extensive chemical-induced disease pathways involving multiple gene products and
sequential biological events, and many of these computed intermediary steps are validated in the literature. Our method
does not require a priori knowledge of the toxicant, interacting gene, or biological system, and can be used to analyze any
environmental chemical-induced disease curated within the public CTD framework. This bioinformatics strategy links and
interrelates chemicals, genes, phenotypes, and diseases to fill in knowledge gaps for environmental health studies, as
demonstrated for air pollution-associated cardiovascular disease, but can be adapted by researchers for any
environmentally influenced disease-of-interest.
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An important facet of environmental health explores how
chemical stressors affect human disease (Grondin et al., 2016).
Although associations between chemical exposures and health
outcomes can be documented, there typically remain knowl-
edge gaps about the specific molecular, genetic, and biological
mechanisms involved (Birnbaum et al., 2016). Resolving these
key intermediary steps should aid in the design of experimental
and epidemiological projects as well as the development of mo-
lecular tools. Here, using air pollution-induced cardiovascular
disease as a test case, we present a bioinformatics method to
computationally identify potential steps to help fill in the
knowledge gaps.

The toxic effects of air pollutants have been recognized and
studied for over 70 years (Costa, 2018) and are estimated to
cause more than 4.2 million deaths annually (Cohen et al., 2017).
The association between ambient air pollution and cardiovascu-
lar mortality rates has been well documented (Dockery et al.,
1993; Hadley et al., 2018; Yorifuji et al., 2016; Zhang et al., 2011);
however, it is important to resolve the genetic, molecular, and
biological mechanisms involved in this complex environmental
disease. These in-between steps elucidate the toxicant’s mode-
of-action and include activated gene products and phenotypes
preceding clinical disease manifestation. In this report, we de-
scribe a bioinformatics methodology that condenses and
defines this sequence of events (Chemical > Gene > Phenotype
> Disease) as a CGPD-tetramer, a reductionist unit of computed
information describing a Chemical interaction with a Gene
product, which in turn induces a nondisease Phenotype that ul-
timately can be associated with a Disease. Our strategy integra-
tes high-quality curated content to rapidly generate CGPD-
tetramers. We show how these computed tetramers can be
used to help inform and identify potential intermediary steps
relating ambient air pollutants with myocardial infarction (MI)
and hypertension (HT), 2 cardiovascular outcomes associated
with air pollution (Rajagopalan et al., 2018).

A CGPD-tetramer includes 4 components (chemical, gene,
phenotype, and disease), and extensive, curated information for
each of these individual components is available in numerous
public repositories; adequately accessing, retrieving, and inte-
grating this composite public data, however, is currently hin-
dered by the necessity of processing different types of
vocabularies used by disparate resources (Davis et al., 2019b). To
obviate the complex step of querying and mapping heteroge-
neous data and identifiers across multiple systems, in this re-
port we limit the source information to just 1 public repository,
the Comparative Toxicogenomics Database (CTD; http://
ctdbase.org/).

CTD is a free resource that provides users with contextual-
ized data for environmental health studies by manually curat-
ing chemical-centric interactions from the literature using
controlled vocabularies and ontologies to standardize and har-
monize heterogeneous data from over 135 000 scientific articles
(Davis et al., 2019a). Initially, CTD focused on chemical-gene,
chemical-disease, and gene-disease interactions (Davis et al.,
2008), but has evolved and extensively grown, developing new
curation paradigms to capture chemical-exposure statements
(Grondin et al., 2016) and, most recently, novel chemical-
phenotype interactions (Davis et al., 2018). The use of controlled
vocabularies provides internal consistency for term curation
and enables seamless data integration (Davis et al., 2011), facili-
tating the ability to quickly interrelate chemicals, genes, pheno-
types, and diseases to construct CGPD-tetramers. Currently,
CTD contains more than 2.6 million manually curated

interactions for 16 300 chemicals, 50 900 genes, 5400 pheno-
types, and 7200 diseases (http://ctdbase.org/about/dataStatus.
go).

Here, we describe a systematic process that leverages CTD
content to compute CGPD-tetramers linking ambient air pollu-
tants with unique genes and phenotypes associated with 2 car-
diovascular diseases (MI and HT). More importantly, we show
how these CGPD-tetramers can be analyzed to help inform the
knowledge gaps for environmental health. First, as individual
tetramers, component analysis identifies shared genes and
phenotypes elicited by different toxicants and implicate oxida-
tive stress, inflammation, immune responses, cell death, and
circulatory system processes as important intermediary steps
connecting air pollution exposure to cardiovascular disease.
Second, assembling blocks of tetramers (via shared genes and
phenotypes) generates an extended chemical-induced disease
pathway, filling in gaps with detailed molecular, cellular, and
system level processes for ozone-associated MI. We validate
many of our computed results with reports from the scientific
literature for air pollution-associated cardiovascular diseases.

Importantly, our described methodology does not require a
priori knowledge of the toxicant, biological system, or adverse
outcome, and can be easily adopted by users to study any envi-
ronmental chemical-induced disease at CTD.

MATERIALS AND METHODS

Data version. Analysis was performed using CTD public data
available in July 2019 (revision 15854). CTD is updated with new
content on a monthly basis; consequently, counts described
here may change over time.

Data collection. Data were extracted from CTD’s public web appli-
cation in Excel format using the “Download” feature at the bot-
tom of CTD webpages. All CTD curated content is freely
available as structured data files for downloading and analysis
by users (http://ctdbase.org/downloads/).

