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ABSTRACT
Background: Recent meta-analyses suggest that the consumption of fermented dairy products reduces type 2

diabetes and cardiovascular disease (CVD) risk, although the underlying mechanisms remain unclear.

Objective: We evaluated whether dairy protein products modulated gut microbiota and cardiometabolic features in

mouse models of diet-induced obesity and CVD.

Methods: Eight-week-old C57BL/6J wild-type (WT) and LDLr−/−ApoB100/100 (LRKO) male mice were fed for 12 and

24 wk, respectively, with a high-fat/high-sucrose diet [66% kcal lipids, 22% kcal carbohydrates (100% sucrose), 12% kcal

proteins]. The protein sources of the 4 diets were 100% nondairy protein (NDP), or 50% of the NDP energy replaced

by milk (MP), milk fermented by Lactobacillus helveticus (FMP), or Greek-style yogurt (YP) protein. Fecal 16S rRNA

gene-based amplicon sequencing, intestinal gene expression, and glucose tolerance test were conducted. Hepatic

inflammation and circulating adhesion molecules were measured by multiplex assays.

Results: Feeding WT mice for 12 wk led to a 74% increase in body weight, whereas after 24 wk the LRKO mice had

a 101.5% increase compared with initial body weight. Compared with NDP and MP, the consumption of FMP and YP

modulated the gut microbiota composition in a similar clustering pattern, upregulating the Streptococcus genus in both

genotypes. In WT mice, feeding YP compared with NDP increased the expression of genes involved in jejunal (Reg3b,

7.3-fold, P = 0.049) and ileal (Ocln, 1.7-fold, P = 0.047; Il1-β,1.7-fold, P = 0.038; Nos2, 3.8-fold, P = 0.018) immunity

and integrity. In LRKO mice, feeding YP compared with MP improved insulin sensitivity by 65% (P = 0.039). In LRKO

mice, feeding with FMP versus NDP attenuated hepatic inflammation (monocyte chemoattractant protein 1, 2.1-fold,

P < 0.0001; IL1-β, 5.7-fold, P = 0.0003; INF-γ , 1.7-fold, P = 0.002) whereas both FMP [vascular adhesion molecule 1

(VCAM1), 1.3-fold, P = 0.0003] and YP (VCAM1, 1.04-fold, P = 0.013; intracellular adhesion molecule 1, 1.4-fold, P = 0.028)

decreased circulating adhesion molecules.

Conclusion: Both fermented dairy protein products reduce cardiometabolic risk factors in diet-induced obese mice,

possibly by modulating the gut microbiota. J Nutr 2020;150:2673–2686.
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Introduction

Milk and dairy products are widely consumed around the
world, with over 6 billion consumers, mostly in develop-
ing countries (1). Such widespread consumption is partially
explained by the heterogeneity of available products. These
products may be fermented (i.e. yogurt, cheese, and fermented
milk such as kefir), nonfermented (i.e. fluid milk, some forms
of cheese), liquid, solid, sweet, or savory. Growing evidence of
health improvements has been associated with the consumption

of milk and its derived products. Indeed, meta-analyses showed
that dairy consumption is associated with both reduced weight
gain (2) and waist circumference (3). Furthermore, reduced risk
of type 2 diabetes (T2D) (4–6), development of cardiovascular
disease (CVD) (7, 8), and reduced CVD event or mortality
(9) are associated with dairy consumption. In agreement,
dairy consumption was also associated with a lower risk of
hypertension (10). However, a healthier prognosis is not always
associated with milk consumption and its derived products (11)
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and such divergent findings may be related to the nutritional
heterogeneity of this food class.

In addition to being a source of calcium, vitamins, medium-
chain and odd-chain SFAs, PUFAs and branched-chain SFAs
and, occasionally, probiotics (12), dairy products provide
proteins essential for human health. Indeed, milk is considered
a major high-quality protein source (32–34 g/L) of which nearly
80% is casein and 20% whey protein (12). During protein
fermentation, mostly from lactic acid bacteria (LAB) activity,
a plethora of bioactive peptides with a wide array of biological
activities are released (13). For example, casein-enriched milk
fermented by Lactobacillus helveticus shows a high angiotensin-
converting enzyme (ACE)-inhibitory activity (14), potentially
through the ability of the peptides to compete with substrate
for binding to the active site of the enzyme (15). Furthermore,
dairy-derived casein and whey peptides can inhibit dipeptidyl
peptidase-IV (16), an incretin-degrading protein that impairs
glucose metabolism. Similarly, whey-derived branched-chain
amino acids, such as leucine, activate mammalian target of
rapamycin (mTOR) in β-pancreatic cells, which may improve
insulin secretion dysfunction in T2D (17).

