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Abstract

Background: A decade ago, the advancements in the microbiome data sequencing techniques initiated the
development of research of the microbiome and its relationship with the host organism. The development of
sophisticated bioinformatics and data science tools for the analysis of large amounts of data followed. Since then, the
analyzed gut microbiome data, where microbiome is defined as a network of microorganisms inhabiting the human
intestinal system, has been associated with several conditions such as irritable bowel syndrome - IBS, colorectal
cancer, diabetes, obesity, and metabolic syndrome, and lately in the study of Parkinson’s and Alzheimer’s diseases as
well. This paper aims to provide an understanding of differences between microbial data of individuals who have
been diagnosed with multiple sclerosis and those who were not by exploiting data science techniques on publicly
available data.

Methods: This study examines the relationship between multiple sclerosis (MS), an autoimmune central nervous
system disease, and gut microbial community composition, using the samples acquired by 16s rRNA sequencing
technique. We have used three different sets of MS samples sequenced during three independent studies (Jangi et al,
Nat Commun 7:1–11, 2016), (Miyake et al, PLoS ONE 10:0137429, 2015), (McDonald et al, Msystems 3:00031–18, 2018)
and this approach strengthens our results. Analyzed sequences were from healthy control and MS groups of
sequences. The extracted set of statistically significant bacteria from the (Jangi et al, Nat Commun 7:1–11, 2016)
dataset samples and their statistically significant predictive functions were used to develop a Random Forest classifier.
In total, 8 models based on two criteria: bacteria abundance (at six taxonomic levels) and predictive functions (at two
levels), were constructed and evaluated. These include using taxa abundances at different taxonomy levels as well as
predictive function analysis at different hierarchical levels of KEGG pathways.

Results: The highest accuracy of the classification model was obtained at the genus level of taxonomy (76.82%) and
the third hierarchical level of KEGG pathways (70.95%). The second dataset’s 18 MS samples (Miyake et al, PLoS ONE
10:0137429, 2015) and 18 self-reported healthy samples from the (McDonald et al, Msystems 3:00031–18, 2018) dataset
were used to validate the developed classification model. The significance of this step is to show that the model is not
overtrained for a specific dataset but can also be used on other independent datasets. Again, the highest classification
model accuracy for both validating datasets combined was obtained at the genus level of taxonomy (70.98%) and
third hierarchical level of KEGG pathways (67.24%). The accuracy of the independent set remained very relevant.
(Continued on next page)
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Conclusions: Our results demonstrate that the developed classification model provides a good tool that can be used
to suggest the presence or absence of MS condition by collecting and analyzing gut microbiome samples. The
accuracy of the model can be further increased by using sequencing methods that allow higher taxa resolution (i.e.
shotgun metagenomic sequencing).

Keywords: Machine learning, Microbiome, Data science, Multiple sclerosis

Background
As science is increasingly evolving into a multidisciplinary
field, the intersection of several scientific subjects is con-
sidered to be the area of potential scientific contribution.
The research of the microbiome and the relationship of
microbiome with the host organism is one of the scientific
fields that demonstrates a swift growth in development
[1]. This was enabled by the advancement in data science
and bioinformatics tools utilized for the identification and
analysis of relevant taxa and its abundances. Addition-
ally, as more samples (both in terms of quantity but also
diversity) are sequenced and decoded by bioinformatics
tools, the application of data science techniques enables
us to gain important insights into medical conditions by
examining the data only.

The human gut microbiome
Microbiota is defined as a network of harmonious and
pathogenic microorganisms that are present on and inside
the humans. Besides the gut microbiota, the nasal, oral,
skin and vaginal microbiota have been examined exten-
sively [2]. The intestinal tract contains the principal mass
of human microorganisms. The approximate weight of
the microbes present in a human digestive tract is 1.5kg,
therefore comprising half of the fecal matter [3].
The association with the human host of majority of

