RNA BIOLOGY
2020, VOL. 17, NO. 6, 765-783
https://doi.org/10.1080/15476286.2020.1728961

Taylor & Francis
Taylor &Francis Group

REVIEW

W) Check for updates

Single-cell RNA-seq clustering: datasets, models, and algorithms

Lihong Peng
and Ligian Zhou?

a* Xiongfei Tian®*, Geng Tian®, Junlin Xu<, Xin Huang?, Yanbin Weng?, Jialiang Yang @,

b

aSchool of Computer Science, Hunan University of Technology, Zhuzhou, China; PGeneis (Beijing) Co. Ltd, Beijing, China; <College of Computer

Science and Electronic Engineering, Hunan University, Changsha, China

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) technologies allow numerous opportunities for revealing novel
and potentially unexpected biological discoveries. scRNA-seq clustering helps elucidate cell-to-cell
heterogeneity and uncover cell subgroups and cell dynamics at the group level. Two important aspects
of scRNA-seq data analysis were introduced and discussed in the present review: relevant datasets and
analytical tools. In particular, we reviewed popular scRNA-seq datasets and discussed scRNA-seq cluster-
ing models including K-means clustering, hierarchical clustering, consensus clustering, and so on. Seven
state-of-the-art scRNA clustering methods were compared on five public available datasets. Two primary
evaluation metrics, the Adjusted Rand Index (ARI) and the Normalized Mutual Information (NMI), were
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used to evaluate these methods. Although unsupervised models can effectively cluster scRNA-seq data,
these methods also have challenges. Some suggestions were provided for future research directions.

1. Introduction

Identifying cell lineages within tissues or organisms is one of
the most important goals of modern biological sciences.
Evaluating these associations will greatly increase our under-
standing of tissue development and homoeostasis [1,2].
Moreover, a complete understanding of these relationships
will allow the identification of developmental disorders and
pathologies, in addition to providing targets to mitigate dis-
ease states including cancer [3-5]. Lineage families have tra-
ditionally been detected by introducing a heritable label into
a cell and following its progeny.

Recently, lineage tracing has been conducted by identifying
cell types using single-cell transcriptomics [6,7,]. Different cell
types comprising the progeny are developmentally associated
because their labelled genes all originated from an identical
founder cell. Furthermore, the diversity of cell types within
the offspring population represents the potential of the foun-
der cell [1,8,]. To precisely infer the potential, lineage tracing
requires effective identification of cell-types. Ideally, several
markers would be used to conduct accurate cell-type classifi-
cations. However, marker numbers are limited, which could
possibly mask the variability observed within a group of cells
that express the screened marker genes. Consequently, lineage
tracing can result in biases [9,10,].

Single-cell RNA sequencing (scRNA-seq) technologies have
increasingly allowed the probing of cell types over the past
decade. scRNA-seq can help identify complex and rare cell
type groups, help identify gene regulatory associations, aid the
evaluation of developmental trajectories of different cell lineages,
and help reveal cell-to-cell variabilities within various diseases

and therapeutic contexts [1,11-17]. The initial analysis of
scRNA-seq data mainly involves clustering and annotation of
individual cells into cell types based on their transcriptomes.
Such analyses can inform our understanding of the biological
characteristics that distinguish different cell groups, tumour cell
heterogeneities, and cellular diversities from local tumour
microenvironments. More importantly, while bulk tumour tran-
scriptomes can help reveal therapeutic sensitivity, sCRNA-seq
can improve the inference of treatment efficacy by allowing
identification of transcriptomic differences in coexisting tumour
groups [18-21].

Many clustering algorithms have recently been developed
to identify cell type-like structures from scRNA-seq datasets.
These methods are generally developed on the assumption
that cells of a particular type have similar transcriptomes
that differ from other cell types in tissues [22-27]. In this
study, we evaluated the use of scRNA-seq data in the devel-
opment of analysis tools that are primarily associated with
scRNA-seq clustering techniques including K-means cluster-
ing, hierarchical clustering, and consensus clustering.
Moreover, we evaluated metrics for measuring clustering per-
formances while comparing the clustering models and provid-
ing suggestions for future research directions.