Few studies have investigated the impact of dairy protein
on the gut microbiota, which is now recognized as a key player
in immunometabolic regulation. Indeed, the absence of gut
microbiota in germ-free mice (18) or by antibiotic treatment
(19) prevented high-fat-induced intestinal inflammation and
gut barrier disruption. Furthermore, it has been shown that gut-
derived metabolites, such as SCFA, influence host metabolism
and glucose homeostasis, as well as body weight gain (20, 21). In
the current study, we evaluated the effect of a 50% replacement
of nondairy protein (NDP) with protein from either fermented
[i.e. fermented milk (FMP) and Greek-style yogurt (YP) protein]
or nonfermented [i.e. milk protein (MP)] dairy protein, on the
modulation of gut microbiota composition and cardiometabolic
risk factors in 2 mouse models: diet-induced obesity
and CVD.
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backcrossed on C57BL/6J background; LV, left ventricular; LVIDd, left ventricular
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Methods
Animals
Eight-week-old male C57BL/6J wild-type (WT) and in-house colony
atherosclerotic LDLr−/- ApoB100/100 backcrossed on C57BL/6J back-
ground (LRKO) mice were housed individually on a regulated daylight
cycle at the Institute of Nutraceuticals and Functional Foods and at
the Quebec Heart and Lung Institute facilities, respectively. Studies
were not performed concurrently. Animals had access to food and
water ad libitum and were separated in diet-based experimental groups
matched for body weight (n = 14–15 animals per dietary group for
WT mice, n = 13–16 animals per dietary group for LRKO mice).
Following 2 wk of acclimatization on a low-fat grain-based diet (Teklad
2018, Harlan), mice were fed with a high-fat/high-sucrose (HFHS)
diet containing 66% kcal lipids (8% protein mix, 46% corn oil, and
46% lard), 22% kcal carbohydrates (∼100% sucrose), and 12% kcal
proteins (∼100% nondairy protein mix; 10% eggs, 10% soya, 53%
meat, and 27% chicken; remaining percentage from L-cystine). The
NDP diet accounted for 100% of the protein mix based on the
reported food sources of nutrients in the diet of Canadian adults (22).
Nonhydrolyzed, high-protein content lyophilized ingredients used to
make the protein mix were purchased from Envigo Teklad (for egg
and soy) and Happy Yak (for beef and chicken). The protein mix was
∼81% w/w protein, 13% w/w fat, and 1% w/w carbohydrates with
diets being adjusted for macronutrient content. The dairy-containing
diets were generated by replacing 50% of the energetic content of the
protein mix with either nonfermented milk (MP), milk fermented by
Lactobacillus helveticus (FMP), or YP protein. Dairy protein products
contained 57–59% protein and diets were matched for protein, fat,
and carbohydrate (Table 1). Since WT mice do not develop extensive
atherosclerosis spontaneously, we took advantage of the atherosclerotic-
prone LRKO genotype whose diet had 0.2% of cholesterol added to
accelerate atherosclerosis development. Body weight gain was assessed
once a week and food intake 3 times a week, and final weight gain
was estimated as the difference between final (week 12 for WT and
week 24 for LRKO) and initial body weights. In order to estimate daily
energy excretion, 24-h feces were collected at weeks 12 and 24 for WT
and LRKO, respectively. Following 12 and 24 wk of diet, fasted WT
and LRKO mice, respectively, were anesthetized with isoflurane and
killed by cardiac puncture. Epididymal, retroperitoneal, and inguinal
white adipose tissue (eWAT, rpWAT and iWAT, respectively), liver,
gastrocnemius, and soleus muscles as well as heart were snap frozen
in liquid nitrogen. Visceral adiposity was estimated by the sum of the
weights of eWAT and rpWAT, and subcutaneous adiposity by iWAT.
The aorta was fixed in 4% paraformaldehyde (PFA)/PBS solution and
subsequently kept in 1% PBS solution for further analysis. Animal
protocols were approved by the Animal Care Committee of Laval
University (2014–06-25). The experimental strategy is described in
Supplemental Figure 1.

Dairy protein products

Dairy protein products’ preparation.
Skim milk powder (SMP) containing 36% of protein (w/w) was
used for dairy protein product preparations. MP was prepared
from SMP rehydrated (12% of total solids) and concentrated by
ultrafiltration (UF) by a 3× volume concentration factor using a
10 kDa molecular weight cut-off (MWCO) membrane. UF-retentate
was freeze-dried, generating a powder containing 59% protein (w/w).
FMP was produced from MP solubilized at 10% w/w protein basis.
The solution was stored (4◦C, 18 h) to ensure complete solubilization
and thereafter heat-treated (90◦C, 5 min) before bacterial inoculation
using Lactobacillus helveticus (Rosell®-52). YP was generated from
liquid MP fermented with a commercial yogurt starter composed of
Streptococcus thermophilus (Rosell®-83) and Lactobacillus delbrueckii
subsp. bulgaricus (Rosell®-440), and YP were finally freeze-dried for
diet incorporation. Dairy protein product processing is detailed in
Supplemental Figure 2.
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TABLE 1 Nutritional composition of NDP, MP, FMP, and YP diets

Diet

Macronutrients NDP MP FMP YP

Protein, %kcal 12.2 11.9 11.9 11.8
Carbohydrate, %kcal 22.0 21.8 22.2 22.7
Fat,1 %kcal 65.7 66.2 65.9 65.5
kcal/g 5.51 5.47 5.38 5.34
Ingredients g/kg g/kg g/kg g/kg
Nondairy protein mix2 207 103 100 99.0

protein 158 78.4 76.7 75.6
carbohydrates 0.21 0.10 0.10 0.10
fat 34.1 16.9 16.6 16.3

MP 0.00 133 0.00 0.00
protein — 78.4 — —
carbohydrates — 36.9 — —
fat — 1.47 — —

FMP 0.00 0.00 131 0.00
protein — — 76.7 —
carbohydrates — — 22.7 —
fat — — 0.91 —

YP 0.00 0.00 0.00 131
protein — — — 75.6
carbohydrates — — — 18.6
fat — — — 1.51

L-cystine 1.86 1.85 1.81 1.78
Sucrose 278 238 254 262
Mineral mix3 69.3 68.8 67.3 66.3
Vitamin mix4 14.5 14.4 14.1 13.9
Cellulose 51.7 51.3 50.2 49.5
Lard 188 194 190 187
Corn oil 188 194 190 187
Choline bitartrate 2.07 2.05 2.01 1.98
Butylhydroxytoluene 0.31 0.31 0.30 0.30
Total 1000 1000 1000 1000

1An additional 0.2% cholesterol was added in diets of the LRKO model. Cholesterol content was 486 mg/100 g of NDP diet and 365 mg/100 g of MP, FMP, and YP diets.
2Home-made nondairy protein mix (76.4% protein, 0.1% carbohydrates, 16.5% fat)—10% egg white and 10% soy (Teklad), 53% beef and 27% chicken (Happy Yak).
3Teklad mineral mix AIN-76 (Teklad)—12% sucrose.
4Vitamin mix AIN-76A (Teklad)—98% sucrose.
FMP, fermented milk product; LRKO, LDLr−/- ApoB100/100 backcrossed on C57BL/6J background; MP, milk product; NDP, nondairy protein; YP, yogurt product.

