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The neurotransmitter dopamine is implicated in diverse functions, including reward processing, reinforcement learning, and
cognitive control. The tendency to discount future rewards over time has long been discussed in the context of potential do-
paminergic modulation. Here we examined the effect of a single dose of the D2 receptor antagonist haloperidol (2mg) on
temporal discounting in healthy female and male human participants. Our approach extends previous pharmacological studies
in two ways. First, we applied combined temporal discounting drift diffusion models to examine choice dynamics. Second,
we examined dopaminergic modulation of reward magnitude effects on temporal discounting. Hierarchical Bayesian parame-
ter estimation revealed that the data were best accounted for by a temporal discounting drift diffusion model with nonlinear
trialwise drift rate scaling. This model showed good parameter recovery, and posterior predictive checks revealed that it accu-
rately reproduced the relationship between decision conflict and response times in individual participants. We observed
reduced temporal discounting and substantially faster nondecision times under haloperidol compared with placebo.
Discounting was steeper for low versus high reward magnitudes, but this effect was largely unaffected by haloperidol. Results
were corroborated by model-free analyses and modeling via more standard approaches. We previously reported elevated cau-
date activation under haloperidol in this sample of participants, supporting the idea that haloperidol elevated dopamine neu-
rotransmission (e.g., by blocking inhibitory feedback via presynaptic D2 auto-receptors). The present results reveal that this
is associated with an augmentation of both lower-level (nondecision time) and higher-level (temporal discounting) compo-
nents of the decision process.
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Significance Statement

Dopamine is implicated in reward processing, reinforcement learning, and cognitive control. Here we examined the effects of
a single dose of the D2 receptor antagonist haloperidol on temporal discounting and choice dynamics during the decision pro-
cess. We extend previous studies by applying computational modeling using the drift diffusion model, which revealed that
haloperidol reduced the nondecision time and reduced impulsive choice compared with placebo. These findings are compati-
ble with a haloperidol-induced increase in striatal dopamine (e.g., because of a presynaptic mechanism). Our data provide
novel insights into the contributions of dopamine to value-based decision-making and highlight how comprehensive model-
based analyses using sequential sampling models can inform the effects of pharmacological modulation on choice processes.

Introduction
Future rewards are discounted in value (Peters and Büchel, 2011)
such that humans and many animals prefer smaller-sooner (SS)
rewards over larger-but-later (LL) rewards (temporal discount-
ing). Steep discounting of reward value is associated with a range
of maladaptive behaviors ranging from substance use disorders
(Bickel et al., 2014), attention-deficit hyperactivity disorder
(Jackson and MacKillop, 2016), and obesity (Amlung et al.,
2016) to behavioral addictions, such as gambling disorder
(Wiehler and Peters, 2015). Temporal discounting has thus been
suggested to constitute a transdiagnostic process (Amlung et al.,
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2019; Lempert et al., 2019) with relevance for many psychiatric
conditions.

Dopamine (DA) plays a central role in addiction (Robinson
and Berridge, 1993). In rodents, reductions versus moderate
increases in DA transmission led to increases and decreases in dis-
counting, whereas the corresponding human literature is small
and more heterogeneous (D’Amour-Horvat and Leyton, 2014).
For example, de Wit et al. (2002) found that acute administration
of D-amphetamine decreased impulsivity, such that temporal dis-
counting was reduced under D-amphetamine. However, a later
study did not replicate this effect (Acheson and de Wit, 2008).
Administration of the D2/D3 receptor agonist pramipexole did
not affect measures of impulsivity in another study (n=10) from
the same group (Hamidovic et al., 2008). In contrast, Pine et al.
(2010) observed increased temporal discounting following admin-
istration of the catecholamine precursor L-DOPA compared with
placebo in healthy control participants (n=13), while the D2-re-
ceptor antagonist haloperidol did not modulate discounting. In a
recent within-subjects study using L-DOPA in a substantially
larger sample (n=87), there was no overall effect on temporal dis-
counting (Petzold et al., 2019). Rather, effects depended on base-
line impulsivity, which the authors interpreted in the context of
the inverted-U-model of DA effects on cognitive control functions
(Cools and D’Esposito, 2011). Two recent studies have reported a
reduction in discounting following administration of the selective
D2/D3-receptor antagonist amisulpride (Weber et al., 2016) as
well as the D2 receptor antagonist metoclopramide (Arrondo et
al., 2015). Although the latter is primarily used clinically for its pe-
ripheral effects, it can pass the blood-brain barrier and act cen-
trally (Shakhatreh et al., 2019).

A similar heterogeneity is evident when considering model-
based reinforcement learning (RL) (Doll et al., 2012), which in
some studies (Shenhav et al., 2017), but not others (Solway et al.,
2017), was associated with reduced temporal discounting.
However, in contrast to temporal discounting (see above), L-
DOPA instead increased reliance on model-based RL in healthy
controls (Wunderlich et al., 2012) and Parkinson’s disease
patients (Sharp et al., 2016). Notably, this overall effect was not
observed in a recent study in a substantially larger sample
(n=65) (Kroemer et al., 2019). Here, increased model-based RL
under L-DOPA was restricted to participants with high working
memory capacity.

One well-replicated behavioral effect in temporal discounting
(magnitude effect) refers to the observation that the rate of tem-
poral discounting decreases with increasing reward magnitude
(Green et al., 1997). In humans, this effect depends on lateral
PFC processing (Ballard et al., 2017); and in rodents, D-amphet-
amine effects on temporal discounting are more pronounced for
large-magnitude conditions (Krebs et al., 2016). However, it is
unclear whether DA impacts the magnitude effect in humans.