Web tools. CTD’s integrated online analytical tools (http://
ctdbase.org/tools/) Batch Query, Set Analyzer, and MyVenn were
used to analyze chemical, gene, phenotype, and disease data-
sets. For Batch Query, the direct relationships filter was used to
return data for the exact input query terms. For Set Analyzer,
gene lists were used as the input type and analyzed for enriched
outputs (with the recommended corrected p value threshold
.01) for pathways from integrated content from KEGG (Kanehisa
et al., 2012) and Reactome (Fabregat et al., 2018). As well, Set
Analyzer was used to retrieve common gene-gene interactions
(controls set to “merged edges” and “tree layout”) to draw
Pathway View maps with integrated data from BioGRID
(Oughtred et al., 2019). MyVenn was used for all Venn analyses to
identify shared genes and phenotypes.

Air pollutants. The World Health Organization identifies 6 ambi-
ent air pollutants with the strongest evidence for global human
health effects: particulate matter, ozone, nitrogen dioxide, car-
bon monoxide, soot (black carbon), and sulfur dioxide (https://
www.who.int/airpollution/ambient/pollutants/en/). To these 6
chemicals we added 2 additional CTD chemical terms (Air
Pollutants and Vehicle Emissions) that are frequently used in
scientific publications when the authors do not identify the spe-
cific ambient pollutants. In total, 8 air pollutants were initially
analyzed (and their CTD accession identifier): Particulate Matter
(MESH:D052638), Ozone (MESH:D010126), Nitrogen Dioxide
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(MESH:D009585), Carbon Monoxide (MESH:D002248), Soot
(MESH:D053260), Sulfur Dioxide (MESH:D013458), Air Pollutants
(MESH:D000393), and Vehicle Emissions (MESH:D001335).

Chemical terms were input into CTD’s Batch Query to retrieve
curated pollutant-disease associations (direct evidence
“molecular mechanism/marker”), and diseases were automati-
cally clustered into MEDIC-Slim Disease Categories (Davis et al.,
2012a). Cardiovascular and respiratory tract diseases were the
most common adverse outcomes with curated associations for
the 8 pollutants (Figure 1). We selected cardiovascular disease
as a category to use as a case study to compute potential inter-
mediary genes and biological mechanisms to fill in knowledge
gaps between exposure and outcome.

Cardiovascular diseases. Associated CTD data were collected for 2
cardiovascular diseases with a known association with air pol-
lution (Rajagopalan et al., 2018): Myocardial Infarction (MESH:
D009203) and Hypertension (MESH: D006973). Data associated
with descendant terms were first removed for the 2 diseases.
Because phenotype-disease inferred relationships do not dis-
criminate between chemicals (or genes) that have a “molecular
mechanism/marker” or “therapeutic” disease relationship, we
combined both sets of data at the outset of analysis.

Phenotypes. At the time of analysis, 4918 unique phenotypes
were associated with MI via an inferred relationship (http://
ctdbase.org/detail.go?type¼disease&acc¼MESH%3aD009203&
view¼phenotype), and 6434 phenotypes were associated with
HT (http://ctdbase.org/detail.go?type¼disease&acc¼MESH%3AD
006973&view¼phenotype). In CTD, “phenotypes” are operation-
ally distinguished from “diseases” (Davis et al., 2018), wherein a
phenotype refers to a nondisease biological event (eg, “cell cycle
arrest” is a phenotype, while “liver neoplasms” is a disease;
“decreased spermatogenesis” is a phenotype, while “male
infertility” is a disease). Two independent controlled vocabular-
ies are used to code this distinction in CTD. To capture disease
information, biocurators use terms from the MEDIC disease vo-
cabulary (Davis et al., 2012a), and if the reported outcome does
not exist as a term in MEDIC, then, by definition, it is considered

a phenotype. For phenotype curation, CTD biocurators use the
Gene Ontology (GO) as a source for terms to code chemical-
induced nondisease events from the literature (Davis et al.,
2018). The GO is a well-known resource used to ascribe gene
products with a molecular function, biological process, and cel-
lular component (Ashburner et al., 2000). CTD also imports these
gene-GO annotations from NCBI Gene (Brown et al., 2015) and
displays them as annotations on all CTD gene pages. Thus, GO
terms are used in 2 distinct and independent ways at CTD: as
gene-GO annotations (imported from NCBI Gene) and as pheno-
type terms for the CTD manual curation of direct chemical-
phenotype (GO) interactions from the literature. Phenotypes are
associated with diseases by inferred relationships via sets of
shared chemicals and/or genes (Davis et al., 2016). An inference
between a phenotype and a disease is made when both a spe-
cific phenotype P1 and a disease D1 independently have a direct
interaction with either the same chemical C1 or gene G1. Thus,
if chemical C1 has a directly curated interaction with both P1
and independently with D1, then P1 has an inferred relationship
to D1 (via the shared C1); similarly, if gene G1 is annotated to P1
(as a GO term by NCBI Gene) and independently has a curated
interaction with D1, then P1 can be inferred to D1 (via the
shared G1). The set of chemicals shared between P1 and D1 is
called the Chemical Inference Network (CIN), whereas the set of
genes shared between a phenotype and a disease forms the
Gene Inference Network (GIN). All phenotypes with an inferred
relationship to a disease are displayed under the “Phenotypes”
data-tab on a disease page in CTD. As well, a new file providing
the data for all phenotype-disease inferences is freely available
to download from CTD (http://ctdbase.org/downloads/
#phenotypediseases).