Dairy protein products’ characterization.
Total composition of MP, FMP, and YP was determined on final
powders (Supplemental Table 1). Total solids content was estimated
according to 926.08 (23) and 927.05 (24) methods proposed by the
Association of Official Agricultural Chemists (AOAC). Total nitrogen
(TN) and nonprotein nitrogen (NPN) were determined by the Kjeldahl
method (25) according to standard procedures 20–3:2004 (26), 20–
4:2001 (27), and 224:2011 (28) proposed by the International Dairy
Federation (IDF). Total nitrogen protein (TPN) was calculated as TN
× 6.38 and proteolysis index as NPN/TN. The molecular weight
distribution profile of protein/peptide components was assessed by high-
pressure size exclusion chromatography (HPSEC, Supplemental Figure
3). Fat content was analyzed using the Mojonnier method according
to standard methods of IDF [5:2004 (29) and 9C:1987 (30)], whereas
cholesterol was determined by reverse phase HPLC (RP-HPLC) after
extraction using a Nova-Pak C18 column as previously described (31).
Ash content was assessed according to the AOAC 930–30 (32) method
and cations (Ca, Na, K, Mg) and anions (PO4, Cl, SO4

−2) by inductive
coupling plasma (ICP) spectroscopy. Carbohydrates (lactose, galactose)
and organic (acetic, citric, lactic) acids were quantified by HPLC
analysis using an ION-300 column (Transgenomic Inc.). An automatic
titrator was used to measure pH and titratable acidity. Bacteria
enumeration and viability were assessed by plate counts of cells, qPCR,
and PCR coupled with a propidium monoazide DNA intercalating
agent.

Glucose tolerance test
After 11 and 17 wk on the diet, WT and LRKO mice, respectively, were
fasted 12 h prior to an oral-glucose-tolerance test (OGTT) as previously
detailed (33). Blood samples were collected during all time points for
insulin determination, measured with the Ultrasensitive mouse ELISA
kit (ALPCO). The HOMA-IR was determined using the following
formula: fasting insulinemia (μUI/mL) × fasting glycemia (mM)/22.5.
The Matsuda insulin sensitivity index was calculated as previously
described (34).

Analytical methods
In order to assess the fed-state lipid profile in circulation at week
21, LRKO mice were fasted for 12 h and then refed for 1 h
followed by blood collection from the lateral saphenous vein. Standard
colorimetric kits were used for triglycerides (TGs) (Thermo Scientific),
cholesterol (Randox), HDL (Randox), LDL (Randox), and oxidized-
LDL (MyBioSource). In LRKO mice, cytokines were measured in
fasted plasma and liver lysates using a Bio-plex pro assay (Bio-Rad
Laboratories), whereas circulating adhesion molecules were measured
by a Milliplex map kit assay (Millipore Sigma) and vascular cell
adhesion molecule 1 (VCAM1) by a quantitative ELISA test (R&D
systems). LPS was measured in fasted plasma withdrawn by cardiac
puncture at euthanasia of mice from both genotypes by a quantitative
ELISA test (MyBioSource). Systemic (anti-IgG; 375,112, GE) and
mucosal (anti-IgA; 14–10-01, KPL) immunomodulatory antiflagellin
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response was measured by quantitative ELISA in a 96-well plate coated
with 100 μL flagellin (from Salmonella enterica subsp. enterica serovar
Typhimurium str. LT2, SRP8029, Sigma). Liver TGs were analyzed by
an adapted Folch method (35). To calculate energy excretion, 24-h
fecal energy content was estimated by the combustion with oxygen
in a sealed bomb (Parr 6100 Calorimeter Instruments). At week 24,
body composition from LRKO mice was estimated by lean and fat mass
content determined by C©Bruker’s Minispec Analyzer based on NMR.

Histological analysis and immunohistochemistry
Jejunal and ileal tissues were fixed in 4% PFA prior to enclosement
in paraffin. α-Proximal sections of both tissues (4 μm) were stained
with hematoxylin and eosin (H&E) for histological analysis and with
Periodic Acid Schiff for Goblet cell mucin labeling. For immunohisto-
chemistry experiments, sections were blocked in a PBS solution with
0.1% BSA and 0.2% Triton for Ki67 staining. Sections were then
incubated overnight at 4◦C with rabbit anti-Ki67 (1:200, GeneTex),
to label proliferative cells before labeling with EnVision+ System-HRP
(Dako Canada Inc.).

Atherosclerosis quantification
Atheroma lesions were quantified in dissected and stained aorta from
LRKB100 mice, according to the en face technique, as previously
described (36). Briefly, excised aortas were stored at 4◦C in 5% formalin.
Perivascular adipose tissue was removed, and the aorta was bisected
exposing the intima layer. The aorta was then pinned en face and
stained with 0.5% Sudan IV. Images were taken using a camera attached
to a Leica MZ6 dissecting microscope. Atherosclerosis severity was
estimated as a percentage of atherosclerotic lesion area corrected by the
total aortic area with the use of ImageJ software (V. 1.51j8, NIH).

Echocardiography
Transthoracic echocardiography was performed in LRKO mice at
weeks 0, 12, and 24 under isoflurane anesthesia with the L15–7io
(5–12 Megahertz) and S12–4 (4–12 Megahertz) probes connected to
a Philips HD11XE ultrasound system (Philips Healthcare Ultrasound).
In short, left ventricular (LV) dimensions: LV interior diameter at end-
diastole (LVIDd), LV relative wall thickness (LVRWT), and LV outflow-
tract diameter (LVOT) were acquired in M-mode imaging of parasternal
short-axis view. Fractional shortening (LVFS), ejection fraction (EF),
and LV mass calculations were based on LV dimensions. Transmitral
(A and E wave) and LVOT flow velocity were accessed by pulsed-wave
Doppler and mitral annulus motion velocity (E´ wave) by Doppler tissue
imaging. Stroke volume (SV) was based on LVOT flow velocity and
cardiac output (CO) was estimated by the product of SV and heart rate
(HR).

16S ribosomal DNA amplification and sequencing
Fresh fecal samples collected at weeks 1, 6, and 12 (WT mice) and
12 and 24 (LRKO mice) were stored at −80◦C. Bacterial genomic
DNA was extracted using a DNA extraction kit (Quick-DNA fecal/soil
microbe, Zymo Research). Extracted DNA was stored at −20◦C
for subsequent 16S amplification of the V3-V4 region as previously
described (37).