microbiota bacteria is either commensal or beneficial,
thus considered to be non-pathogenic [4]. Bacteroidetes
and Firmicutes are the two most significant phyla bacteria
present in the gutmicrobiota. The number of species-level
bacteria present in a single human gut varies. According to
[5], a study of 124 individuals presented over 1000 species
altogether, and each individual comprised of around 160
distinctive species. From the 160 different species, 18 were
present across all subjects, and 75 species were found
in most of the subjects. This indicates high variability in
abundance of the species. This intersample variance has
been a subject of many studies that have inspired the
research in this paper.
The makeup of the gut microbiota can be studied using

the fecal samples that are collected in a non-invasive man-
ner. Since the methods for collecting samples from other
segments of the gastrointestinal system are characterized
as invasive, this might suggest that the study of the gut is

limited [6]. Nevertheless, the fecal samples distinguish the
sufficiently large division in the colon that hosts most of
the metabolic activity, and thus, can be used for further
analysis [6]. Therefore, the results of the fecal sample anal-
ysis are suitable and can provide additional information
that is significant to support medical decision making.

Sequencing techniques: 16s rRNA gene sequencing
The 16s rRNA gene has been used as the key identi-
fier for the classification of microorganisms that reside in
the human gut since the mid-1980s [7]. This gene con-
tains conserved and variable regions that enable universal
primer construction and facilitate the distinction between
different species. The 16s rRNA gene contains approxi-
mately 1500 base pairs. The conserved regions of that gene
qualify it for amplification and marking in a microbial
sample using the PCR technique [8].

Gut microbiome andmedical conditions
The gut microbiota and the human host have a symbiotic
relationship. Dysbiosis may occur when commensal bac-
teria are outnumbered or replaced by pathogenic once.
Various intersample variance studies of gut microbiome
report potential for utilization of these results for sam-
ple classification. The links have been discovered between
an imbalance in gut microbiota and various diseases
such as colorectal cancer, inflammatory bowel disease
(IBD) and irritable bowel syndrome (IBS), diabetes, obe-
sity, metabolic syndrome, malnutrition, and rheumatoid
arthritis [9–13]. In the neurological studies, the role of gut
microbiota has been identified in Parkinson’s disease and
Alzheimer’s disease [14, 15]. The relationship between
gut microbes and the development of multiple sclerosis
has been explored by recent studies. Multiple sclerosis
(MS) is a central nervous system condition that affects
humans. The etiology and pathogenesis of MS remain
still unknown but dysbiosis has been demonstrated [16].
The discoveries in the field ofMS-microbiome association
could help discover new ways to identify, treat or prevent
the MS relapse.

Study aim
This study aims to explore the differences between
gut microbiome samples (obtained using 16s rRNA
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sequencing technique) of individuals with and without
MS and use those differences to develop a computation
model that would likely distinguish those two groups of
samples.

Methods
The paper aims to devise a computational model that will
discriminate healthy and MS condition samples. We use
data science and machine learning techniques to develop
this model. This process starts with intersample analysis
and identifications of characteristics of healthy versus MS
samples which are based on taxonomical and functional
analysis. The discovered variance is used to develop a clas-
sification model (based on machine learning techniques)
that can be used to identify, with a high probability, if
a new sample is with or without MS condition. This
approach can be applied to the disorders (other than MS)
by building a similar model. This would involve a new
intersample analysis and development of a new classifica-
tion model.
The work in this paper is continuation of the work pub-

lished in [17]. Besides performing the cross-validation of
the previous results, the following extensions have been
introduced:

• development of the classification model based on
predictive functions,

• validation of the model by testing its classification
power on independent sets of gut microbiome data
(data even coming from different cultures).

Dataset
We identified several studies that explored gut micro-
biome and MS, and therefore potentially have data that
could be used in our analysis [18–25]. All the available
data were considered and all suitable data from these
studies have been included in the datasets that we studied.
In this study we used three datasets. The modelling

dataset [18] was used to develop the initial computa-
tional model and the samples were taken from the pop-
ulation sampled in the United States (Boston, MA) and
reported in 2016.More details about this dataset follow in
“Modelling dataset” section.
For validation purposes, a new dataset was constructed.