2. Materials and methods
2.1. ScRNA-seq datasets

Published studies were gathered, and we summarized 20
scRNA-seq datasets from these including the provider, num-
ber of cells, number of genes, and cell resources (Table 1).
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Table 1. ScRNA-seq datasets.

Num. of ~ Num. of
Dataset cells genes Cell resource
Trapnell [28] 182 38,694  Myogenic precursor cells and differentiating myoblast cells https://www.ebi.ac.uk/biostudies/studies/
S-EPMC4122333?xr=true
Petropoulos [29] 1,529 3,000 Human preimplantation embryonic cells ArrayExpress (https://www.ebi.ac.uk/arrayex
press/)
Biase [72] 49 25,737 2-cell and 4-cell mouse embryos GEO (https://www.ncbi.xilesou.top/)
Yan's [30] 124 22,687  Human preimplantation embryos and embryonic stem GEO (https://www.ncbi.xilesou.top/)
cells
Goolam [31] 124 41,480  4-cell mouse embryos GEO (https://www.ncbi.xilesou.top/)
Pollen [70] 301 23,730 Human cerebral cortex GEO (https://www.ncbi.xilesou.top/)
Kolodziejczyk's [32] 704 38,653  Mouse embryonic stem cell ArrayExpress (https://www.ebi.ac.uk/arrayex
press/)
Treutlein [33] 80 23,271 Distal lung epithelium GEO (https://www.ncbi.xilesou.top/)
Ting [34] 149 29,018 Pancreatic circulating tumour cells GEO (https://www.ncbi.xilesou.top/)
Patel [35] 430 5,948 Glioblastoma PubMed (https://www.ncbi.xilesou.top/)
Usoskin [36] 622 25,334 Sensory neuron GEO (https://www.ncbi.xilesou.top/)
Klein [37] 2,717 24,175  Embryonic stem cells GEO (https://www.ncbi.xilesou.top/)
Zeisel [38] 3,005 19,972 Mouse cortex and hippocampus GEO (https://www.ncbi.xilesou.top/)
Deng [39] 268 22,457 Mammalian cells Science (https://www.sciencemag.org/)
Peng [81] 14,032 93,951 Peripheral blood mononuclear cells in systemic lupus https://github.com/ChengF-Lab/COAC
erythematosus patients
MacParland [40] 8,444 20,007  Parenchymal and non-parenchymal cells from five human https://github.com/BaderLab/singleLiverCells
livers
Yang [58] 500 32,738  Peripheral blood mononuclear cells http://support.10xgenomics.com/single-cell
/datasets
Shekhar [41] 27,499 13,166  Mouse retinal bipolar cells GEO (https://www.ncbi.xilesou.top/)
Darmanis [69] 420 22,085 Human brain GEO (https://www.ncbi.xilesou.top/)
Xu [71] 540 56,650  Idiopathic pulmonary fibrosis GEO (https://www.ncbi.xilesou.top/)

2.2, Data analysis tools

Several analytical tools have recently been developed to facil-
itate the visualization of scRNA-seq data and identify subpo-
pulations of cells. Twelve popular scRNA-seq analysis tools
are summarized below.

2.2.1. DendroSplit

Zhang et al. [42] developed a clustering framework, DendroSplit
[42] (https://github.com/jessemzhang/dendrosplit), for cluster-
ing cellular data. The tool emphasizes interpretability and is
comparable in speed and accuracy to existing cluster models.

2.2.2. SinCHet

Li et al. [43] developed an analytical framework for contin-
uous data (e.g.,, mRNA expression data) and binary omics
data (e.g., discretized methylation) via a graphical user inter-
face, SinCHet [43] (http://labpages2.moffitt.org/chen/soft
ware/). The toolkit can quantify cellular heterogeneity at dif-
ferent clonal resolutions. In particular, it aids in the identifi-
cation of emerging or disappearing clones and prioritizing
biomarkers based on markers or variation between (or within)
cellular populations.

2.2.3. Scater

McCarthy et al. [44] developed a bioconductor package,
Scater [44] (http://bioconductor.org/packages/scater), to pre-
process, normalize, and visualize scRNA-seq data. The pack-
age provides a convenient and flexible pipeline to transform
raw sequencing reads into a reliable expression dataset that
can be applied to downstream analyses.