Microbiota data analysis
16S rRNA gene-based amplicon sequencing was performed on fecal
samples from mid- and end-protocol harvested at weeks 6 and 12 in
WT mice, or weeks 12 and 24 in LRKO mice. Fecal samples from
WT mice were also analyzed at week 1 to determine a possible early
shift in the gut microbiota with dairy treatments. Forward and reverse
primers were removed from 16S rRNA gene amplicons using Cutadapt
(v1.14) (38). Sequence reads were analyzed using the DADA2 package
(v1.5.0) (39) in R (http://www.R-project.org). Forward and reverse
reads were first trimmed to remove low-quality regions. Sequences
with an expected error threshold >2 and >4 for the forward and
reverse reads, respectively, with ambiguous bases, and with a quality
score ≤2 were discarded. Dereplication and denoising of filtered
sequences were carried out using DADA2 default parameters. Denoised

forward and reverse reads were merged (all reads with any mismatches
were removed) and searched for chimeras. Taxonomic assignment of
amplicon sequence variants (ASVs) was performed using the ribosomal
database project (RDP) classifier algorithm (v2.2) (40) trained against
the Silva database 132 (41). In order to normalize sampling effort,
samples were rarefied to an even sampling depth of 10,456 sequences. At
week 12, the Shannon index was calculated as a measure of α-diversity
and principal coordinate analysis (PCoA) was generated using the Bray–
Curtis dissimilarity metric.

Linear discriminant analysis effect size (LEfSe) was performed to
identify genera differentially enriched in the between-group compar-
isons and to evaluate the reproducibility of these results among the
2 genotypes (42). A significant difference was inferred when P < 0.05
with a linear discriminant analysis (LDA) score threshold ≥2.5.

Gene expression analysis by real-time PCR
Total RNA was isolated from homogenized jejunum and ileum using
TRIzol reagent (Sigma-Aldrich). One microgram of RNA was reverse
transcribed using the High Capacity cDNA Reverse Transcription Kit
(Applied Biosystems) and real-time qPCR was performed with the
Quantitec SYBR Green PCR kit (Qiagen) on the Rotor-Gene 6000
system (Corbett Robotics Inc.). Gene expression was estimated by
the ��Ct method and the ubiquitous isoform of porphobilinogen
deaminase was used as the reference gene.

Statistical analyses
Data were tested for Gaussian distribution and variance homogeneity
and subsequently tested using a 1-factor ANOVA or the equivalent
Kruskal–Wallis nonparametric test with a Tukey or Dunn posthoc test
to calculate significance levels between groups (GraphPad). Glycemia
and insulinemia during OGTT data were statistically compared using
2-factor repeated measures ANOVA with a Tukey posthoc test
(Sigmaplot). Means without a common letter significantly differ. All
results were considered statistically significant at P < 0.05. Genotypes
were not compared via 2-factor ANOVA since the 2 studies were
handled in different animal facilities, by different students, and were
not conducted in parallel (e.g. the WT study was conducted first and a
few months apart from the LRKO study).

Results
Nutrient composition of fermented dairy products

Final powders of dairy protein products contained 55–57%
protein and 1% fat. Lactose represented 28% of MP, 13%
of FMP, and 3% of YP. Galactose was absent from MP and
represented 4% of FMP and 11% of YP (Supplemental Table
1). The final bacterial concentration was ∼109 CFU/g for YP
and 108 CFU/g for FMP (Supplemental Table 2). The peptide
molecular weight distribution was characterized for each dairy
protein product. YP had the highest degree of proteolysis
followed by FMP. After fermentation, YP contained only 34%
peptides >10 kDa (90% in MP and 52% in FMP) and 46% had
a molecular weight lower than 2 kDa (6% for MP and 32% for
FMP) (Supplemental Figure 3).

Fermented dairy protein consumption shifts gut
microbiota profile independently of the mouse
genotype

The Shannon index indicated that MP- and YP-fed WT mice
had lower α-diversity than NDP-fed WT mice, whereas LRKO
mice fed with a YP diet had increased α-diversity compared
with mice fed MP (Figure 1A). PCoA showed a distinct
genotype- and diet-related metagenomic profile, where mice
fed with both fermented dairy products had the microbiota
clustered apart from the nonfermented protein fed in both
genotypes along the second axis explaining 15.5% of the
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FIGURE 1 Gut microbiota profiles of WT and LRKO mice after 12 wk of NDP, MP, YP, or FMP feeding. (A) Shannon α-diversity index, (B) principal
coordinate analysis of fecal samples collected at week 12, and (C) heat map representing complete-linkage clustering based on the Pearson
correlation coefficients of the abundance (on a log10 scale) of ASVs at the genus level. In A, values are median, upper quartile, lower quartile,
maximum, and minimum expressed as box-Whisker plot. In B, arrows represent the significant (P < 0.05) correlations between PCoA axes and
abundances of bacterial genera of interest. In C, “g” at the end of taxon denotes unclassified genus. n = 14–15 for WT mice or n = 12–16 for
LRKO mice. Within genotype, labeled means without a common letter differ, P < 0.05. ASV, amplicon sequence variant; FMP: fermented milk
product; LRKO, LDLr−/- ApoB100/100 backcrossed on C57BL/6J background; MP: milk product; NDP: nondairy protein; PCoA, principal coordinate
analysis; WT, wild type; YP: yogurt product.

Dairy protein’s impact on cardiometabolic outcomes 2677



FIGURE 2 Gut microbiota signature of WT and LRKO mice fed NDP, MP, YP, or FMP diet for 12 wk. Linear discriminant analysis with effect
size analysis of bacterial taxa present in fecal samples from (A) WT mice and (B) LRKO mice at week 12 comparing MP versus NDP, FMP versus
NDP, and YP versus NDP. “g” at the end of taxon denotes unclassified genus. FMP: fermented milk product; LDA, linear discriminant analysis;
LRKO, LDLr−/- ApoB100/100 backcrossed on C57BL/6J background; MP: milk product; NDP: nondairy protein; WT, wild type; YP: yogurt product.