In the present study, we examined these processes using a
between-subjects double-blind placebo-controlled pharmacolog-
ical study with the D2-receptor antagonist haloperidol (2mg).
We previously reported increased dorsal striatal activation under

haloperidol versus placebo in these participants (Clos et al.,
2019a,b), compatible with a predominantly presynaptic effect of
haloperidol that increases striatal dopaminergic signaling.
Importantly, we extended previous pharmacological studies by
applying a temporal discounting modeling framework based on
a combination of discounting models with the drift diffusion
model (DDM) (Pedersen et al., 2017; Fontanesi et al., 2019;
Shahar et al., 2019; Peters and D’Esposito, 2020), allowing us to
comprehensively examine drug effects on response time (RT)
components related to both valuation and non–valuation-related
processes.

Materials and Methods
Participants
Fifty-four healthy participants were initially enrolled in the study.
Participants were screened by a physician for current diseases and cur-
rent intake of prescription drugs or drugs of abuse. All participants were
presently in good health and had no history of neurologic or psychiatric
disorder with no current intake of prescription medication. Only healthy
subjects were allowed to participate. Twenty-seven participants were
randomly assigned to each group (placebo/haloperidol). Two partici-
pants from the haloperidol group did not complete the temporal dis-
counting task. Technical problems led to working memory data loss
from 4 participants (3 from the haloperidol, 1 from the placebo group),
but these participants were still included in the temporal discounting
data analysis.

Following filtering of RTs (see below; the fastest and slowest 2.5% of
trials were excluded per participant), we examined the individual RT his-
tograms for each subject (see Extended Data Fig. 1-1). This revealed
that, even after filtering, the 3 participants with the fastest minimum
RTs (2 from the haloperidol group and 1 from the placebo group) still
showed implausibly fast responses on a number of trials (minimum RTs
of 2, 2, and 234ms, in Subjects 24, 25, and 41, respectively) such that the
minimum RTs were substantially faster than those in the remaining par-
ticipants (all min(RT) z scores of �2.04, �2.04, and �1.7; see Extended
Data Fig. 1-2). These subjects were therefore excluded from further
modeling.

We verified that there were no significant differences in demographic
background in terms of age or baseline working memory capacity (Table
1). Potential side effects of the medication were monitored via multiple
blood pressure and pulse measurements and evaluated via mood ques-
tionnaires. These analyses did not reveal significant group differences in
terms of reported mood, side effects, or physiological parameters, as
reported in our previous study (Clos et al., 2019b). Before enrollment,
participants provided informed written consent, and all study proce-
dures were approved by the local institutional review board (Hamburg
Board of Physicians).

Experimental design
General procedure. The study consisted of two testing sessions per-

formed on separate days. On the first day (T0), participants completed a
background screening and a set of working memory tasks (see below).
On the second day (T1), participants received either placebo or haloperi-
dol (2mg). In line with the pharmacokinetics of haloperidol (Franken et
al., 2017), testing on T1 was performed 5 h after drug administration to
ensure appropriate plasma levels of haloperidol. During the first 2.5 h,
participants were under constant observation, and pulse as well as blood
pressure levels were checked 30min and 2 h after drug administration.

Table 1. Demographic and working memory dataa

Placebo Haloperidol Group comparison

Age (yr) 24.46 3.4 23.36 2.5 t(45,614) = 1.40, p= 0.17
Sex (M/F) 7/19 6/17 x 2

(1) = 0.001, p= 1
WM baseline (z score) �0.04536 0.665 0.09436 0.556 t(46,826) = �0.80, p= 0.43
Weight (kg) (M/F) 70.76 3.39/63.56 3.19 80.56 2.80/62.56 2.32 t(36,702) = �0.68, p= 0.50
aData are mean 6 SD.
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During the waiting period, participants filled out questionnaires on
current mood and medication effects. Participants then completed a
number of unrelated tasks during an fMRI scanning session (total
scan time 2.5 h.). Following scanning, they first completed the tem-
poral discounting task outlined below, followed by a set of working
memory tasks (digit span forward and backward, block span for-
ward and backward, complex working memory span) (for detailed
results, see Clos et al., 2019b).

Temporal discounting task. Participants performed 210 trials of a
temporal discounting task where on each trial they made a choice
between an SS reward available immediately and an LL reward. SS and
LL rewards were randomly displayed on the left and right sides of the
screen, and participants were free to make their choice at any time. For
half the trials, the SS reward consisted of 20e; and for the remaining
trials, the SS reward was fixed at 100e. These trials were presented
randomly intermixed. LL options were computed via all combina-
tions of a set of LL reward amounts (constructed by multiplying the
SS reward with [1.01, 1.02, 1.05, 1.10, 1.20, 1.50, 1.80, 2.50, 2, 3, 4, 5,
7, 10, 13]) and LL delays (1, 2, 3, 5, 8, 30, 60 d), yielding 105 trials in
total per magnitude condition. As is typically the case for temporal
discounting tasks investigating magnitude effects (Green et al.,
1997), all choices were hypothetical.

Computational modeling
Temporal discounting model. We applied a simple single-parameter

hyperbolic discounting model to describe how value changes as a func-
tion of delay (Mazur, 1987; Green and Myerson, 2004) as follows:

SVðLLtÞ ¼ At

11exp k1 sk p Itð Þ pDt
(1)

Here, At is the numerical reward amount of the LL option on trial t,
Dt is the LL delay in days on trial t, and It is an indicator variable that
takes on a value of 0 for trials from the large-magnitude condition (SS
amount = 100e) data and 1 for trials from the small-magnitude condi-
tion (SS amount= 20e). The model has two free parameters: k is the
hyperbolic discounting rate from the large-magnitude condition (mod-
eled in log-space) and sk is a weighting parameter that models the degree
of change in discounting for small versus large SS rewards (i.e., higher
values in sk reflect a greater magnitude effect) (Green et al., 1997).

Softmax action selection
Softmax action selection models choice probabilities as a sigmoid func-
tion of value differences (Sutton and Barto, 1998) as follows:

P LLð Þt ¼
exp b 1sb p Itð Þ p SV LLtð Þ� �

exp b1sb p Itð Þ p SV SStð Þ� �
1 exp b 1 sb p Itð Þ p SV LLtð Þ� �

(2)

Here, SV is the subjective value of the risky reward according to
Equation 1 and b is an inverse temperature parameter, modeling choice
stochasticity (for b = 0, choices are random and as b increases, choices
become more dependent on the option values). SV(SSt) was fixed at 100
for the large-magnitude condition and fixed at 20 for the small-magni-
tude condition. It is again the dummy-coded condition regressor, and sb
models the magnitude effect on b .