The samples of self-reported healthy individuals were
taken from the United States population constructed in
the American Gut project [26] and reported in 2018, while
MS samples were taken from the Japanese population [19]
and reported in 2015. It is interesting to note that the
validation dataset had samples coming from different cul-
tures and the only variable that we examined is whether
the individuals were diagnosed with MS or not. This
approach helps us to validate the computational model
for biases that might be introduced by other factors that

might significantly influence the gut microbiota such as
diet [27].With the examination of the additional variables,
such as age, sex, diet, geography, household microenvi-
ronment, we could develop even a more precise com-
putational system. To the best of our knowledge, such a
comprehensive dataset, both in terms of metadata avail-
able and dataset size needed to support examination of all
the interesting variables, does not exist.

Modelling dataset
The 16s rRNA sequencing method was used to obtain
data sequences analyzed in this study. The first set of
samples was obtained by [18]. In the initial multiple scle-
rosis group, the number of subjects was 60 and in the
healthy control group, it was 43. The groups had similar
demographic characteristics, with a moderately higher
number of males recorded in the MS group. All MS
subjects were in relapsing-remitting disease state rather
than in active relapse. The demographics of the studied
population are shown in Table 1.
Even though the total number of female and male sam-

ples in the dataset is known, the individual samples did not
have gender labels. This is very unfortunate as this vari-
able has a great potential in the analysis of MS samples.
In the data cleansing phase, the samples of individuals
already treated for MS were removed, thus we kept only
samples of individuals that received noMS treatment. The
number of healthy samples to be used was calculated so
the statistical power of the t-test is maximized. For this
purpose, the tt_ind_solve_power method from statsmod-
els Python library. The inputs to this function were: effect
size (the difference between the two means divided by the
standard deviation), alpha value (significance level set to
0.05) and expected power of 80% [28]. Once the optimal
size of the control group was calculated, a random subset
of available samples was chosen to be put in this group.
Unfortunately, the dataset did not have the accompanying
metadata (with useful variables such as age/sex/BMI), so
the only variable that we had to work with is whether the
sample was fromMS or control group.

Table 1 Telalovic and Kilic [17] Dataset [18] description

Attribute Healthy, N = 43 Multiple sclerosis , N = 60

Age 42.2 ± 9.61 49.7 ± 8.50

Male 6 (14%) 19 (32%)

Female 37 (86%) 41 (68%)

Body mass index 26.4 ± 6.3 27.2 ± 4.7

Caucasian 43 58

Disease Duration NA 12.8 ± 8.3

Untreated NA 28
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When the data cleaning phase was complete, the final
counts were 28 for MS samples and 35 for control.

Verification dataset
For verification purposes, we considered two additional
datasets. The idea here is to test whether the compu-
tational model is dataset specific or it is also successful
in classification on additional independent datasets. The
18 samples of individuals with MS disease were obtained
from the dataset introduced in [19], and 18 samples of self-
reported healthy individuals were obtained from the [26]
dataset.

Taxonomy analysis
The sequences were identified and quantified using the
pipeline developed with QIIME2 tools [29]. The pipeline
included quality-filtering, denoising and classification
steps. The classifier used the GreenGenes database at
99% identity (version 13_5). Each identified OTU found
in the database, with taxonomy resolution starting from
the phylum to the species level, has been assigned a name.
Using the database names instead of the OTU identi-
fiers, enables easier data understanding, as the phylogeny
of the specific bacteria is identified. The resulting table,
containing the sample’s count of each specific bacteria,
is outputted from the pipeline. The absolute abundance
of bacteria was normalized and used for the intersample
variance analysis.

Predictive functional analysis
Besides bacterial identification, another available infor-
mation about the gut microbiome is a predictive func-
tional analysis of the present bacteria. In this paper, we
explored the usage of this information to identify the
intersample variance as well.
To predict the functional composition of a metagenome

using 16s marker gene and reference genomes database,
the PICRUSt (phylogenetic investigation of communities
by reconstruction of unobserved states) computational
tool has been used. PICRUSt uses a reconstruction algo-
rithm to predict the gene families present and combines
them to compose the whole metagenome. This ‘predictive
metagenomic’ approach provides useful insights into the
functional links between the phylogeny members [30].