variance. This suggests that dairy fermentation significantly
modulates the gut microbiota profile (Figure 1B). Genus-level
complete-linkage clustering, illustrated by a heat map, also
revealed a distinct profile according to genotype (Figure 1C).
Indeed, several genera were exclusively found in WT (e.g.
GCA_900066225, Blautia, Ruminococcaceae_UCG-014, and
A2) or LRKO (e.g. Bacteroides, Faecalibaculum, Mucispirillum,
Clostridiales_vadinBB60_group_g, and Parabacteroides) mice,
which was confirmed by LEfSe analysis (Figure 1C, Supple-
mental Figure 4). LEfSe was used to identify differentially
abundant bacteria between groups after 12 wk of obesogenic
diets. Comparisons of the 2 mouse models revealed that WT-
derived fecal microbiota also stood out from that of LRKO
by an enrichment in Akkermansia, Adlercreutzia, Dubosiella,
Turicibacter, Streptococcus, and Clostridium_sensu_stricto_1
and depletion of Faecalibaculum, Tyzzerella, Oscillibacter,
Anaerotruncus, Intestinimonas, GCA_900066575, Rumini-
clostridium_9, Peptococcaceae_g, Roseburia, Enterorhabdus,
Acetatifactor, and Lachnospiraceae_g (Supplemental Figure 4).
However, regardless of the differences in the genera profile
inherent to the genetic background of each mouse model,
fermented dairy protein products were found to consistently

modulate the relative abundance of some bacteria. As depicted
in LEfSe analysis (Figure 2A, B), the taxon associated with
Lachnospiraceae_UCG_006 was relatively more abundant after
fermented dairy protein product intake, except for YP-fed WT
mice, whereas the genus Romboutsia was underrepresented in
fecal samples of mice fed the fermented protein, compared with
their NDP-fed counterparts (Figure 2A, B and Supplemental
Figure 5). Furthermore, LEfSe confirmed the heat map findings
and revealed an enrichment of the Streptococcus genus in mice
fed either FMP or YP when compared with their respective
NDP-fed mice in both genotypes (Figures 1C, 2A, B, and
Supplemental Figure 5). Accordingly, Streptococcus is the main
genus clustering fermented dairy protein products as revealed
by the PCoA (Figure 1B). Streptococcus and Lactobacillus are
the most common genera of LAB present in dairy products.
As the main players in milk fermentation, LAB convert
lactose into lactic acid (43) and contribute to the release of
many bioactive compounds such as conjugated linoleic acid,
bioactive peptides, vitamins, and γ -aminobutyric acid (44).
Lactobacillus delbrueckii and Streptococcus thermophilus were
both used in YP production, whereas Lactobacillus helveticus
fermentation produced FMP. LEfSe analyses did not identify
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a specific Streptococcus species involved in fermented dairy
protein modulation, establish significant differences between
groups in Lactobacillus genus relative abundance (Figures 2
and Supplemental Figure 6A), or detect Lactobacillus helveticus
presence. However, we were able to identify with reasonable
confidence 2 species comprised in the Lactobacillus genus. As
expected, Lactobacillus delbrueckii, which was used to ferment
the YP preparation, was exclusively enhanced in YP-fed mice
feces in both WT and LRKO models (Supplemental Figure 6B).
Thus, our results showed that both fermented dairy protein
commonly shifted gut microbiota populations despite a specific
genetic microbial signature.

Dairy protein product consumption leads to a distinct
microbiota signature

We next compared the individual effect of different dairy
protein products on genus abundance and found that Tyzzerella,
Intestinimonas, Ruminiclostridium, and Streptococcus were
underrepresented in fecal samples from MP-fed mice compared
with NDP-fed mice in both genotypes (Figure 2A, B and
Supplemental Figure 7). MP feeding in WT mice led to fecal
overrepresentation of Lactobacillus, whereas Oscillibacter,
Faecalibaculum, Lachnoclostridium, and Lachnospiraceae_g
were the most relative abundant genera in MP-fed LRKO
mice (Figure 2A, B and Supplemental Figure 7). Some specific
effects of both fermented products were also seen on the
fecal microbiota of WT and LRKO mice. In WT mice, we
observed an enrichment of fecal Akkermansia and Clostrid-
ium_sensu_strico_1 versus NDP fed, whereas in LRKO mice,
Parabacteroides and Enterorhabdus were underrepresented and
Lachnoclostridium was overrepresented following fermented
dairy consumption (Figure 2A, B and Supplemental Figure 7).

Apart from the common effects induced by the intake of both
fermented products, FMP feeding of LRKO mice also exerted
a distinct effect on the relative abundance of some bacteria,
as revealed by the depletion of Ruminiclostridium, Tyzzerella,
Intestinimonas, and Ruminococcaceae_g and the increased
relative abundance of Lachnospiraceae_NK4A136_group when
compared with NDP-fed mice (Figure 2B and Supplemental Fig-
ure 8). On the other hand, YP feeding selectively reduced the rel-
ative abundance of Angelakisella, Ruminiclostridium, Intestin-
imonas, Lachnospiraceae_NK4A136_group, Ruminiclostrid-
ium_9, Tyzzerella, Muribaculaceae_g, and Lachnospiraceae_g,
while increasing the concentration of Blautia compared with
NDP feeding in WT mice (Figure 2A and Supplemental Figure
9). In LRKO mice, the differential effect of YP consumption led
to an overrepresentation of Clostridiales_vadinBB60_group_g
(Figure 2B and Supplemental Figure 9). Thus, besides a global
fermentation effect, YP and FMP distinctly modulated gut
microbiota in both genotypes, leading us to further examine
intestinal immunity and integrity which are intimately related
to gut microbes.

YP feeding increases expression of genes involved in
intestinal immunity and integrity compared with NDP
in WT mice

Genes involved in intestinal immunity and structure were
evaluated in the jejunum and ileum of both genotypes. YP-
fed WT mice showed increased Ocln, Il1-β, and Nos2 gene
expression in the ileum, as well as increased Reg3b in the
jejunum compared with NDP feeding (Figure 3A). Furthermore,
YP feeding was shown to upregulate Reg3g gene expression in
the jejunum of LRKO mice (P-trend = 0.074, Figure 3B). These
data strongly suggest that YP exerts a selective small intestine

immune response potentially improving intestinal integrity. In
addition, MP feeding resulted in reduced Ccl5 (RANTES) gene
expression in the jejunum of WT mice compared with NDP
feeding (Figure 3A).