Temporal discounting DDMs
To more comprehensively examine dopaminergic effects on choice dy-
namics, we additionally replaced Softmax action selection with a series
of DDM-based choice rules. In the DDM, choices arise from a noisy evi-
dence accumulation process that terminates as soon as the accumulated
evidence exceeds one of two response boundaries. In the present setting,
the upper boundary was defined as selection of the LL option, whereas
the lower boundary was defined as selection of the SS option.

RTs for choices of the SS option were multiplied by�1 before model
fitting. We furthermore used a percentile-based cutoff, such that, for
each participant, the fastest and slowest 2.5% of trials were excluded

from the analysis. We then first examined a null model (DDM0) without
any value modulation. Here, the RT on each trial t is distributed accord-
ing to the Wiener First Passage Time (wfpt) as follows:

RTt ;wfpt a1 sa p It; t 1 st p It; z1 sz p It; v1 sy p Itð Þ (3)

The parameter a models the boundary separation (i.e., the amount
of evidence required before committing to a decision), t models the
nondecision time (i.e., components of the RT related to motor prepara-
tion and stimulus processing), z models the starting point of the evi-
dence accumulation process (i.e., a bias toward one of the response
boundaries, with z. 0.5 reflecting a bias toward the LL boundary, and
z, 0.5 reflecting a bias toward the SS boundary), and � models the rate
of evidence accumulation. For each parameter x, we also include a pa-
rameter sx that models the change in that parameter from the high-mag-
nitude (SS= 100e) to the low-magnitude (SS= 20e) condition (coded via
the dummy-coded condition regressor It).

As in previous work (Pedersen et al., 2017; Fontanesi et al., 2019;
Peters and D’Esposito, 2020), we then set up temporal discounting diffu-
sion models by making trialwise drift rates proportional to the difference
in subjective values between options. First, we set up a linear modeling
scheme (DDMlin) (Pedersen et al., 2017) as follows:

vt ¼ vcoeff 1 svcoeff p It
� �

p SV LLtð Þ � SV SStð Þ� �
(4)

Here, the drift rate on trial t is calculated as the scaled value differ-
ence between the LL and SS rewards. As noted above, RTs for SS options
were multiplied by �1 before model estimation, such that this formula-
tion predicts SS choices whenever SV(SS) . SV(LL) (the trialwise drift
rate is negative) and predicts longest RTs for trials with the highest deci-
sion conflict (i.e., in the case of SV(SS) = SV(LL) the trialwise drift rate is
zero). We next examined a DDM with nonlinear trialwise drift rate scal-
ing (DDMS) that has recently been reported to account for the value de-
pendency of RTs better than the DDMlin (Fontanesi et al., 2019; Peters
and D’Esposito, 2020). In this model, the scaled value difference from
Equation 4 is additionally passed through a sigmoid function with as-
ymptote vmax as follows:

vt ¼ S vcoeff 1 svcoeff p It
� �

p SV LLtð Þ � SV SStð Þ� �h i
(5)

S mð Þ ¼ 2 p vmax 1 svmax p Itð Þ
11 exp �mð Þ � vmax 1 svmax p Itð Þ (6)

All parameters, including vcoeff and vmax, were again allowed to vary
according to the reward magnitude condition, such that we included sx
parameters for each parameter x that were multiplied with the dummy-
coded condition predictor It (see above).

Hierarchical linear regression
Here we used the median posterior log(k) parameter of each participant
from the DDMS model (see above) to compute the discounted values for all
LL options.We then computed the trialwise decision conflict as the absolute
difference between the subjective value of the LL reward and the corre-
sponding smaller sooner reward. To ensure that the intercept in the regres-
sion model corresponds to the RT for the lowest decision conflict and to
account for the strongly skewed distribution of value differences, we took
the inverse of the absolute difference in SS and discounted LL values in each
trial. To further avoid numerical instabilities when taking the inverse of
absolute differences, 1 (high conflict, e.g., SV(LL)=20.10e, SS=20e),
these value differences were capped at 1 before computing the inverse. We
then ran a hierarchical linear regression model in JAGS with 1/RT (to
account for the skewed RT distribution) as dependent variable and decision
conflict (inverse of the absolute value difference) as a predictor.

Statistical analyses
Hierarchical Bayesian models. Models were fit to all trials from all

participants using a hierarchical Bayesian modeling approach with
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separate group-level distributions for all parameters for the placebo and
haloperidol groups. Model fitting was performed using Markov Chain
Monte Carlo as implemented in the JAGS software package (Plummer,
2003) (version 4.3) using the Wiener module for JAGS that implements
the Wiener
First Passage Time (Wabersich and Vandekerckhove, 2014) (see Eq. 3)
in combination with R (version 3.4) and the R2Jags package. For group-
level means, we used uniform priors defined over numerically plausible
parameter ranges (see Code and data availability). For all sx parameters
modeling condition effects on model parameters, we used Gaussian pri-
ors with means of 0 and SDs of 2. For group-level precisions, we used g
distributed priors (0.001, 0.001). We initially ran 2 chains with a burn-in
period of 900,000 samples and thinning of two. Chain convergence was
then assessed via the Gelman-Rubinstein convergence diagnostic R̂ and
sampling was continued until 1 � R̂ � 1:1 for all group-level and indi-
vidual-subject parameters. This occurred after a maximum of 1.3 million
samples. For most parameters, 1 � R̂ � 1:01 (Softmax: all parameters,
DDM0: all parameters, DDMlin: 5 parameters 1:01 � R̂ � 1:1, DDMS: 9
parameters 1:01 � R̂ � 1:1). Relative model comparison was performed
via the deviance information criterion (DIC), where lower values reflect
a superior fit of the model (Spiegelhalter et al., 2002). A total of 10,000
additional samples were then retained for further analysis. We then
show posterior group distributions for all parameters of interest as well
as their 85% and 95% highest density intervals (HDIs). For group com-
parisons, we report Bayes factors (BFs) for directional effects Kass and
Raftery, 1995 for the hyperparameter difference distributions of placebo-
haloperidol, estimated via kernel density estimation using R (version
4.01) via RStudio (version 1.3) interface. These are computed as the ratio
of the integral of the posterior difference distribution from 0 to1 versus
the integral from 0 to –1. Using common criteria (Beard et al., 2016),
we considered BFs between 1 and 3 as anecdotal evidence, BFs .3 as
moderate evidence, and BFs.10 as strong evidence. BFs.30 and.100
were considered as very strong and extreme evidence, respectively,
whereas the inverse of these reflect evidence in favor of the opposite
hypothesis.