Random forest classification
Training of the classifier and the development of the clas-
sificationmodel was accomplished using the Random For-
est (RF) classification algorithm. This decision is based on
research reported in [31]. This supervised learning algo-
rithm was constructed using the multiple decision trees
generated out of data samples selected randomly [32]. Fur-
thermore, RF algorithm generates a prediction for each
tree, picks the optimal solution using voting technique,

and calculates an acceptable metrics of the feature impor-
tance for model revision. Firstly, the data’s values and
targets were separated. Using the train_test_split method,
the data sets were split into training and testing sets. In
our implementation, 80% of data is allocated for training,
and 20% is allocated to be used for model testing. The
reported scores are averages after a 5-fold cross-validation
was performed.We generated 100 decision trees.With the
increase in the quantity of decision trees, the classifier’s
accuracy was increasing as well, at the expenditure of the
computational time. The accuracy of the model was cal-
culated by the comparison between the model’s predicted
target data and the actual target data. The identical pro-
cess was iterated on data from six taxonomic levels and
two hierarchical levels of predictive functions separately.
The feature importance scores were computed for all

the study variables and used for classification model
verification. Furthermore, the highest importance features
were extracted and applied as the new data for the
repeated training the classifier. The accuracy was com-
pared to the initial iteration to ratify that this data forms
a robust initial basis for the decision model development.
Figure 1 shows the taxonomy of the statistically significant
taxa in which taxa with high feature importance scores are
emphasized.

Results
Accuracy using the model development dataset
Taxonomy analysis
As previously stated, we developed a classification model
for each of the six taxonomical levels. The pipeline
described in “Taxonomy analysis” section established the
abundances of bacteria at the six different taxonomic
levels. Table 2. summarizes the number of taxa identified
for both study groups.
In this case, each of these taxa is a potential feature

that can be utilized in the classification model for assign-
ing samples to the appropriate groups. The standard
procedure that is applied in machine learning is feature
selection and its aim is to remove irrelevant and redun-
dant features. The model with the fewer features is more
accurate if the most important features are selected. For
feature selection we followed approach similar to one
described in [33]. In this work, we addressed the fea-
ture selection in two steps. Both of the steps improved
the accuracy of our model and also reduced the standard
deviation of accuracy of different cross-validation runs.
To initially select the classifier’s features, the indepen-

dent t-test was applied and establish the taxa that had a
statistically significant difference between the groups. We
used p < 0.05 as the cut-off value for the statistical signif-
icance. The identified taxa were the initial candidates for
the features. The initial training of the classifier used all
the candidate features.
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Fig. 1 The taxonomy tree includes genus archaebacteria identified as statistically significant at p < 0.05 along with their phylogenetic tree, used for
the development of the classification model. The bolded archaebacteria are the ones that have been identified with high feature importance score
by the classifier

The RF classifier also produces the score for each of
the used feature. The feature importance scores obtained
from the initial training of the RF classifier were used to
further restrict features for the final training of the classi-
fier. The final list of features (taxa), for model training and
testing at each taxonomical level, is presented in Table 3.
The training and testing data was split using the 5-fold
cross validation technique. Multiple runs of the algorithm
were run and each time 1

5 of the data was used for testing
and the remaining data was used for training of the model.
The average accuracy scores after running 5-fold cross-
validation obtained at the taxonomical levels are listed in
Table 4. The accuracy reaches 76.82% at the genus level of
taxonomy which is a significant result.

Table 2 Telalovic and Kilic [17] Identified bacteria count per
taxonomical level in [18] dataset

Level Healthy control Multiple sclerosis

Phylum 13 13

Class 29 26

Order 47 39

Family 88 79

Genus 192 174

Species 257 234

Table 3 Telalovic and Kilic [17] Bacteria with high feature
importance score in the classification model using [18] dataset

Level Name and p-value

Phylum Euryarchaeota (0.0158), Bacteroidetes (0.0456),
Verrucomicrobia (0.0059), Tenericutes (0.0492)

Class Verrucomicrobiae (0.0059), Bacteroidia (0.0458),
Methanobacteria (0.016), Mollicutes (0.0491)

Order Verrucomicrobiales (0.0059), Bacteroidales (0.0458),
Methanobacteriales (0.016), RF39 (0.0482), bacteria
from class Clostridia (0.0181)