Disruption of the gut barrier increases gut permeability, thus
favoring opportunistic pathogens and their fragments to leak
into the circulation. Thus, a higher circulating concentration
of LPSs is often used as a marker of increased intestinal
permeability. Despite upregulating Ocln gene expression in the
ileum of WT mice, a feature often associated with reduced
intestinal permeability, YP feeding did not result in reduced
circulating LPSs. In LRKO mice we also failed to detect
any changes in either LPS concentrations as well as in the
plasma titers of antiflagellins and lipocalin-2, which are other
established readouts of intestinal integrity (Figure 3C–F).

We next evaluated the impact of dairy protein products on
the intestinal epithelium. In the ileum, no dietary modulations
affected villi length or Goblet cell number in either genotype
(Figure 3G–J). Only MP-LRKO-fed mice showed increased
proliferative cell number compared with NDP (Figure 3L), all
other groups had no change (Figure 3K–L). In the jejunum, YP
feeding, in LRKO mice only, reduced villi length compared with
FMP-fed mice (Supplemental Figure 10A,B), but dairy protein
products did not impact Goblet or proliferative cells in either
genotype (Supplemental Figure 10C–F).

YP consumption ameliorates insulin sensitivity
compared with nonfermented MP in LRKO mice

Dairy protein products did not affect energy intake, body
weight, fat mass gain, or fasting glycemia and insulinemia
(Table 2). In LRKO mice, we observed a slight increase of lean
mass gain in FMP-fed mice compared with NDP-fed controls
(Table 2). Interestingly, the YP-fed WT mice showed decreased
energy excretion, but this did not affect total weight gain
(Table 2).

Regarding glucose homeostasis, no differences were ob-
served among WT mice groups for both glucose and insulin
concentrations during OGTT (Figure 4A, B). Even without
dietary modulation of glycemia (Figure 4C), LRKO mice fed
with the YP diet showed a reduced insulin peak at 15 min after
glucose challenge (Figure 4D). This effect of YP on insulinemia
did not affect the HOMA-IR index but resulted in a higher
Matsuda IS index compared with the nonfermented MP diet
(Figure 4E, F), further indicating that feeding YP improved
insulin sensitivity in this genetic model of dyslipidemia.

Dairy protein products modulate plasma lipids and
nonalcoholic fatty liver disease development in LRKO
mice

We next evaluated the impact of dairy protein products on
the plasma lipid profile and nonalcoholic fatty liver disease
(NAFLD) in dyslipidemic LRKO mice. Mice fed MP had
lower concentrations of plasma cholesterol compared with
mice fed NDP (Supplemental Figure 11B). YP-fed LRKO
mouse livers tended to have a lower accumulation of TGs
compared with the MP-fed group (P = 0.082; Figure 4G).
Furthermore, although FMP-fed LRKO mice showed similar
steatosis when compared with NDP-fed animals, we found that
these mice showed reduced hepatic inflammation, as revealed
by decreased expression of inflammatory markers, including
monocyte chemoattractant protein 1 (MCP1), IL1-β, and IFN-γ
(Figure 4H). This suggests that FMP potentially reduces NAFLD
development in HFHS-fed LRKO mice.

Dairy protein’s impact on cardiometabolic outcomes 2679
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FIGURE 3 Intestinal immunity and morphology of WT and LRKO mice fed NDP, MP, YP, or FMP diet for 12 or 24 wk, respectively. Jejunal and
ileal immunoregulatory gene expression (Reg3g, Reg3b, Ocln, Il1b, Nos2, Ccl5, Zbtb46) was quantified by qPCR in (A) WT mice and (B) LRKO
mice, n = 8–11 (WT and LRKO). (C) Plasma LPS of both genotypes, n = 14–15 (WT) or n = 12–15 (LRKO). (D) Mucosal (IgA) and (E) systemic
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mean ± SEM. All P values were determined by 1-factor ANOVA or Kruskal–Wallis test followed by Tukey posthoc test. Within genotype, labeled
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TABLE 2 Metabolic data of WT and LRKO mice fed NDP, MP, YP, or FMP diet for 12 or 24 wk, respectively

WT LRKO

NDP MP FMP YP NDP MP FMP YP

Initial BW, g1,2 21.7 ± 0.36 21.8 ± 0.39 21.6 ± 0.42 21.7 ± 0.36 22.9 ± 0.43 22.9 ± 0.51 22.7 ± 0.58 23.2 ± 0.64
Final BW gain, g1,2 15.4 ± 0.98 16.2 ± 1.08 16.2 ± 0.86 16.8 ± 1.24 22.9 ± 1.25 24.6 ± 1.03 24.1 ± 1.52 21.4 ± 1.47
Food intake, g/d1,2 2.12 ± 0.05 2.24 ± 0.05 2.27 ± 0.06 2.15 ± 0.04 2.25 ± 0.04 2.28 ± 0.04 2.37 ± 0.04 2.30 ± 0.04
Energy intake, kcal/d1,2 11.7 ± 0.28 12.2 ± 0.28 12.2 ± 0.32 11.5 ± 0.24 13.7 ± 0.27 13.7 ± 0.27 14.4 ± 0.26 13.9 ± 0.26
Energy excretion, kcal/d1,2 ,3 0.71 ± 0.06a 0.79 ± 0.08a 0.87 ± 0.07ab 0.47 ± 0.04b 1.18 ± 0.07 1.30 ± 0.09 1.18 ± 0.07 1.18 ± 0.07
Final visceral adiposity, g1,2 3.32 ± 0.22 3.25 ± 0.19 3.48 ± 0.20 3.35 ± 0.22 3.06 ± 0.23 3.07 ± 0.17 3.18 ± 0.23 3.03 ± 0.15
Final subcutaneous adiposity, g1,2 1.06 ± 0.11 1.15 ± 0.12 1.11 ± 0.09 1.18 ± 0.16 2.11 ± 0.17 2.23 ± 0.16 2.15 ± 0.20 1.88 ± 0.17
Final fat mass gain, g1,2 — — — — 11.8 ± 1.15 12.9 ± 0.9 14.5 ± 0.68 11.0 ± 1.25
Final lean mass gain, g1,2 ,3 — — — — 5.17 ± 0.52b 5.85 ± 0.43ab 7.03 ± 0.50a 4.68 ± 0.51b