Computing CGPD-tetramers. CGPD-tetramers were derived from
curated interactions in CTD, and details about CTD’s manual
curation process to capture chemical-gene, chemical-disease,
gene-disease, and chemical-phenotype interactions from the
scientific literature have been extensively described (Davis et al.,
2008, 2011, 2018). We compiled CGPD-tetramers using software
written specifically for this task. First, phenotype-disease rela-
tionships and their associated CIN and GIN were identified by
downloading the “Phenotypes” data-tab for MI and HT, inde-
pendently, and phenotype-disease relationships were computa-
tionally limited to associations established based on the
presence of both a CIN and a GIN. Next, CTD curated chemical-
gene interactions were downloaded (http://ctdbase.org/down-
loads/#cg) and used as the source for direct chemical-gene
interactions. Finally, to generate CGPD-tetramers, chemicals,
and genes of the respective CIN and GIN for a specific
phenotype-disease inference were processed against one an-
other in an automated fashion to determine if they also had a
curated chemical-gene interaction in CTD; if a directly curated
relationship existed, then a tetramer was generated linking the
respective chemical, gene, phenotype, and disease. As an exam-
ple, the phenotype “platelet aggregation” (GO:0070527) was as-
sociated with the disease Myocardial Infarction (MESH:D009203)
based on a CIN that included the 3 chemical terms Air
Pollutants (MESH:D000393), Particulate Matter (MESH:D052638),
and Vehicle Emissions (MESH:D001335) and a GIN that included
the 2 genes ITGB3 (GENE:3690) and P2RY12 (GENE:64805), provid-
ing a total of 6 possible chemical-gene combinations to con-
struct 6 CGPD-tetramers; however, when the 3 chemicals were
processed against the 2 genes by looking for direct chemical-
gene interactions in CTD, only 3 combinations were validated

Figure 1. Ambient air pollutant-associated diseases in Comparative

Toxicogenomics Database. The numbers of diseases with curated associations

with 8 pollutants are clustered by disease categories (y-axis); only the top 7 dis-

ease categories are listed. The category “Pathology” includes pathological pro-

cesses (eg, chromosome aberration, fibrosis, hemorrhage, and shock), and

“Signs & Symptoms” includes clinical symptoms (eg, headache, sneezing, cough,

and nausea). Chemicals: AP, Air Pollutants; CO, Carbon Monoxide; NO2, Nitrogen

Dioxide; O3, Ozone; PM, Particulate Matter; SO2, Sulfur Dioxide; Soot; VE, Vehicle

Emissions.
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as having a curated chemical-gene interaction: “Particulate
Matter increases the expression of ITGB3 mRNA and protein,”
“Vehicle Emissions increases the expression of ITGB3 protein,”
and “Vehicle Emissions affects the methylation of P2RY12
gene.” Subsequently, only 3 CGPD-tetramers could be gener-
ated: Particulate Matter > ITGB3>platelet aggregation >

Myocardial Infarction; Vehicle Emissions > ITGB3>platelet ag-
gregation > Myocardial Infarction; and Vehicle Emissions >

P2RY12>platelet aggregation > Myocardial Infarction. Because
the third chemical term (Air Pollutants) did not yet have any cu-
rated interactions with either of the 2 genes in CTD, no tet-
ramers were generated for those combinations.

RESULTS

The CGPD-tetramer Framework
We define “CGPD-tetramers” as computationally generated in-
formation units that interrelate 4 data types curated at CTD: a
chemical that molecularly interacts with a gene product, induc-
ing a nondisease phenotype, linked to a disease (Figure 2). To
create a CGPD-tetramer, 5 distinct types of manually curated
interactions are required as lines of supporting evidence: (1) a
direct chemical-gene interaction curated in CTD, (2) a direct
chemical-phenotype interaction curated in CTD, (3) a direct
chemical-disease interaction curated in CTD, (4) a direct
gene-GO annotation imported from NCBI Gene (wherein the GO
annotation is the same phenotype term), and (5) a direct gene-
disease interaction curated in CTD. A CGPD-tetramer can be
generated only if all 5 supporting lines of evidence exist.

Computing CGPD-tetramers is simplified by first identifying
the phenotypes that have inferred relationships to a disease-of-
interest. As aforementioned, a phenotype has an inferred rela-
tionship to a disease in CTD via sets of shared chemicals (CIN)
or a set of shared genes (GIN). For example, the phenotype
“apoptotic process” has an inferred relationship with MI via 198
chemicals (CIN) and 17 genes (GIN) because all 198 chemicals
and 17 genes each have an independent, directly curated inter-
action with both “apoptotic process” and MI in CTD (Figure 3).
Thus, all chemicals in any particular CIN have a known, direct
interaction with both the listed phenotype and the disease, ful-
filling evidence lines Nos 2 and 3 in CGPD-tetramer construction
(Figure 2); similarly, all genes in any particular GIN are also

directly curated to both the phenotype and disease and fulfill
evidence lines Nos 4 and 5.

Generating CGPD-tetramers for Air Pollution-associated Myocardial
Infarction and Hypertension
We generated air pollution-associated CGPD-tetramers for MI
and hypertension independently. The inferred phenotypes for
MI were filtered and refined in a step-wise method (Figure 4). In
the first step, 4918 unique phenotypes are inferred to MI via sets
of either shared CIN and/or shared GIN. However, because a
CGPD-tetramer requires both a chemical and a gene, we next fil-
tered the dataset to only phenotypes that had both a CIN and a
GIN (step 2), resulting in a reduced subset of 892 phenotypes (in-
ferred via 320 chemicals and 94 genes); this subset automati-
cally fulfills evidence lines Nos 2–5. Furthermore, a CGPD-
tetramer requires that there not only be a chemical and a gene,
but that the chemical has a curated molecular interaction with
the gene product (evidence line No. 1, Figure 2). For each in-
ferred phenotype, the corresponding CIN and GIN were pro-
grammatically queried to identify any chemical in an
associated CIN with a curated interaction in CTD to any gene in
the associated GIN (step 3). If a curated interaction exists in CTD
between a chemical and a gene for a specific inferred pheno-
type, then all 5 lines of supporting evidence are met, and a
CGPD-tetramer is generated. In total, 14 957 distinct CGPD-
tetramers were computed for MI, involving 243 chemicals, 90
genes, and 758 phenotypes (step 4). Of these 243 chemicals, 5
were air pollutant-related chemical terms in CTD: Particulate
Matter, Vehicle Emissions, Ozone, Nitrogen Dioxide, and Air
Pollutants. Limiting the data to just these pollutants (step 5)
results in a final set of 653 CGPD-tetramers, encompassing 5
chemicals, 58 genes, and 117 phenotypes. Of these 653 CGPD-
tetramers, 43 of them relate 5 pollutants and 14 genes with the
phenotype “apoptotic process” and the cardiovascular disease
MI (Figure 5). A file describing all 653 computed CGPD-tetramers
is provided (Supplementary Table 1).