Family Verrucomicrobiaceae (0.0059), bacteria from order
RF39 (0.0482), Barnesiellaceae (0.0133),

Methanobacteriaceae (0.016), bacteria from class
Clostridia (0.0181), Paraprevotellaceae (0.034)

Genus Akkermansia (0.0059), bacteria from family
Ruminococcaceae (0.0437), Butyricimonas (0.0359),

bacteria from family Barnesiellaceae (0.0133),
Methanobrevibacter (0.0159)

Species Akkermansia muciniphila (0.0059), bacteria from fam-
ily Ruminococcaceae (0.0437), bacteria from genus
Butyricimonas (0.0359),

bacteria from family Barnesiellaceae (0.0133), bacteria
from genus cc_115 (0.0496)
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Table 4 Classification accuracy obtained with dataset used for
the development of the classification model [18]. The basis for
classification was abundance of bacteria on different levels of
taxonomy. The discrepancy with [17] is due to the introduction of
the cross-validation

Level Accuracy score

Phylum 61.90%

Class 64.32%

Order 69.32%

Family 75.16%

Genus 76.82%

Species 53.44%

Predictive function analysis
The tables from the PICRUSt analysis containing the
KEGG pathways were used as the input for the statisti-
cal analysis. Two computational models were developed
using the third and second hierarchical levels of KEGG
pathways. The feature selection again was done in two
steps that resulted in improved accuracy of the model.
The first step of the analysis was to identify pathways
that were statistically significant between the two groups.
For this task, the t-test has been used since the data was
normalized in the previous steps.
There were a total of 328 functions related to both,

healthy control and MS samples at the third hierarchical
level, meaning the lowest level gene function identifiers.
All the functions, whose p-value is p < 0.04, were con-
sidered to be statistically significant for the classes and
extracted to be used in the model training phase. At the
third hierarchical level of functions, 91 functions were
extracted as statistically significant. The second hierarchi-
cal level has also been tested using the t-test. There was a
total of 41 functions related to both, healthy control and
MS samples. All the functions whose p-value is p < 0.05
were extracted, and the number of those was 20. The list of
predictive functions was further restricted by only using
the ones with the highest importance as identified by the
initial run of the RF algorithm. The final list of the used
predictive functions is listed in Table 5.
The functions identified as significant were used for

the development of additional two predictive models (one
using second and the other third hierarchical level of the
KEGG pathways). The training and testing data was split
using the 5-fold cross validation technique. Multiple runs
of the algorithms were run and each time 1

5 of the data
was used for testing and the remaining data was used for
training of the model. The average accuracy scores
obtained at the two hierarchical levels are listed in Table 6.

Testing the classification model on independent datasets
The developed model was tested using two independent
datasets. The first dataset [19] provided the 18 samples of

Table 5 Bacteria with high feature importance score in the
classification model developed using the dataset from [18]

Level Predictive functions with high feature
importance score

2nd hierarchical level Signaling Molecules and Interaction, Amino
Acid Metabolism, Excretory System, Lipid
Metabolism,

Genetic Information Processing, Nervous
System, Energy Metabolism

3rd hierarchical level Carotenoid biosynthesis, Influenza A,
Glycosyltransferases, Basal transcription
factors, Biosynthesis of unsaturated fatty
acids,

Caprolactam degradation, Signal
transduction mechanisms, Flavonoid
biosynthesis, Caffeine metabolism,

Chloroalkane and chloroalkene degradation,
Non-homologous end-joining, Hepatitis C,

Chagas disease (American trypanosomiasis),
Butirosin and neomycin biosynthesis,
Chlorocyclohexane and chlorobenzene

degradation, Phenylalanine, tyrosine and
tryptophan biosynthesis, Ubiquinone and
other terpenoid-quinone biosynthesis,

Vibrio cholerae infection, Nitrotoluene
degradation, Steroid hormone biosynthesis,
Aminoacyl-tRNA biosynthesis, Steroid

biosynthesis, Bacterial toxins, Novobiocin
biosynthesis, Phenylalanine metabolism,
Pantothenate and CoA biosynthesis,