Fasting blood glycemia, mmol/L1,2 10.3 ± 0.52 11.1 ± 0.44 10.6 ± 0.45 11.2 ± 0.59 9.27 ± 0.29 10.2 ± 0.32 9.34 ± 0.42 9.17 ± 0.39
Fasting plasma insulinemia, ng/mL1,2 1.14 ± 0.17 1.25 ± 0.22 1.09 ± 0.12 1.20 ± 0.20 2.22 ± 0.24 2.44 ± 0.25 2.22 ± 0.19 2.05 ± 0.31

1Values are mean ± SEM, n = 8–15 (WT and LRKO).
2Statistical differences were determined by 1-factor ANOVA followed by a posthoc Tukey test.
3Within genotype, labeled means without a common letter differ, P < 0.05.
BW, body weight; FMP, fermented milk product; LRKO, LDLr−/- ApoB100/100 backcrossed on C57BL/6J background; MP, milk product; NDP, nondairy protein; WT, wild type; YP,
yogurt product.

Fermented dairy product consumption reduces
circulating intracellular and vascular adhesion
molecules in LRKO mice

We next evaluated the impact of dairy protein products on
atherosclerosis development and CVD risk markers in LRKO
mice. Dairy protein products (Figure 5A, B) did not affect
atherosclerotic lesions. However, both fermented dairy products
significantly reduced the concentrations of adhesion molecules.
Indeed, YP-fed LRKO mice showed reduced intracellular
adhesion molecule 1 (ICAM1) and VCAM1 circulating concen-
trations (Figure 5C–D), whereas FMP feeding led to a reduced
circulating amount of VCAM1 (Figure 5D). Dairy protein
products had no impact on plasma cytokines (Supplemental
Figure 11F–J) nor circulating promatrix metallopeptidase 9
(MMP9) (Figure 5E).

Finally, we assessed the potential impact of dairy protein
products on cardiac function in LRKO mice (Table 3). Dairy
protein products did not affect cardiac hypertrophy determined
by LV mass and LVIDd. LV function as measured by EF and
fractional shortening (FS) and was not changed. Dairy protein
products did not affect HR, CO, or SV. Diastolic function, as
determined from early (E) mitral flow velocity corrected by the
early diastolic velocity (E’) of medial mitral annulus, was not
changed by any treatment.

Discussion

Epidemiological evidence suggests that the consumption of
dairy protein products reduces the risk of cardiometabolic
diseases (45), thus supporting their inclusion in dietary guide-
lines worldwide. Bioactive metabolites (e.g. peptides) released
during dairy fermentation and gastrointestinal digestion are
considered one of the potential mechanisms whereby dairy
consumption may promote health benefits (46). Taking ad-
vantage of mouse models of diet-induced obesity and CVD,
we found that replacing 50% of nondairy protein with dairy
protein, and especially with fermented dairy protein/peptides,
promotes cardiometabolic benefits potentially through their
impact on the gut microbiota. Gut dysbiosis, indicated by
altered microbial composition and function, is associated with
many metabolic disorders, including obesity (47). It is well

documented that diet-induced obesity and metabolic syndrome
are not only associated with adipose tissue expansion and
inflammation, but also with altered gut integrity and perturbed
intestinal microbiota composition. Of the different dairy protein
products, yogurt has been the most extensively studied as
a gut microbiome modulator not only because of its high
nutritional quality, but also because it contains LAB (classic
starters) and, in some instances, probiotics (46). However,
whether the purported metabolic benefits of fermented dairy
are due to their bacterial content and/or their nutritional
matrix remains vastly unexplored. In our study, YP production
was started with Streptococcus thermophilus and Lactobacillus
delbrueckii subsp. bulgaricus, whereas Lactobacillus helveticus
was used for FMP fermentation. LAB (e.g. Streptococcus and
Lactobacillus) are classical fermented dairy starters and are
delivered to the gut lumen after dairy ingestion. Once in
the gastrointestinal tract LAB, particularly Lactobacillus, are
reported to upregulate tight junctions in the gut epithelium (48)
as well as intestinal immunity (49). Our data show that, despite
being a nonfermented product, MP feeding is associated with
overrepresentation of a Lactobacillus (uncharacterized species)
in fecal samples from WT mice, that may be related to lactose
supply (e.g. 27.81% of lyophilized MP).

YP feeding leads to an exclusive increase in the relative abun-
dance of only 1 of the 2 bacterial strain starters, Lactobacillus
delbrueckii, previously associated with immunoregulatory po-
tential (50). Genome sequencing of Lactobacillus delbrueckii
ssp. bulgaricus has revealed high numbers of rRNA and tRNA
genes together with other genomic features, supporting the
hypothesis that this bacteria is in a phase of rapid evolution
(51).

Fermented dairy product consumption significantly mod-
ulates the gut microbiota, in which the Streptococcus genus
seemed to have a pivotal role as the main taxa enriched
in fecal samples of mice fed with both FMP and YP.
Similarly, a variety of studies have described the impact of
fermented dairy consumption on the gut microbiome (52–54).
Furthermore, the consumption of fermented dairy products
(53), particularly yogurt (55), was also previously shown to
increase Streptococcus abundance.

Nutrient satiation with obesogenic diets is known to
decrease SCFA-producing bacteria (56) while increasing the

Dairy protein’s impact on cardiometabolic outcomes 2681
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intestinal absorptive surface by augmenting villi length (57).
Our data show that both fermented dairy products increased
health-promoting bacteria without affecting intestinal cell
proliferation. Furthermore, YP feeding led to increased ex-
pression of intestinal immune genes compared with NDP-fed
mice, agreeing with reports on yogurt consumption in mice
and humans (58–63), although most of the previously tested
products also contained probiotics and not only LAB starters.
In addition, our study indicates that substituting nondairy
protein for fermented dairy protein is sufficient to change
the composition of the gut microbiota, leading to beneficial
metabolic effects.