Parameter recovery analyses. To ensure that the parameters underly-
ing the data-generating process could be recovered using our modeling
procedures, we performed posterior predictive checks for the best-fitting
model (DDMS). During model estimation, we generated 10,000 datasets
simulated from the posterior distribution of the DDMS. Ten of these
simulated datasets were randomly selected and refit with the DDMS (see
previous section) (Fontanesi et al., 2019; Peters and D’Esposito, 2020).
Parameter recovery was then assessed in two ways. For group-level pa-
rameters, we examined whether the estimated 95% highest posterior
density intervals contained the true generating parameters. For subject-
level parameters, we examined scatter plots of generating versus esti-
mated single-subject parameters, pooled across all 10 simulations.

Posterior predictive checks. To check whether the best-fitting model
indeed captured key aspects of the data, in particular the value depend-
ency for RTs, we performed posterior predictive checks (Peters and

D’Esposito, 2020) as follows. For each indi-
vidual participant, we binned trials into five
bins, according to the absolute difference in
LL versus SS value (“decision conflict,” com-
puted according to each participant’s median
posterior log(k) parameter from the DDMS,
and separately for the high- and low-magni-
tude conditions). For each participant
and condition, we then plotted the mean
observed RTs as a function of decision con-
flict, as well as the mean RTs across 10,000
datasets simulated from the posterior distri-
butions of the DDM0, DDMlin and DDMS.

Code and data availability
Model code is available on the Open Science
Framework (https://osf.io/wm7ud/). Raw
choice data are available from Zenodo.org
(https://doi.org/10.5281/zenodo.4006531) for
researchers meeting the criteria for access to
confidential data.

Results
Subjective and physiological drug effects
As reported in detail in our previous papers (Clos et al., 2019a,b),
there were no significant group differences with respect to
reported side effects, subjective mood, heart rate, or blood pres-
sure relative to baseline. Likewise, groups did not differ with
respect to the actual and guessed drug condition (haloperidol vs
placebo) (Clos et al., 2019b).

Model free analysis of temporal discounting
Figure 1a shows the overall RT distributions per group with
choices of the LL option coded as positive RTs and choices of the
SS option coded as negative RTs. As a model-free measure of
temporal discounting, we examined proportions of LL choices as
a function of group (placebo vs haloperidol) and condition (100e
vs 20e reference reward). Raw proportions of LL choices are
plotted in Figure 1b. ANOVA on arcsine-square-root trans-
formed proportion values with the within-subject factor magni-
tude (high [100e] vs low [20e] SS reward) and the between-
subject factor drug (placebo vs haloperidol) confirmed a signifi-
cant magnitude effect (F(1,47) = 96.86, p, 0.001) such that partic-
ipants overall made more LL selections in the high-magnitude
condition. Furthermore, effects of drug (F(1,47) = 3.47, p=0.068)
and drug � magnitude (F(1,47) = 3.31, p=0.075) showed trend-
level significance.

Softmax choice rule
First, we analyzed our data using a standard Softmax choice rule
(Fig. 2). This analysis revealed an overall drug effect on log(k),
such that discounting was substantially lower in the haloperidol
group compared with the placebo group (Fig. 1a). Examination
of BFs indicated that a decrease in log(k) in haloperidol versus
placebo was;116 times more likely than an increase (Table 2).

Model comparison
We next compared three versions of the DDM that varied in the
way that they accounted for the influence of value differences on
trialwise drift rates, based on the DIC (Spiegelhalter et al., 2002).
In each model, we included separate group-level distributions for
the two drug conditions (haloperidol vs placebo). Furthermore,
for each parameter x, we included a shift parameter sx modeling
the change in parameter x from the high-magnitude condition
(SS reward =100e) to the low-magnitude condition (SS

Figure 1. a, Overall RT distributions for the placebo group (n= 26) and the haloperidol group (n= 23). Negative RTs reflect
choices of the SS option, whereas positive RTs reflect choices of the LL option. It can be seen that participants in the placebo
group made numerically more SS selections than participants in the haloperidol group. For individual subject RT distributions,
see Extended Data Figure 1-1. For minimum RTs following trial filtering, see Extended Data Figure 1-2. b, Proportion of LL
choices per group and magnitude condition.
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reward= 20e) (see Materials and Methods). These sx parameters
were modeled with Gaussian priors with means of zero (see
Materials and Methods). DDM0 assuming constant drift rates in-
dependent of value was also included and compared with two
variants of the DDM using either linear (DDMlin) (Pedersen et
al., 2017) or in a nonlinear (sigmoid) drift rate scaling (Fontanesi
et al., 2019; Peters and D’Esposito, 2020). In both drug condi-
tions as well as overall (Table 3), the data were best accounted
for by a DDMwith nonlinear drift rate scaling (DDMS).

We also compared the three diffusion models and the
Softmax model with respect to the proportion of binary choices
(LL vs SS selections) that they correctly accounted for. As can be
seen from Table 4, the DDMs performed numerically on par
with the Softmax model, whereas the DDMlin performed slightly
worse.