Meiosis – yeast, Cell cycle

individuals with the MS disease. The second dataset [26]
provided samples of 18 individuals that self-reported as
healthy.
The combined accuracy of prediction using the abun-

dance of bacteria on different taxonomy levels is summa-
rized in Table 7. Table 8 contains accuracies of the model
predicting MS samples and Table 9 contains accuracies of
predicting non-MS samples. The accuracy for predictive
based on predictive functions the accuracy is summarized
in Table 10. In Fig. 2 the confusion matrix visualizes how
the number of correct classifications (in both MS and
control groups) for classifiers that used taxa at a higher
resolution as features. The diagonal values are the ones
that were correctly classified.
Even though our two validation datasets come from two

different studies, the classification accuracy and its trends

Table 6 Classification accuracy obtained with dataset used for
the development of the classification model [18]. The basis for
classification was different hierarchical levels of KEGG pathways

Level Accuracy score

2nd hierarchical level 62.03%

3rd hierarchical level 70.95%
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Table 7 Classification accuracy obtained with validation datasets
[19, 26]. The basis for classification was abundance of bacteria on
different levels of taxonomy

Level Accuracy score

Phylum 52.78%

Class 58.33%

Order 63.89%

Family 69.44%

Genus 75%

Species 51.56%

are very similar. This data demonstrates that classifier
performance is robust to the batch effect.

Discussion
The purpose of this study was to study gut microbiota
bacterial diversity of MS patients and develop a computa-
tional model to distinguish MS patients from the healthy
patients by examining their gut microbiome sample 16s
amplicon sequences. We developed eight such classifiers
and validated their accuracy on an independent dataset.
To develop classifiers, we needed to first identify the

important features - those are the taxa (or predictive
metabolic functions) that had a significant difference
between the MS and control group. The comparison
between our results and previous MS studies is sum-
marized in Tables 11 and 12. It can be seen that our
computations mostly agree with previous findings (except
in one case). Also, our computation provides additional
statistically significant bacteria that can be use as classifi-
cation features and we also provide bacteria at additional
taxonomy levels (we could not find any studies that exam-
ined the class or order level of bacteria taxonomy). The
value of the data science approach is that we were not able
only to identify important features, but we also give a sin-
gle prediction, based on the values of all the important
features, that classifies a sample into two groups.
The classifiers based on the abundance of bacteria are

more accurate than ones based on predictive functions.
We need to be careful about drawing conclusions here as

Table 8 Classification accuracy obtained with validation datasets
[19]. The basis for classification was abundance of bacteria on
different levels of taxonomy. That dataset contains samples of
individuals with MS disease

Level Accuracy score

Phylum 55.56%

Class 61.11%

Order 66.67%

Family 72.22%

Genus 77.78%

Table 9 Classification accuracy obtained with validation datasets
[26]. The basis for classification was abundance of bacteria on
different levels of taxonomy. The dataset contains samples from
individuals that self reported as healthy

Level Accuracy score

Phylum 50.00%

Class 55.56%

Order 61.11%

Family 66.67%

Genus 72.22%

these results do not suggest that there exist less variance in
themetabolic potential than inmicrobiome structure. The
tool that we used (PICRUSt), uses microbiome structure
to predict the metabolic potential and has limited accu-
racy. To fully understand the potential of the metabolic
influence, we would need to use metabolomics.
The accuracy rises as we look at the higher resolu-

tion of taxonomy. As we used samples obtained using the
16s rRNA sequencing technique, we expected the abun-
dance to be accurate up to the genus level as this the
limitation of this technique described in the literature
[34]. This is because related bacterial species may have
almost identical 16s rRNA gene sequences which makes it
hard to distinguish them in the bioinformatics pipelines.
We indeed observed that our accuracy started to drop
at the species level which confirms the previous findings
(Tables 4 and 7).
The 16s rRNA sequencing technique distinguishes MS

patients from healthy ones with over 70% accuracy using
a test considered to be non-invasive. This value represents
a significant value for medical decision making. Though
this is a valuable contribution, further improvements can
be made so that accuracy would be raise.
Overall, this study considered 99 samples, which is a

somewhat small number for data science. The mitigating
factors are: only two groups were studied, classification
was binary, and the sizes of the groups were approxi-
mately the same. More samples need to be considered to
construct even more applicable and accurate results. The
usage of the independent datasets for the validation of the
model(s) strengthens our results greatly.With an indepen-
dent dataset, we were able to achieve similar classification