2.2.4. SPRING

Weinreb et al. [45] developed a more reproducible stochastic
visualization workflow, SPRING [45] (https://kleintools.hms.har
vard.edu/tools/spring.html), that can filter, normalize, and visua-
lize scRNA-seq data. SPRING has been used to uncover detailed
biological associations by visualizing gene expression trajectories
from upper airway epithelial cells and haematopoietic progenitor
cells.

2.2.5. ASAP

Gardeux et al. [46] designed a fully integrated platform,
ASAP [46] (https://github.com/DeplanckeLab/ASAP), to
analyse scRNA-seq data. ASAP is web-based and com-
bines various supervised learning methods with sophisti-
cated visualization tools. The package can parse, filter,
normalize, and visualize scRNA-seq data. In addition, it
can help detect cellular subpopulations, differentially
expressed genes, and functional gene enrichments. More
importantly, it can be broadly applied to any RNA-seq
dataset if there is an overlap between bulk RNA-seq and
scRNA-seq analysis pipelines.

2.2.6. SIMLR

Wang et al. [47] described an open-source, large-scale geno-
mic analysis tool, SIMLR [47] (https://github.com/
BatzoglouLabSU/SIMLR), that learns sample-to-sample simi-
larity from gene expression data of heterogeneous samples.
SIMLR can effectively reduce the dimensionality of scRNA-
seq data, cluster scRNA-seq data, and visualize heterogeneous
populations. In addition, the package provides greater inter-
pretability through useful visualizations.
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2.2.7. SCANPY

Wolf et al. [48] designed a scalable tool, SCANPY [48]
(https://github.com/theislab/Scanpy), to analyse single-cell
gene expression data. SCANPY can preprocess, visualize,
and cluster single-cell datasets for over one million cells. In
addition, the package can perform tests of differential expres-
sion, pseudo-time and trajectory inference, and simulation of
gene regulatory networks.

2.2.8. TSCAN

Ji Z. and Ji H. [49] developed the single-cell analysis tool,
TSCAN [49] (https://zhiji.shinyapps.io/TSCAN/), to better
reconstruct in silico pseudo-temporal paths in scRNA-seq
analysis. TSCAN is web-based and can read and preprocess
scRNA-seq data, rank cells according to transitions of their
transcriptomes, and perform differential gene analysis and
single gene visualization.

2.2.9. FastProject

DeTomaso D. and Yosef N. [50] developed the software
package, FastProject [50] (https://github.com/YosefLab/
FastProject/wiki), to analyse and interpret scRNA-seq data
and explore two-dimensional projections of these data.
FastProject can also systematically investigate biological asso-
ciations between these low-dimensional representations by
integrating domain knowledge.

2.2.10. Granatum

Zhu et al. [51] developed an easy-to-use graphical interface,
Granatum [51] (http://garmiregroup.org/granatum/app), to ana-
lyse scRNA-seq data. Granatum is web-based and contains
a comprehensive list of functions including batch-effect removal,
outlier-sample removal, gene filtering, gene-expression normal-
ization, imputation, cell clustering, differential gene expression/
enrichment analysis, cellular pseudo-time pathway construction,
and visualization of protein interaction networks.

2.2.11. FIt-SNE

Linderman et al. [52] combined t-distributed stochastic neigh-
bour embedding (t-SNE) and designed an advanced version of
t-SNE for scRNA-seq data analysis, FIt-SNE [52] (https://
github.com/KlugerLab/FIt-SNE), to visualize rare cell popula-
tions. Importantly, they still implemented a heatmap-style
visualization (https://github.com/KlugerLab/t-SNE-
Heatmaps) of scRNA-seq data based on one-dimensional
t-SNE in order to simultaneously visualize the expression
patterns for thousands of genes.

2.2.12. SC3

Kiselev et al. [27] presented a user-friendly tool, SC3 [27]
(http://bioconductor.org/packages/SC3), to quantify the char-
acterization of cell types by combining global transcriptome
profiles. In particular, SC3 can identify subclones from the
transcriptomes of neoplastic cells.

2.3. Clustering methods

Given that gene expression data for p genes on n cells can be
organized into a p X n matrix x = (x1,%,, ..., X,), x; denotes
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the gene expression profile of p genes in cell i and

xi = (X1, Xi2, ..., Xjp) . Various clustering models can then be
used to identify cell subpopulations based on expression data.