The same steps were used to analyze phenotypes for hyper-
tension (Figure 4), resulting in 701 CGPD-tetramers
(Supplementary Table 2), composed of 3 environmental air pol-
lutants (Particulate Matter, Carbon Monoxide, and Air
Pollutants), 96 genes, and 142 phenotypes.

The CGPD-tetramers for the 2 cardiovascular diseases share
19 genes and 96 phenotypes (Figure 4). Neither Sulfur Dioxide
nor Soot had any inferred phenotypes to MI or hypertension;
consequently, the 5 levels of required evidence could not be met
for these 2 pollutants and they were removed from further anal-
yses and reporting.

CGPD-tetramer Component Analysis
Chemicals. Five environmental air pollutants were involved in
the 653 CGPD-tetramers for MI, and 3 air pollutants were used
in the 701 tetramers for hypertension (Table 1). For both cardio-
vascular diseases, Particulate Matter interacted with the most
genes and phenotypes to yield the highest number of CGPD-
tetramers. This might simply be due to Particulate Matter hav-
ing 4- to 10-times more curated references in CTD (1463 scien-
tific articles) than the other pollutants: Vehicle Emissions (402
articles), Ozone (303 articles), Air Pollutants (260 articles),
Nitrogen Dioxide (198 articles), and Carbon Monoxide (153
articles) at the time of analysis.

Genes. MI and hypertension were associated with 58 and 96
genes to generate their respective CGPD-tetramers. We first
evaluated each gene set independently for enriched pathways

Figure 2. CGPD-tetramers are computationally generated information units that

interrelate 4 data types at Comparative Toxicogenomics Database (CTD). To gen-

erate a CGPD-tetramer by data integration, 5 lines of supporting evidence are re-

quired (box) as directly curated interactions among the 4 data types: C,

chemical; G, gene product; P, phenotype; D, disease. If any 1 line of supporting

evidence is lacking, the tetramer is not generated.
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and gene interaction modules to provide an indication to their
biological mechanisms, as a prelude to understanding their in-
volvement in the computed CGPD-tetramers. First, we per-
formed a pathway analysis, examining the KEGG and Reactome
pathways associated with each gene set. The 58 genes for MI
were enriched for 82 pathways, and the 96 genes for hyperten-
sion were enriched for 160 pathways. The top 10 pathways for
each set of genes had extensive overlap, sharing 4 immune sys-
tem pathways: immune system (REACT:R-HSA-168256), interleu-
kin-4 and 13 signaling (REACT:R-HSA-6785807), cytokine signaling
in immune system (REACT:R-HSA-1280215), signaling by interleu-
kins (REACT:R-HSA-449147); and 2 circulatory system pathways:
hemostasis (REACT:R-HSA-109582), and fluid shear stress and ath-
erosclerosis (KEGG: hsa05418). These associated pathways sug-
gest that the genes play a key role in immune responses and
circulatory system processes. Next, we examined the 2 gene
sets for gene/protein network interactions using BioGRID data
integrated into CTD. For MI, 30 of the 58 genes (52%) have
known gene/protein interactions with each other
(Supplementary Figure 1), and for hypertension, 70 of the 96
genes (72%) form a complex, highly interconnected network
(Supplementary Figure 2). Thus, for both of these diseases, the
majority of genes (52% and 72%) identified from CGPD-
tetramers form interaction modules and support development

of mechanistic networks to help fill in the knowledge gaps with
intermediary steps for air pollution-induced cardiovascular dis-
ease. Interestingly, of the 19 genes shared between the CGPD-
tetramers for MI and hypertension (Venn analysis, Figure 4), 13
of them (ACE, APOE, BCL2, CAT, GSK3B, ICAM1, MMP2, MMP9,
NOS2, NOS3, SOD1, SOD2, and TNF) are also present in each of
the gene interaction networks for both diseases, suggesting a
potential nexus of molecular mechanisms that can provide a
crossover between the 2 air pollution-induced outcomes.

Finally, we directly compared the 2 gene sets to look for
functional commonalities. Nineteen genes are shared between
the sets for MI and hypertension (Figure 4 and Table 2), and in-
clude immune cytokines and receptors (TNF, IL1B, TGFB1, IL6,
ICAM1), oxidative stress response genes (CAT, SOD1, SOD2), ni-
tric oxide-generating enzymes (NOS2, NOS3), extracellular ma-
trix proteins (MMP2, MMP9), apoptotic factors (BCL2, GSK3B),
blood pressure regulators (ACE, AGT), and an erythropoiesis fac-
tor (EPO).