Overall group differences
We next examined overall group differences in model parame-
ters for the baseline (SS reward =100e) condition. Results are
plotted in Figure 3, and BFs for all group comparisons are listed
in Table 5. In both groups, there was a positive association
between trialwise drift rates and value differences, as the 95%
HDI for the drift rate coefficient parameter did not include 0 in
either group (Fig. 3b). Likewise, there was a slight bias toward
the SS option in both groups, as the 95% HDI for bias was ,0.5
in both cases (Fig. 3e).

We furthermore observed substantially lower group-level dis-
count rates log(k) in the haloperidol group compared with pla-
cebo, such that the 95% HDI of the posterior group difference in
log(k) was .0 (Fig. 3a; Table 5). Interestingly, the nondecision
time was likewise substantially lower in the haloperidol group
(Fig. 3c; Table 5), amounting, on average, to 180ms faster non-
decision times.

Magnitude effects on model parameters
We next turned to the effects of the magnitude manipulation on
diffusion model parameters, that is, the change in each parame-
ter in the low-magnitude condition compared with the high-
magnitude baseline condition. Results are plotted in Figure 4,
and BFs for all directional group comparisons are listed in Table
5. There was a substantial magnitude effect on log(k), such that
discounting was steeper in the low-magnitude condition (Fig.
4a). Interestingly, this pattern of results was not mirrored by in
the magnitude effect on the starting point/bias parameter.
Instead, the bias was shifted in the direction of a neutral bias
(0.5) in the low-magnitude condition (Fig. 4e) in both groups.
An additional interesting observation is that the nondecision
time was increased in the low-magnitude condition by on aver-
age;30ms (Fig. 4c).

Table 2. Summary of group differences in model parameters for the temporal
discounting Softmax modela

Parameter

Baseline Magnitude effect

Mdiff dBF Mdiff dBF

Log(k) 2.66 116.34 �0.10 0.42
Temp 0.03 1.36 �0.01 0.89
aFor each parameter, we report mean posterior group differences (Mdiff) and BFs (dBF) testing for directional
effects on both the baseline parameter in the 100e condition (left columns) and on the magnitude effect on
each parameter (right columns). BFs , 0.33 reflect evidence for placebo , haloperidol, whereas BFs .3
reflect evidence for placebo . haloperidol. For details, see Statistical analyses.

Figure 2. Modeling results (blue: placebo, orange: haloperidol) from a hierarchical Bayesian Model with softmax choice rule. a, Log(k) is the log(discount rate) from the high magnitude con-
dition (smaller-sooner reward = 100e ). b, Log(k)shift is the change in log(k) from the high magnitude condition to the low magnitude condition (smaller-sooner reward = 20e). c, is the
inverse temperature parameter. d,shift the corresponding shift in inverse temperature from the high to low magnitude condition. The thin (thick) horizontal lines denote 95% (85%) highest pos-
terior density intervals.

Table 3. Model comparison of three variants of the DDM based on the DIC
(Spiegelhalter et al., 2002) where lower values indicate a better model fita

Model

DIC

Placebo Haloperidol Full model

DDM0 11792.1 10034.5 21833.8
DDMlin 10835.0 10092.1 20923.9
DDMs 8586.5 8161.7 16771.8
aThe data were generally better accounted for by a temporal discounting DDM with DDMS compared with
DDMlin and DDM0.

Table 4. Proportion of correctly predicted binary choices for each group and
modela

Placebo Haloperidol

Softmax 0.89 (0.77–1.00) 0.90 (0.78–0.98)
DDM0 0.73 (0.57–1.00) 0.80 (0.60–0.98)
DDMlin 0.88 (0.71–0.97) 0.85 (0.62–0.98)
DDMs 0.89 (0.81–1.00) 0.90 (0.82–0.98)
aData are mean (range).
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Both drift rate components (vcoeff and vmax) were increased in
the 20e condition (Fig. 4b,f). This overall effect might in part be
attributable to the fact that, in the model, these two parameters
effectively scale the trialwise value differences to the appropriate
scale of the DDM (Pedersen et al., 2017). Because average value
differences spanned a smaller absolute range in the 20e condi-
tion, this is compensated in the model by increasing both vcoeff
(Fig. 4b) and vmax (Fig. 4f). Notably, under haloperidol, the drift
rate coefficient was somewhat increased, whereas the maximum
drift rate was attenuated. There might be some trade-off between
the drift rate components, which could contribute to such con-
trasting effects, such that increases in one component can be
compensated by decreases in the other. There was also some evi-
dence for a reduced magnitude effect on the maximum drift rate
(Fig. 4f) in the haloperidol group. This could be a reflection of
the fact that the magnitude effect on LL choice proportions was
numerically attenuated under haloperidol (Fig. 1a), leading to
overall more homogeneous values in the two conditions.
Difference distributions in the remaining model parameters were
centered at zero, indicating no systematic group differences.

Correlation of model parameters
For descriptive purposes, we show the full correlation matrices
for all single-subject median posterior parameters in Figure 5a
for haloperidol and Figure 5b for placebo.

Hierarchical linear regression
We also explored whether the qualitative pattern of results could
be reproduced using a hierarchical linear regression, modeling
trialwise inverse RTs as a function of value differences (see
Materials and Methods). Full posterior distributions of all

parameters are shown in Figure 6. This analysis reproduced
effects observed for the full DDM. For example, the slope was
overall negative, reflecting the decrease in 1/RT for increasing
conflict (Fig. 6a). The intercept was numerically smaller under
haloperidol (dBF=0.11; see Table 6), mirroring the drug effect
on the nondecision time in the DDMS. However, a direct com-
parison with DDM parameters is complicated by the fact the
intercept in the regression model also captures RT components
that in the DDM are reflected in the boundary separation, as well
as potentially additional nonlinear aspects of the evidence accu-
mulation process that cannot be accounted for by the slope.
These effects are visualized in Figure 6e where we plot the 1/RT
predicted by this regression model as a function of group, condi-
tion, and decision conflict. This illustrates again the slope effect
in the baseline condition and the attenuated intercept under
haloperidol.