Table 10 Classification accuracy obtained with validation
datasets [19, 26]. The basis for classification was different
hierarchical levels of KEGG pathways

Level Accuracy score

2nd hierarchical level 58.83%

3rd hierarchical level 67.24%
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Fig. 2 The confusion matrix visualises the number of samples that
were correctly (green background) and incorrectly (pink background)
classified. The higher the taxonomy resolution, the more accurate
classification results were obtained

power and that confirms the relevance of the classifica-
tion model amidst the sample size used. The availability
of more samples of individuals with MS condition, as well
as improvements in sequencing resolution, would possibly
allow the creation of an even more accurate classification
model(s).
The human gut contains several sections that host

microbial communities but exhibit different environ-
ments. The only non-invasive method accessible for col-
lecting gut samples is via stool. Determining the bacterial
origin and contributions of different sections of the gas-
trointestinal system can be difficult. Besides, there are
many parameters that can influence intrasample variance
such as different age, sex, ethnicity, genetic backgrounds,
different diet habits, and life in different environments
[12]. In future work, the availability of samples with
such metadata would enable us to remove the variance
that is introduced by parameters other than the studied
condition.
The change of sample sequencing technique can intro-

duce further improvements. The candidate technique is

shotgun metagenomics sequencing. As this technique
reports accuracy at the finer resolution of taxonomy than
16s, we would be able to continue accuracy improve-
ment by using the models developed on a taxonomic level
beyond the genus [35]. This would generate even more
reliable results. The shotgun metagenomic sequences
continue to be expensive to obtain, and thus 16s data is
more easily available. The solid investigation results can
shape a solid reason for creating models that can clar-
ify the structure and capacity of the microbial network,
and possibly give further knowledge into the connection
between microbiome and infection states.
The findings presented here may be used to construct

models that would distinguish medical conditions other
than MS (i.e. Parkinson’s and Alzheimer’s disease).
To apply the methods presented in this paper in other

clinical domains, we would need to perform the following
steps:

• obtain a significantly sized set of samples for both
condition and control groups,

• perform bioinformatics algorithms to extract desired
information from samples (either bacteria abundance
or predictive metabolic function),

• perform statistical analysis of obtained data to get a
set of distinguishing features to provide as an input
for the training of a classifier,

• train the classifier and use the results to conclude the
list of features,

• use classifier to predict that an unknown sample is
either with the condition or not.

Conclusions
This paper describes the process of developing a com-
putational model that discriminates microbiome samples
of healthy individuals and ones diagnosed with MS. In
addition to performing intersample analysis based on taxa
abundances, the intersample analysis of predictive func-
tions in the human organism was also performed. The
initial development of this work was started in [17]. In
this paper, in addition to the more accurate specifica-
tion and evaluation of the initial model based on taxa, we
also presented a model based on the predictive functional
analysis. Another major contribution is the evaluation of
all the developed models for accuracy on samples that
came from the independent dataset(s).
Several previous studies report similar findings on sig-

nificant taxa for MS [18–23]. The research question had
the aim to determine if the taxonomic and functional gut
bacteria diversity is a significant factor that can be utilized
to develop a machine learning classifier that will distin-
guish multiple sclerosis samples from the control ones.
We developed such a classifier, and it demonstrated a
significant accuracy (around 70%).
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Table 11 Comparison of results of this study with other MS studies; ↑ indicates that MS samples have statistically significant increase
in abundance of a bacteria and ↓ indicates that MS samples have statistically significant decrease in abundance of a bacteria (*
indicates that results are not statistically significant); green color indicates agreement of our results and other MS studies; orange color
indicated disagreement of our results and previous MS studies; when our results are in black color, we did not have an MS study to
compare those results with

Level Bacterium This study [19] [22] [18] [20] [21] [23] [24]