Our hypothesis was that various peptides with im-
munometabolic properties are released in the intestinal lumen
after hydrolysis of dairy-derived proteins, and especially
with fermented products, by either LAB or the process of
digestion, and that this translates into cardiometabolic benefits.
Accordingly, YP-fed LRKO mice showed improved insulin
sensitivity compared with nonfermented dairy-fed counterparts.
Furthermore, YP feeding resulted in increased expression of
Reg3 genes in the small intestines of both genotypes, which
might contribute to the activation of gut defense mechanisms
against invading pathogens (64). On the other hand, FMP
consumption decreases inflammatory markers in the liver

TABLE 3 Echocardiography data of LRKO mice fed NDP, MP, YP, or FMP diet at weeks 12 and 24

12 wk 24 wk

NDP MP FMP YP NDP MP FMP YP

LV mass, mg1 212 ± 2.21 214 ± 4.27 209 ± 3.35 215 ± 22.1 217 ± 2.5 220 ± 4.34 226 ± 4.96 221 ± 4.18
LVIDd, mm1 3.68 ± 0.08 3.77 ± 0.11 3.56 ± 0.08 3.77 ± 0.08 3.75 ± 0.06 3.79 ± 0.11 3.90 ± 0.11 3.83 ± 0.10
FS, %1 38.4 ± 2.20 40.8 ± 0.92 42.9 ± 1.80 38.1 ± 1.53 33.3 ± 1.28 34.3 ± 1.16 30.5 ± 1.21 36.6 ± 1.32
EF, %1 61.4 ± 2.63 64.6 ± 1.10 66.8 ± 2.42 61.3 ± 1.88 68.5 ± 1.68 70 ± 1.49 64.6 ± 1.75 72.8 ± 1.52
SV, mL1 0.04 ± 0.002 0.05 ± 0.01 0.05 ± 0.003 0.05 ± 0.004 0.04 ± 0.02 0.04 ± 0.002 0.05 ± 0.01 0.04 ± 0.02
Heart rate, bpm1 485 ± 25.3 463 ± 15 458 ± 14.6 469 ± 24.6 486.2 ± 15.2 469 ± 19.8 476 ± 14.7 488 ± 21.43
CO, L/min1 0.02 ± 0.001 0.02 ± 0.001 0.02 ± 0.001 0.02 ± 0.002 0.04 ± 0.0017 0.02 ± 0.001 0.03 ± 0.002 0.02 ± 0.0008
Mitral E/E′ ratio1 27.9 ± 1.48 29.6 ± 1.65 32.4 ± 2.81 25.6 ± 0.85 35 ± 1.37 32.4 ± 2.81 29.2 ± 1.94 32.4 ± 2.81

1Values are mean ± SEM, n = 8–15.
CO: cardiac output; E/E′, mitral inflow measured by pulsed-wave over tissue Doppler; EF, ejection fraction; FMP, fermented milk product; FS, fractional shortening; LRKO,
LDLr−/- ApoB100/100 backcrossed on C57BL/6J background; LV, left ventricular; LVIDd, LV interior diameter in end-diastole; MP, milk product; NDP, nondairy protein; SV, stroke
volume; YP, yogurt product.
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compared with nondairy receivers. Hepatic inflammation is a
key process leading to NAFLD (65) and a mechanistic link
connecting liver fat accretion to insulin resistance (66). Impor-
tantly, fermented dairy protein might affect host metabolism
through the activation of a gut-liver axis leading to reduced
hepatic inflammation and improved liver insulin sensitivity, thus
reducing the risk of T2D and NAFLD.

It is well documented that adhesion molecules are key
promoters of atherosclerosis and CVD risk factors (67). They
exert their proatherogenic effects through facilitating leucocyte
adherence to the lesion-forming site. Our study shows that
fermented dairy protein consumption was associated with
reduced concentrations of circulating intracellular and vascular
adhesion molecules (68). Although, in these relatively short-
term investigations, this did not result in reduced aortic lesions
and improved cardiac function, long-term dairy consumption
may reduce the development of atherosclerosis and cardiac
events.

In conclusion, our results provide new insights into the
mechanisms by which fermented and nonfermented dairy
protein products may reduce cardiometabolic diseases. We
found that replacing NDP by various dairy and fermented dairy
protein products exerted important immunometabolic effects,
as revealed by the modulation of specific gut microbes and
markers of intestinal immunity and integrity. The effects of
fermented dairy products were associated with improved insulin
sensitivity and reduced NAFLD in the more severe LRKO
mouse model, as compared to nonfermented dairy product
(MP) consumption. Both YP and FMP also decreased systemic
concentrations of proatherosclerotic adhesion molecules in
LRKO mice, suggesting a potential reduction in long-term
cardiometabolic risk. We further propose that the greater
immunometabolic effect of both fermented dairy products
might be driven by the specific action of small peptides released
during proteolysis fermentation, and this will be the focus of
our future work.

Limitations of this study include the potential probiotic
effect of YP and FMP’s starters, which was not evaluated in
this study. We believe that, although the presence of living
bacteria might have played a role in gut microbiota and host
metabolism changes, it is very unlikely that the consumption
of only 7.6 × 106–107 CFU/g of diet (∼1.7 × 105–106 CFU
per day) would confer a significant modulation expected from
a probiotic strategy. Indeed, it is generally considered that
probiotics should be given at much higher daily dose (∼107–
109 CFU/mg) in order to provide health benefits in humans (69,
70).

Experimental groups also differed in the lactose and
galactose content. Indeed, comparing MP-fed mice to those
consuming fermented dairy protein products, we calculated that
animals consumed only 83 mg versus 39 mg for FMP and
9 mg for YP of lactose daily, representing only 3.7, 1.7, and
0.4% of total daily intake, respectively. Moreover, MP-fed mice
had a very similar clustering pattern to NDP-fed mice despite
having the greatest difference in lactose intake (i.e. 83 versus
0 mg daily). Likewise, YP-fed mice, despite consuming twice
as much galactose as the FMP-fed mice, showed a similar gut
microbiota profile. Thus, it is unlikely that product differences
in either lactose or galactose contributed to changes in gut
microbiota composition. However, we cannot fully discard
the potential effect of lactose on gut immunity in our study
as lactose was shown to increase abdominal sensitivity while
increasing colonic mast cell content and advanced glycosylation

end-product-specific receptor expression, despite not altering
gut microbiota composition (71).
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