Associations with working memory span
Exploratory analyses did not reveal associations between model
parameters of interest (log(k), nondecision time, drift rate scal-
ing) and working memory score (all |r|, 0.38).

Posterior predictive checks
We next performed extensive posterior predictive checks to
ensure that the best-fitting model (DDMS) could account for
RTs of individual participants in both groups. To this end, we
binned the trials of each individual participant into five bins,
according to the absolute difference in LL versus SS value (com-
puted according to each participant’s median posterior log(k) pa-
rameter from the DDMS). For each bin, participant, and
condition, we then plot the mean observed RT, as well as the
mean simulated RT across 10,000 datasets simulated from the
posterior distributions of the DDM0, DDMlin, and DDMS. These
results are shown in Figure 7 for the placebo group and Figure 8
for the haloperidol group. As can be seen, the DDMS provided a
much better account of how RTs vary as a function of decision
conflict than the DDMlin in the vast majority of participants in
both groups. This was mainly because the DDMlin overestimated
RTs with medium decision conflict and underestimated RTs in
cases of very low decision conflict (Peters and D’Esposito, 2020).

Some additional nontrivial patterns in the data deserve men-
tion. For example, while the DDMS in most cases predicted lon-
gest RTs for choices with the highest decision conflict, this was
not always the case (see, e.g., the low-magnitude condition of
Participant 34 from the placebo group in Fig. 7). In this case, in
the low-magnitude condition, the participant exhibited a

Figure 3. Posterior distributions (blue: placebo, orange: haloperidol) per parameter (top row: a, Log(k); b, Drift rate coefficient; c, Nondecision time; d, Boundary separation; e, Starting point
bias; f, Drift rate maximum) and group differences (bottom row, placebo–haloperidol) for the baseline condition (smaller-sooner reward = 100e). Thin (thick) horizontal lines denote 95%
(85%) highest posterior density intervals.

Table 5. Summary of group differences in model parameters for the temporal
discounting DDMa

Model parameter

Baseline Magnitude effect

Mdiff dBF Mdiff dBF

Log(k) 2.26 77.9 �0.093 0.47
Drift rate coefficient �0.365 0.061 0.020 2.73
Nondecision time 0.180 98.4 �0.0001 0.95
Boundary separation �0.047 0.60 0.017 1.47
Starting point bias �0.004 0.74 �0.017 0.26
Drift rate maximum 0.18 8.27 0.16 16.88
aFor each parameter, we report mean posterior group differences (Mdiff) and BFs (dBF) testing for directional
effects on both the baseline parameter in the 100e condition (left columns) and on the magnitude effect on
each parameter (right columns). BFs , 0.33 reflect evidence for placebo , haloperidol, whereas BFs .3
reflect evidence for placebo . haloperidol. For details, see Statistical analyses.
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Figure 4. Posterior distributions (blue: placebo, orange: haloperidol) of the change in each parameter from the high magnitude (baseline) to the low magnitude condition (top row: a, Log
(k)shift; b, Drift rate coefficientshift; c, Nondecision timeshift; d, Boundary separationshift; e, Starting point biasshift; f, Drift rate maximumshift) and corresponding group differences (bottom row,
placebo–haloperidol). Thin (thick) horizontal line denote 95% (85%) highest posterior density intervals.

Figure 5. Correlations between all single-subject median posterior parameter estimates across participants from the haloperidol (a) and placebo group (b).

Figure 6. Modeling results (blue: placebo, orange: haloperidol) from a hierarchical linear regression with decision conflict as a predictor and 1/RT as dependent variable. Top row: The slope
in a, represents the influence of increasing decision conflict (decreasing value differences) on 1/RT. The intercept in c, here corresponds to 1/RT for the lowest decision conflict (highest subjec-
tive value difference) from the high magnitude condition (smaller-sooner reward = 100e). Shift-parameters again reflect the change in slope and intercept (b, d) from the high to the low
magnitude condition. e, Illustrates 1/RT predicted by this regression model as a function of group, condition and decision conflict. Bottom row: Corresponding group differences (placebo–halo-
peridol). The thin (thick) horizontal lines denote 95% (85%) highest posterior density intervals.
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relatively small boundary separation (1.84) and drift rate coeffi-
cient (0.24), in combination with a bias toward the SS boundary
(0.43) and a high discount rate log(k) (�0.7). In such a constella-
tion, the bias toward the SS boundary can only be overcome
when value evidence is accumulated for a relatively long time
(because vcoeff is relatively small), giving rise to long RTs for LL
choices (which in this case only occurred in the case of low deci-
sion conflict).

Parameter recovery
As a final model check, we ran a series of parameter recovery
simulations. Here, we randomly selected 10 datasets simulated
from the posterior distribution of the DDMS (see Materials and
Methods), and refit these synthetic data with the DDMS. Results
are shown in Figure 9 for the baseline (high magnitude 100e) pa-
rameters, and Figure 10 for the parameters modeling condition
effects. As can be seen from these plots, for both baseline and
condition effects, this revealed that group-level parameters (Figs.
9, 10, bottom rows) recovered well, such that the true generating
parameters were generally contained in the estimated 95% HDIs.

Parameter recovery for individual-subject parameters was
excellent for all baseline (100e magnitude) parameters (Fig. 9,
top row) such that the correlation between generating and esti-
mated individual-subject parameters was .0.9 for all parame-
ters. For the parameters modeling condition effects (magnitude
effects, Fig. 10, top row), these correlations were lower for some
parameters, in particular for condition effects on boundary sepa-
ration and log(k). The likely reason is that the synthetic data
were simulated from the actual posterior distribution, and there
was overall little between-subject variance in some of these pa-
rameters in our data (see, e.g., Fig. 10a,f).

Discussion
We investigated the effects of a single dose of the D2-receptor
antagonist haloperidol (2mg) on temporal discounting in a
between-subjects study in a double-blind placebo-controlled set-
ting. A diffusion model-based analysis revealed substantially
smaller log(k) parameters and a substantial reduction in nonde-
cision times under haloperidol versus placebo.