Phylum Euryarchaeota ↑ ↑ ↑
Phylum Bacteroidetes ↓
Phylum Verrucomicrobia ↑ ↑
Phylum Tenericutes ↓
Phylum Firmicutes ↑
Phylum Actinobacteria ↑ ↑
Phylum Proteobacteria ↑
Phylum Fusobacteria ↓
Family Methanobacteriaceae ↑
Family Verrucomicrobiaceae ↑
Family uncultured (Costridium) ↑
Family Barnesiellaceae ↓
Family Paraprevotellaceae ↓
Family Uncultured (RF39) ↓
Family Lachnospiraceae ↓
Family Bacteroidaceae ↓
Genus Methanobrevibacter ↑ ↑
Genus Desulfovibrio ↑ ↑
Genus Anaerofustis ↑
Genus Akkermansia ↑ ↑ ↑
Genus Butyricimonas ↓ ↓
Genus Uncultured (Ruminococcaceae) ↓ ↓
Genus Uncultured (RF39) ↓
Genus Ruminococcus ↑∗ ↑
Genus Bifidobacterium ↑∗ ↑
Genus Faecalibacterium ↓∗ ↓ ↓
Genus Prevotella ↓∗ ↓ ↓
Genus Streptococcus ↓∗ ↑
Genus Acinetobacter ↑
Genus Parabacteroides ↓ ↓
Genus Bilophila ↑
Genus Christensenellaceae ↑
Genus Bacteroides ↓
Genus Anaerostipes ↓
Genus Pseudomonas ↑
Genus Mycoplana ↑
Genus Haemophilus ↑
Genus Dorea ↑
Species Methanobrevibacter smithii ↑ ↑
Species Akkermansia muciniphila ↑ ↑
Species Butyricimonas virosa ↓ ↓
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Table 12 Comparison of results with other MS studies; ↑
indicates that MS samples have statistically significant increase in
predictive metabolic function and ↓ indicates that MS samples
have statistically significant decrease in predictive metabolic
function; green color indicates agreement of our results and
other MS studies; we did not have an MS study to compare with
our results in black color

Level Predictive metabolic function This study [25]

2nd Signalling molecules and interactions ↓
2nd Energy metabolic functions ↓
2nd Excretory system functions ↓ ↓
2nd Signal transduction mechanisms ↓
2nd Replication and repair functions ↓
2nd Amino acid metabolism ↑ ↑
2nd lipid metabolism ↑
2nd Inorganic ion transport and metabolism ↑
2nd Unknown functions ↑
3rd Chromosome functions ↓
3rd Peptidases functions ↓
3rd Homologous recombination functions ↓ ↓
3rd DNA replication ↓
3rd Peroxisome and cyan amino acid metabolism ↓
3rd Vitamin B6 metabolism ↓ ↓
3rd β-alaine metabolism ↓
3rd Inorganic ion transport and metabolism ↓
3rd Mismatch repair functions ↓
3rd Galactose metabolism ↓
3rd Steroid hormone biosynthesis ↑ ↑
3rd Tuberculosis functions ↑
3rd Bacterial secretion system ↑
3rd Influenza A ↑
3rd Valine, leucine and isoleucine biosynthesis ↑
3rd Hepatitis C ↑
3rd Cell motility and secretion ↑

While we demonstrated that a classifier can distinguish
MS and healthy samples, we did not include samples of
other cohorts in our study (i.e. other medical conditions)
so we have not evaluated how those cohorts would be
classified in our model. For this reason, further studies
in this direction are needed. In addition to increasing
the accuracy, additional cohorts need to be studied. The
results of this approach should be taken with caution
and augmented with other diagnostics, especially for indi-
viduals who do not clearly belong to the two studied
groups.
We were limited by the dataset(s) that are currently

available. We were not able to examine important vari-
ables that we have evidence that either affect MS con-
dition or microbiome structure. Those variables include

but are not limited to: age, sex, diet, BMI, geogra-
phy, household microenvironment ... In order to ana-
lyze these variables, we need datasets with the appro-
priate metadata and significant size for multivariable
analysis. The availability of such datasets in the future
could allow creation of even more precise computational
models.
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