Phenotypes. We derived 117 phenotypes associated with the 653
CGPD-tetramers for MI and 142 phenotypes for the 701 CGPD-
tetramers for hypertension. Interestingly, 96 of the phenotypes
are shared between the 2 different cardiovascular diseases, rep-
resenting 82% (96/117) and 68% (96/142) of the phenotypes for

Figure 3. Phenotypes associated with myocardial infarction (MI) in Comparative Toxicogenomics Database. A partial screenshot of the “Phenotypes” data-tab for MI

lists the phenotypes that have an inferred relationship to this disease via either a Chemical Inference Network or Gene Inference Network. Here, 198 chemicals have di-

rect interactions with both the phenotype “apoptotic process” (evidence line No. 2) and the disease MI (evidence line No. 3); independently, 17 genes also interact with

both this phenotype (evidence line No. 4) and disease (evidence line No. 5). Thus, “apoptotic process” can be inferred to MI via 198 chemicals and 17 genes. Note: 5 of

the 198 chemicals listed are environmental ambient air pollutants (boxed within the Chemical Inference Network).

396 | AIR POLLUTANT-CARDIOVASCULAR DISEASE PATHWAYS



MI and hypertension, respectively (Supplementary Table 3).
Many of these phenotypes, however, reflect similar biological
concepts and we realized they could be clustered into categories
as a way to condense and explore the information at a less
granular level: eg, “apoptotic process,” “cell death,” “positive
regulation of apoptotic DNA fragmentation,” and “release of cy-
tochrome c from mitochondria,” all reflect cellular death. Upon
manual inspection, these 96 common phenotypes could be clus-
tered into 13 categories (Table 3), with some phenotypes map-
ping to more than 1 group (eg, “positive regulation of neuron
apoptotic process” was mapped to both Cell Death and Nervous
System). The categories with the greatest number of shared
phenotypes as part of their computed CGPD-tetramers include
Inflammation-Immune System (150 tetramers for MI, 146 for
hypertension), Cell Death (179 tetramers for MI, 104 for hyper-
tension), Circulatory System (77 tetramers for MI, 82 for hyper-
tension), and Oxidative Stress (100 tetramers for MI, 64 for
hypertension).

Another approach to refine the number of phenotypes de-
rived from CGPD-tetramers (without having to manually review
and cluster phenotypes into generic categories) is to consider
GO term enrichment of the associated genes, because CTD

phenotypes are derived from GO terms, and GO terms have an-
notated relationships with genes. For example, using the CTD
Set Analyzer tool, the 58 genes derived from the CGPD-tetramers
for air pollution-associated MI are enriched for 957 GO biological
processes (Supplementary Table 4). When these enriched GO
terms are compared against the 117 phenotypes derived from
CGPD-tetramers, a smaller set of 46 common phenotypes are
discovered (Supplementary Figure 3), providing a filtered subset
of phenotypes, and, interestingly, this refined set still reflects
similar categories derived for the original 117 phenotypes, in-
cluding: Cell Death (9 phenotypes), Inflammation-Immune
System (9 phenotypes), Circulatory System (7 phenotypes), Cell
Process (4 phenotypes), and Oxidative Stress (4 phenotypes),
amongst others.

Assembling CGPD-tetramers
CGPD-tetramers can be consolidated to construct extended
chemical-disease pathways by first aligning and assembling
them based on shared chemicals, genes, and phenotypes. For
example, 91 CGPD-tetramers connect the chemical ozone with
33 genes and 27 phenotypes to MI (Supplementary File 1). We
aligned these 91 ozone-specific tetramers in a matrix to find
common overlapping intermediary genes and phenotypes
(Figure 6). Most of the phenotypes could be clustered into 6 cate-
gories: Oxidative Stress (composed of 10 tetramers using 10
genes and 1 phenotype), Cell Signaling (15 tetramers: 10 genes
and 3 phenotypes), Cell Metabolism (8 tetramers: 6 genes, 4 phe-
notypes), Inflammation-Immune System (21 tetramers: 15
genes and 6 phenotypes), Cell Death (18 tetramers: 12 genes and
3 phenotypes), and Circulatory System (10 tetramers: 8 genes
and 6 phenotypes). Aligning CGPD-tetramers identifies genes
that can interrelate and connect different phenotype categories.
For example, of the 10 genes involved in the Cell Signaling phe-
notypes, 6 of them (ESR1, HMGB1, IL1B, IL6, TGFB1, and TNF) are
also involved in the Inflammation phenotypes, allowing the 2
processes to be molecularly connected by intermediary gene
products. Assembling CGPD-tetramers builds an extensive, co-
hesive, and interrelated chemical-disease pathway (Figure 7),
filling in the knowledge gaps with putative intermediary steps
at the molecular, cellular, and system levels to connect ozone
exposure with MI.

DISCUSSION

We present a bioinformatics method that leverages curated
data from the public database CTD to generate novel sets of in-
formation called CGPD-tetramers, relating a chemical interac-
tion with a gene, connected to a phenotype and disease. Five
supporting lines of evidence are required to compute tetramers
by integrating CTD curated datasets. Our strategy does not re-
quire a priori knowledge of the toxicant, biological system, or ad-
verse outcome, and can be used to identify potential molecular
and biological intermediary steps that help fill in knowledge
gaps connecting chemical exposures with outcomes for envi-
ronmentally influenced diseases. As a proof-of-concept, we
tested the method to explore air pollution-induced cardiovascu-
lar disease, but the described strategy can be adopted and ap-
plied to any chemical-induced disease in the CTD framework.
In total, we generate 653 CGPD-tetramers relating air pollution
and MI (5 pollutants, 58 genes, and 117 key events) and 701
CGPD-tetramers for hypertension (3 pollutants, 96 genes, and
142 key events). We identify shared genes and phenotypes be-
tween the 2 diseases (highlighting important roles for oxidative
stress, inflammation, immune response, cell death, and