We applied a recent class of value-based decision models
based on the DDM (Pedersen et al., 2017; Fontanesi et al., 2019;
Shahar et al., 2019; Peters and D’Esposito, 2020). Comprehensive
RT-based analysis was not possible in previous studies because
of the specifics of task timing (Pine et al., 2010) or low trial num-
bers (Weber et al., 2016; Petzold et al., 2019). Model comparison
confirmed previous results (Fontanesi et al., 2019; Peters and
D’Esposito, 2020), such that the data were better accounted for
by a model assuming a nonlinear trialwise scaling of the drift
rate, and this was confirmed via posterior predictive checks of
single-subject data. Extensive parameter recovery analyses con-
firmed that group-level parameters recovered well (Fontanesi et

al., 2019; Peters and D’Esposito, 2020). Recovery of individual-
subject baseline parameters (100e magnitude condition) was
excellent, whereas recovery of parameters modeling condition
effects was somewhat lower. This is likely because of some pa-
rameters (e.g., boundary separation shift) showing low between-
subject variance. Modeling was further validated by the observa-
tion that drug effects were fully reproduced using a Softmax choice
rule (Sutton and Barto, 1998) and by the finding that the magni-
tude effect (Green et al., 1997; Ballard et al., 2017; Mellis et al.,
2017) was likewise replicated using the DDM-based approach.
The qualitative pattern of RT effects was reproduced using a hier-
archical linear regression model of trialwise inverse RTs as a func-
tion of decision conflict.

The human literature on DA and impulsivity is heterogene-
ous (D’Amour-Horvat and Leyton, 2014), and interpretation of
these findings is complicated by several factors. First, effects of
dopaminergic drugs might depend on baseline DA availability
(Cools and D’Esposito, 2011), such that the same drug might
impair or enhance performance in different participants, accord-
ing to an inverted U-shaped function (or a different process-de-
pendent function) (Floresco, 2013). Second, the action of D2-
receptor antagonists is often interpreted in terms of a reduction
in DA neurotransmission (Pessiglione et al., 2006; Pine et al.,
2010). But such drugs might indeed enhance DA release by pre-
dominantly binding at presynaptic DA auto-receptors, at least at
lower dosages (Frank and O’Reilly, 2006) as shown in animal
(Pehek, 1999; Schwarz et al., 2004) and human studies (Chen et
al., 2005).

Interpretation of D2-receptor antagonist effects as a presy-
naptically mediated elevation of DA release might reconcile a
number of conflicting results. First, our finding of reduced tem-
poral discounting under haloperidol is in line with two recent
studies that reported reduced temporal discounting follow-
ing administration of D2/D3-receptor antagonists (Arrondo
et al., 2015; Weber et al., 2016). On the other hand, a reduc-
tion of temporal discounting following administration of
haloperidol was not observed in an earlier within-subjects
study in n = 13 participants (Pine et al., 2010) that used a
slightly lower dosage of 1.5 mg (we used 2mg). Lower dos-
ages of D2/D3-receptor antagonists might increase (rather
than decrease) DA signaling (Frank and O’Reilly, 2006), an
effect mediated by inhibitory feedback through presynaptic
D2 auto-receptors (Grace, 1991), which may lead to an
enhancement of phasic (vs. tonic) DA signaling (Frank and
O’Reilly, 2006), a point that we return to below. However, we
do acknowledge that such an interpretation is not general
consensus in the cognitive literature on DA drug effects
(Pessiglione et al., 2006; Pine et al., 2010).

Our results advance previous findings regarding the role of
D2/D3-receptor antagonists in temporal discounting in several
ways. First, participants performed an unrelated memory task
during fMRI directly before completing the temporal discount-
ing task. Those data revealed an overall main effect of drug con-
dition on trial onset-related activity in caudate nucleus (Clos et
al., 2019a,b) (i.e., caudate activity was increased under haloperi-
dol). Although this neural read-out was obtained before the dis-
counting task, both the fMRI and temporal discounting time
points were well within the time of maximum haloperidol
plasma levels (Franken et al., 2017). This observation is arguably
more compatible with the idea that the dosage of haloperidol
applied here increased (rather than decreased) striatal DA signal-
ing. Similar neural evidence was lacking in most previous human
pharmacological studies on DA effects on discounting (de Wit et

Table 6. Summary of group differences in model parameters for the hierarchi-
cal linear regression modela

Model parameter

Baseline Magnitude effect

Mdiff dBF Mdiff dBF

Slope 0.02 2.09 �0.07 0.09
Intercept �0.10 0.11 0.01 2.59
aFor each parameter, we report mean posterior group differences (Mdiff) and BFs (dBF) testing for directional
effects on both the baseline parameter in the 100e condition (left columns) and on the magnitude effect on
each parameter (right columns). BFs , 0.33 reflect evidence for placebo , haloperidol, whereas BFs .3
reflect evidence for placebo . haloperidol. For details, see Statistical analyses.
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al., 2002; Hamidovic et al., 2008; Arrondo et al., 2015; Weber et
al., 2016). Second, the DDM-based modeling approach adopted
in the present study allowed us examine the dynamics underlying
decision-making much more comprehensively than previous
human pharmacological studies (de Wit et al., 2002; Hamidovic
et al., 2008; Pine et al., 2010; Arrondo et al., 2015; Weber et al.,
2016; Petzold et al., 2019). In addition to the drug effect on the
discount rate log(k), diffusion modeling revealed substantially
shorter nondecision times in the haloperidol group that

amounted to �180ms on average. Such a robust enhancement
of lower-level motor and/or perceptual RT components is also
more compatible with an increase, rather than a decrease, in DA
transmission (Weed and Gold, 1998) and resonates with previ-
ous findings regarding a dopaminergic enhancement of RT-
based response vigor (Guitart-Masip et al., 2011; Beierholm et
al., 2013). An exploratory inspection of parameter correlations
revealed that log(k) and nondecision time were positively corre-
lated in both groups, suggesting that they might capture similar