Figure 4. Step-wise process computing CGPD-tetramers for 2 cardiovascular dis-

eases. The disease hierarchy shows 2 cardiovascular diseases: myocardial in-

farction (MI) (a heart disease) and hypertension (both a heart and vascular

disease). In step 1, MI is associated with 4918 phenotypes inferred via either CIN

and/or GIN, representing 324 chemicals and 95 genes, respectively. In step 2, the

data are filtered for only phenotypes inferred via both a Chemical Inference

Network (CIN) and Gene Inference Network (GIN), and then restricted further in

step 3 by requiring a chemical in the CIN to have a directly curated Comparative

Toxicogenomics Database interaction with a gene in the associated GIN, to yield

758 phenotypes. The data in step 3 are supported by all 5 required lines of evi-

dence and can be used to generate 14 957 CGPD-tetramers (step 4). By limiting

the chemicals to ambient air pollutants (step 5), 653 CGPD-tetramers remain, for

5 pollutants, 58 genes, and 117 phenotypes for MI. The same steps are per-

formed for hypertension. Venn analysis discovers 19 genes and 96 phenotypes

shared between these 2 cardiovascular diseases associated with air pollution

exposure.
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circulatory system processes), and further show how CGPD-
tetramers can be aligned and assembled to yield extended
chemical-disease pathways detailing modes-of-action that can
be used to support systems toxicology-based applications
(Davis et al., 2019b).

Ambient air pollution (especially particulate matter and
ozone) has a significant global impact on human health, quality
of life, and premature mortality (Lelieveld et al., 2015). Both
short- and long-term exposure to air pollutants are associated
with increases in cardiovascular death, arteriosclerosis, MI,

stroke, and heart failure (Bourdrel et al., 2017). In our analysis,
we limited the study to only a small number of air pollutants
and only for 2 different types of cardiovascular diseases. MI is
an acute cardiovascular event, whereas hypertension repre-
sents a chronic condition. Nonetheless, there is clinical evi-
dence to suggest these 2 types of diseases are related (Pedrinelli
et al., 2012; Rakugi et al., 1996; Thune et al., 2008). Here, we iden-
tify 19 genes (Table 2), 96 phenotypes (Table 3), and a nexus of
13 interacting genes (Supplementary Figs. 1 and 2) that are
shared between the 2 diseases, providing both potential genetic

Figure 5. CGPD-tetramers relating air pollutants, intermediary genes, apoptosis, and myocardial infarction (MI). Forty-three individual CGPD-tetramers were computed

that relate 5 environmental chemicals (C) with molecular interactions to 14 genes (G) that modulate the phenotype (P) “apoptotic process” inferred to the disease (D)

MI. For visualization, the tetramers are condensed into a network schematic. Chemicals: AP, Air Pollutants; NO2, Nitrogen Dioxide; O3, Ozone; PM, Particulate Matter;

VE, Vehicle Emissions; genes are depicted using official gene symbols.

Table 1. Environmental Air Pollutants Used to Construct CGPD-tetramers for Myocardial Infarction and Hypertension

Myocardial Infarction Hypertension

Pollutant No. genes No. phenotypes No. tetramers No. genes No. phenotypes No. tetramers

Particulate matter 44 99 315 90 132 582
Air pollutants 17 18 46 32 25 76
Vehicle emissions 47 45 181 0 0 0
Ozone 33 27 91 0 0 0
Nitrogen dioxide 12 9 20 0 0 0
Carbon monoxide 0 0 0 21 15 43
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and molecular mechanistic roles that additionally relate these 2
outcomes.

The identified genes and phenotypes shared in CGPD-
tetramers for MI and hypertension suggest important mecha-
nistic roles for oxidative stress, inflammation, cell death, and
circulatory system processes. Of the total 653 CGPD-tetramers
linking air pollution with MI, 77% of them group to those 4 cate-
gories (Table 3): Oxidative Stress (15%, 100 tetramers),
Inflammation-Immune System (23%, 150 tetramers), Cell Death
(27%, 179 tetramers), and Circulatory System (12%, 77 tet-
ramers). The 701 CGPD-tetramers for hypertension have a simi-
lar distribution (Table 3), with 56% of the tetramers mapping to
the same 4 categories: Oxidative Stress (9%), Inflammation-
Immune System (21%), Cell Death (15%), and Circulatory System
(12%). Finally, in the ozone-specific data subset (Figure 6), 59 of
the 91 CGPD-tetramers (65%) also resolve to those same pheno-
type clusters.

It is important to emphasize that the generation of CGPD-
tetramers is inherently dependent on, and limited by, the data
quality, completeness, and currency in CTD (Davis et al., 2012b).
Thus, it is critical to confirm if these putative intermediary steps
computed by CGPD-tetramer generation can be validated in the
literature. In our assembled pathway for ozone-associated MI
(Figure 6), the first intermediary step “response to oxidative
stress” is validated by numerous reports of systemic and pulmo-
nary oxidative stress and reactive oxygen species as key mecha-
nisms for air pollution-associated cardiovascular events
(Bourdrel et al., 2017; Fiordelisi et al., 2017; Miller, 2020; Rao et al.,
2018) . The subsequent cell signaling phenotypes (“ERK1 and
ERK2 cascade,” “p38 MAPK cascade,” and “NF-kappa B factor
activity”) are supported by reports describing how inhaled air pol-
lution particles induce oxidative responses to initiate MAPK and
NF-kappaB pathways in experimental rodents (Roberts et al.,
2003; Shukla et al., 2000), and how MAPK and NF-kappaB signaling
are involved with MI (Song et al., 2020; Zhang et al., 2020). As well,
air pollution exposure is associated with altered metabolism for
cholesterol and triglycerides (Gaio et al., 2019), glutathione (de
Oliveira-Fonoff et al., 2017), calcium homeostasis (Holme et al.,

2019), and superoxide dismutase (Jiang et al., 2016), substantiating
our derived cell metabolism phenotypes from CGPD-tetramers.
The subsequent phenotypic events of inflammation (Ji et al.,
2018), immune cell deregulation (Barlow et al., 2008; Xu et al.,
2013), cell death (Peixoto et al., 2017), blood pressure (Xu et al.,
2020), and vascular and circulatory system processes (Bai and van
Eeden, 2013; Day et al., 2017) are well documented in the literature
in response to air pollution exposure and with roles in MI
(Bourdrel et al., 2017; Fiordelisi et al., 2017).

CGPD-tetramers also yield connections that might not be ini-
tially appreciated. For instance, “cognition” and “memory”
(Table 3), at first, might seem to be nonintuitive phenotypes for
MI and hypertension, yet cognitive defects have been reported
in cardiovascular patients (Harrison et al., 2014; Lamar et al.,
2019) and prenatal ozone exposure inhibits memory and spatial
learning in newborn rats (Custodio et al., 2019). Furthermore,
the CGPD-tetramer associating ozone with the CASP3 gene
product and “positive regulation of neuron apoptotic process”
and MI (Figure 6) provides a molecular and biological mecha-
nism connecting nervous system and cardiovascular events, as
well as strikingly resembling the results from a study correlat-
ing increased CASP3 activity with neuronal apoptosis and cog-
nitive impairments associated with MI (Gilbert et al., 2016).
Similarly, the phenotype “spermatogenesis” initially might be
considered an outlier (Table 3), yet hypertension has been
linked to decreases in sperm concentration in rats (Colli et al.,
2019) and ambient air pollution is suggested to influence sperm
quality (Bosco et al., 2018; Deng et al., 2016; Lafuente et al., 2016).
As a bioinformatics resource, CGPD-tetramers provide investi-
gators with sets of specific genes and biological processes as po-
tential mechanisms to test these reported associations.

Finally, we note that the computed CGPD-tetramers can be
used to provide chemical data for adverse outcome pathways
(AOPs). AOPs are information networks that interrelate
“molecular initiating events” (analogous to CTD chemical-gene
interactions), a series of connected “key events” (analogous to
CTD phenotypes), and “adverse outcomes” (Edwards et al., 2015;
Vinken et al., 2017). Although designed to be chemical-agnostic,

Table 2. Genes Common in CGPD-tetramers for Both Myocardial Infarction and Hypertension

Myocardial Infarction Hypertension

Gene No. Chemicals No. Phenotypes No. Tetramers No. Chemicals No. Phenotypes No. Tetramers

IL1B 5 26 53 3 24 34
TNF 5 24 50 3 23 35
BCL2 4 19 33 2 18 20
SOD1 4 16 32 2 15 17
SOD2 5 14 32 3 14 18
TGFB1 4 17 28 1 15 15
IL6 4 14 23 3 12 17
AGT 2 17 22 2 17 20
NOS2 5 5 15 3 5 10
CAT 5 8 15 2 6 7
MMP9 4 7 14 2 7 8
GSK3B 2 8 13 2 9 9
NOS3 4 7 13 2 6 7
GCLC 4 5 12 2 5 6
EPO 3 6 11 2 5 7
APOE 3 8 11 1 5 5
ACE 2 6 10 1 6 6
ICAM1 3 6 8 2 5 5
MMP2 4 4 8 2 4 5
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Table 3. Phenotypes Common in CGPD-tetramers for Both Myocardial Infarction (MI) and Hypertension (HT)

Phenotype Cluster Phenotypes No. Tetramers (MI) No. Tetramers (HT)

Inflammation-
immune system

26 Phenotypes: acute inflammatory response to antigenic stimulus; B-cell
homeostasis; inflammatory response; leukocyte migration; lymphocyte
homeostasis; macrophage differentiation; microglial cell activation;
monocyte homeostasis; neutrophil homeostasis; platelet activation;
positive regulation of cellular extravasation; positive regulation of im-
munoglobulin secretion; positive regulation of inflammatory response;
positive regulation of interferon-gamma production; positive regula-
tion of interleukin-12 production; positive regulation of interleukin-6
production; positive regulation of interleukin-6 secretion; positive regu-
lation of interleukin-8 production; positive regulation of macrophage
activation; positive regulation of neutrophil chemotaxis; positive regu-
lation of prostaglandin secretion; positive regulation of T-helper 2 cell
cytokine production; positive regulation of tumor necrosis factor pro-
duction; production of molecular mediator involved in inflammatory
response; regulation of inflammatory response; T-cell homeostasis

150 146

Cell death 10 Phenotypes: apoptotic process; cell death; cellular response to DNA
damage stimulus; negative regulation of apoptotic process; positive
regulation of apoptotic DNA fragmentation; positive regulation of apo-
ptotic process; positive regulation of cell death; positive regulation of
neuron apoptotic process; positive regulation of neuron death; release
of cytochrome c from mitochondria

179 104

Circulatory system 11 Phenotypes: artery smooth muscle contraction; blood vessel develop-
ment; cardiac muscle contraction; negative regulation of vasoconstric-
tion; platelet activation; positive regulation of vasoconstriction;
regulation of blood pressure; regulation of heart contraction; regulation
of heart rate; vasoconstriction; vasodilation