Figure 7. Placebo condition posterior predictive checks. For each participant and condition (high (left facet) represents the high magnitude condition; low (right facet) represents the low
magnitude condition), trials were binned into five equal sized bins according to the absolute difference in between subjective LL and SS options (decision conflict bin). Plotted are mean
observed RTs per bin (data) as well model-generated RTs (blue represents DDM0; red represents DDMlin; orange represents DDMS) averaged.10,000 datasets simulated from the posterior dis-
tribution of each hierarchical model (blue represents DDM0; red represents DDMlin; orange represents DDMs).
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aspects of the data and/or might both be modulated by changes
in phasic dopaminergic responses. In support of this interpreta-
tion, augmentation of DA levels in Parkinson’s disease patients
reduces temporal discounting (Foerde et al., 2016) and improves
model-based RL (Sharp et al., 2016). Finally, this interpretation
of available human D2-receptor antagonist effects would also
reconcile the human and animal literature on acute dopami-
nergic effects on impulsivity (D’Amour-Horvat and Leyton,
2014). Together, these considerations lead us to suggest that
haloperidol increased (rather than decreased) striatal DA neu-
rotransmission, resulting in enhanced cognitive control
(reduced discounting) and a substantial facilitation of motor
responding (shorter nondecision times).

By what mechanism might haloperidol attenuate the impact
of delay on reward valuation? According to models of basal

ganglia contributions to action selection (Maia and Frank, 2011),
the probability for selecting a given candidate action depends on
the relative difference in activation between the direct (go) and
the indirect (nogo) pathways. A similar striatal gating mechanism
might underlie working memory and/or prefrontal control func-
tions (Cools, 2011). By increasing phasic DA responses, haloperi-
dol might increase the signal-to-noise ratio in striatal value
representations, thereby increasing the likelihood that objectively
smaller and/or more delayed LL rewards gain access to processing
in the PFC. Naturally, other modes of action are likewise conceiv-
able. Frontal and striatal regions are interconnected via a series of
loops that follow a dorsal-to-ventral organization (Haber and
Knutson, 2010), and haloperidol might impact functional interac-
tions within these circuits (Cools, 2011), for example, related to
top-down control of value representations (Hare et al., 2009,

Figure 8. Haloperidol condition posterior predictive checks. For each participant and condition (high (left facet) represents the high magnitude condition; low (right facet) represents the low
magnitude condition), trials were binned into five equal sized bins according to the absolute difference in between subjective LL and SS options (decision conflict bin). Plotted are mean
observed RTs per bin (data) as well model-generated RTs (blue represents DDM0; red represents DDMlin; orange represents DDMS) averaged.10,000 datasets simulated from the posterior dis-
tribution of each hierarchical model (blue represents DDM0; red represents DDMlin; orange represents DDMs).
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2014; Figner et al., 2010; Peters and D’Esposito, 2016). Finally,
haloperidol might have directly augmented control processes in
specific PFC regions (Figner et al., 2010). However, because of the
much greater expression of D2 receptors in striatum compared
with PFC (Seamans and Yang, 2004), it is generally assumed that
prefrontal action of D2 antagonists requires substantially higher
dosages than those applied in the studies examined here
(Seamans and Yang, 2004; Frank and O’Reilly, 2006).

The present study has a number of limitations that need to be
acknowledged. First, we did not run a within-subjects design,
which would have allowed us to account for individual-partici-
pant baseline parameters in the analysis of the drug effects.
Second, this also precluded us from comprehensively analyzing

potential modulatory influences of, for example, individual dif-
ferences in working memory on the drug effects, which might
modulate DA effects on discounting (Petzold et al., 2019) and
cognitive control more generally (Cools and D’Esposito, 2011).
Third, the proportion of female participants was relatively large.
Given the known association of ovarian hormones with the DA
system (Yoest et al., 2018), future studies would benefit from
testing larger sample sizes that allow for the examination of gen-
der effects and/or from directly controlling menstrual cycle
phase. Fourth, rewards were hypothetical because of the inclu-
sion of the high-magnitude condition. However, preferences for
real and hypothetical outcomes in temporal discounting tasks
show a very good correspondence (Johnson and Bickel, 2002)

Figure 9. Parameter recovery analysis for all Baseline parameters using the DDMs (a, Log(k); b, Drift rate coefficient; c, Nondecision time; d, Boundary separation; e, Starting point bias; f,
Drift rate maximum). Top row: Generating parameters vs. fitted parameters for each subject across ten simulations for haloperidol group (yellow) and placebo group (blue). Second row: True
generating group level hyperparameter means (points) and Bottom row: standard deviations (points) and estimated 95% highest density intervals (lines) per fitted simulation. For correlations
between generating and estimated single-subject parameters, see Extended Data Figure 9-1.

Figure 10. Parameter recovery analysis for all shift parameters using the DDMs (a, Log(k)shift; b, Drift rate coefficientshift; c, Nondecision timeshift; d, Boundary separationshift; e, Starting point
biasshift; f, Drift rate maximumshift). Top row: Generating parameters vs. fitted parameters for each subject across ten simulations for haloperidol group (yellow) and placebo group (blue).
Second row: True generating group level hyperparameter means (points) and Bottom row: standard deviations (points) and estimated 95% highest density intervals (lines) per fitted
simulation.
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and rely on similar neural circuits (Bickel et al., 2009). Also, neu-
ral haloperidol effects vary across brain regions and functions
(Wächtler et al., 2020), complicating interpretation as no task-
related imaging data were obtained here.

In conclusion, our data show that the D2-receptor antagonist
haloperidol attenuated temporal discounting and substantially
shortened nondecision times, as revealed by comprehensive
computational modeling of choices and RTs using hierarchical
Bayesian parameter estimation. These data are best accounted
for by a model in which low dosages of haloperidol lead to an
enhancement of phasic DA responses because of reduced feed-
back inhibition from D2 auto-receptors, leading to an augmenta-
tion of both lower-level (nondecision time) and higher-level
(temporal discounting) decision components.
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