77 82

Oxidative stress 9 Phenotypes: hydrogen peroxide biosynthetic process; nitric oxide bio-
synthetic process; positive regulation of NAD(P)H oxidase activity; posi-
tive regulation of reactive oxygen species metabolic process; positive
regulation of superoxide anion generation; reactive oxygen species
metabolic process; response to oxidative stress; superoxide anion gen-
eration; superoxide dismutase activity

100 64

Cell proliferation 4 Phenotypes: cell proliferation; mitotic cell cycle arrest; negative regula-
tion of cell proliferation; positive regulation of cell proliferation

61 64

Cell process 9 Phenotypes: cell migration; collagen fibril organization; establishment
of cell polarity; positive regulation of heterotypic cell-cell adhesion;
positive regulation of autophagy; positive regulation of mitochondrial
membrane potential; positive regulation of protein import into nucleus;
regulation of gene expression; regulation of mitochondrial membrane
potential

41 39

Nervous system 6 Phenotypes: cognition; hippocampus development; learning or memory;
memory; positive regulation of neuron apoptotic process; positive regu-
lation of neuron death

38 23

Cell signaling 5 Phenotypes: calcium-mediated signaling; positive regulation of cytosolic
calcium ion concentration; positive regulation of NF-kappaB transcrip-
tion factor activity; positive regulation of NIK/NF-kappaB signaling;
positive regulation of p38MAPK cascade

22 32

Cell metabolism 7 Phenotypes: cholesterol homeostasis; glucose homeostasis; glucose
metabolic process; glutathione biosynthetic process; glutathione meta-
bolic process; hemoglobin biosynthetic process; protein
dephosphorylation

22 29

Response to stimulus 4 Phenotypes: response to cholesterol; response to organic substance; re-
sponse to toxic substance; response to xenobiotic stimulus

17 31

Behavior 5 Phenotypes: cognition; learning or memory; memory; locomotory explo-
ration behavior; social behavior

21 20

Physiology 5 Phenotypes: bone development; determination of adult lifespan; muscle
contraction; renal system process; spermatogenesis

21 19

Cell development
and maintenance

7 Phenotypes: positive regulation of epithelial to mesenchymal transition;
B-cell homeostasis; lymphocyte homeostasis; macrophage differentia-
tion; monocyte homeostasis; neutrophil homeostasis; T-cell
homeostasis

22 16
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AOPs have become a popular framework to represent toxicology
information (by linking specific chemicals to them) for human
health risk assessment and susceptibility (Ankley and Edwards,
2018; Mortensen et al., 2018; Rycroft et al., 2019). Numerous stud-
ies have developed methodologies to generate “computational
AOPs” that include chemical components by integrating, at least
in part, content from public databases (Bell et al., 2016; Carvaillo
et al., 2019; Kosnik et al., 2019; Nymark et al., 2018; Oki et al.,
2016). Many of these methods, however, first require the map-
ping and cross-referencing of data types from a variety of dispa-
rate public resources or additional literature mining. Here,
CGPD-tetramers contain phenotypes and diseases that can be
mapped to AOP “key events” and “adverse outcomes,” respec-
tively, to add content for chemicals and interacting genes as
“molecular initiating events” (Davis et al., 2018). Furthermore,
we demonstrate how aligning CGPD-tetramers by shared chem-
icals, genes, and phenotypes can assemble the tetramers to
construct and interrelate key phenotypic events to the adverse
outcome of MI, which could potentially help inform AOP con-
struction, testing, and refinement. As well, CTD’s use of GO
terms as a vocabulary source for phenotypes allow CGPD-
tetramers to take advantage of Gene Ontology Causal Activity
Modeling (GO-CAM), a project that links multiple independent

GO terms into structured biological models for pathway analysis
(Thomas et al., 2019); finding commonalities between GO-CAM
models and CGPD-tetramers (via shared GO/phenotype terms)
will further help connect and organize key phenotypic events
for construction of AOPs and chemical-induced mode-of-action
pathways.

Our approach using CTD (a single, self-contained, curated
database) provides many advantages. First, it obviates the time-
consuming requirement to extract, align, and map data con-
cepts from a variety of external repositories to integrate infor-
mation. Second, it requires no additional text mining of the
disease-related literature or a priori knowledge of the toxicant,
involved genes, biological mechanisms, or adverse outcome.
Third, because all CTD content is seamlessly integrated, users
can quickly expand out from any 1 component of a CGPD-
tetramer (chemical, gene, phenotype, or disease) to find other
potential components or information to consider in the design-
ing of a pathway, such as additional genes associated with the
cell signaling phenotype “p38 MAPK cascade” (http://ctdbase.
org/detail.go?type¼go&acc¼GO%3a0038066&view¼gene) or
other adverse health outcomes associated with ozone exposure
(http://ctdbase.org/detail.go?type¼chem&acc¼D010126&view¼
disease) or > 10 000 measured exposure marker levels for

Figure 6. Aligning CGPD-tetramers. To help inform the knowledge gaps between ozone (O3) exposure and myocardial infarction (MI), the 91 computed CGPD-tetramers

are condensed and aligned in a matrix, arranged by shared genes and phenotypes. Here, 33 genes (filled-in boxes) and 27 phenotypes clustered into 6 categories con-

nect this individual pollutant to cardiovascular disease.
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particulate matter (http://ctdbase.org/detail.go?type¼chem&acc
¼D052638&view¼expConsol).

In summary, we describe a novel process that leverages cu-
rated content from a single public database to rapidly generate
computational CGPD-tetramers linking air pollution toxicants
to cardiovascular disease. This method discovers genes, gene/
protein interaction modules, and phenotypes to help scientists
fill in the knowledge gaps and develop molecular tools to better
understand environmental risk. Our strategy can be easily ex-
panded and adopted to generate CGPD-tetramers for any envi-
ronmental chemical and disease curated in CTD.
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