2.3.1. K-means clustering
2.3.1.1. RacelD. Griin et al. [53] surmised that detecting rare
cell types like cancer stem cells and circulating tumour cells is
important for understanding the biological characteristics of
normal and diseased tissues. They developed an identification
method for rare cell types (RacelD) based on a K-means clus-
tering algorithm. RaceID comprises the following two steps:

Step 1. Preprocessing

RaceID removes cells with low transcript levels, and then
normalizes the total transcript counts of each cell, finally
filters out genes with very low or high expressed values.

Step 2. Clustering

RaceID computes the similarity between two cells based on
Pearson’s correlation coefficients. A distance matrix equiva-
lent to 1 minus the coefficient is then used as the distance
matrix input for a K-means clustering algorithm in order to
identify rare cell types from the gap statistic.

2.3.1.2. K-branches clustering. Chlis et al. [54] developed the
K-Branches clustering algorithm. The algorithm introduced
a clustering method similar to K-means and locally fitted half-
lines to represent the branches of differentiation trajectory. It
can identify the precise number of ‘tip regions’ or ‘branching
regions’ in a lineage tree. The K-branches clustering method
comprises two steps:

Step 1. Calculate the distance between half-line and data
point and assign all data to the nearest half-line.

Step 2. Update centre ¢ and direction v of a cluster until the
total cost j stops descending and obtain the final clusters.

The K-branches clustering method is similar to the K-means
clustering method when computing distance. They are based on
the Euclidean distance. However, for the K-means clustering
algorithm, the distance computation severely affects the centre
of a cluster. More importantly, the selection of the clustering
centre is greatly influenced by noisy data that are far away from
other samples. Therefore, the K-means clustering algorithm is
not suitable to cluster non-spherical data. However, the
K-branches clustering method iteratively selects data from
a cluster to represent the centre ¢ of the cluster, and then
computes the sum of the distances between the remaining data
and the centre ¢ to split these data to the nearest half-line. The
K-branches clustering algorithm developed a revised GAP sta-
tistic method to find whether a data point is at a branch tip,
intermediate region or branching region of a lineage tree (Fig. 1).

2.3.2. Hierarchical clustering

2.3.2.1. SINCERA. Guo et al. [55] presented a computational
framework for SINgle Cell RNA-seq profiling Analysis
(SINCERA) to distinguish and evaluate major cell types, infer
gene signatures related to cell types, and determine key factors
for cell type identification and activity (driving forces). SINCERA
consists of three major analytical procedures: pre-processing of
related data, identifying cell types, and analysing gene signatures
and driving forces (Fig. 2).
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Random initialization:

Random assigning one data point as the center point c;
Random assigning K data points as x4, x5, ...

y XK -

J

d(x,Lyg)

Assigning each data point x; to its nearest half-line according to

J

no change in cluster assignments:
(1) Updating the center point c;

Iteratively executing the following three optimization procedures until

(2) Updating the direction vectors xq, X5, ..., Xk ;
(3) Assigning each data point to its nearest half-line according to d(x, L)

J

belongs to

Using the revised GAP to identify the region that each data point

Figure 1. Flowchart of the K-branches clustering method.

2.3.2.2. BISCUIT. Prabhakaran et al. [56] considered that
various single-cell gene expression data can be obtained by
using emerging technologies. But these expression data are
interfered by the error of technologies or cell description.
Global normalization is a universal solution; however, it can
not fundamentally solve the problem: it failed to resolve
missing data and did not consider technical variation, thereby
severely depending on latent cell types. Therefore, they devel-
oped a Bayesian Inference method for Single-cell ClUstering
and ImpuTing (BISCUIT). BISCUIT integrates iterative nor-
malization and a hierarchical Dirichlet process mixture
model. It can be iteratively applied to dropout data and
clustering. More importantly, it eliminates technical variation
caused by different biological signals.

2.3.2.3. CIDR. Lin et al. [24] designed the ultrafast algorithm
Clustering through Imputation and Dimensionality Reduction
(CIDR) to decrease the impact of dropouts on clustering perfor-
mance. The CIDR framework comprises five steps:

Step 1. Detect possible dropouts.

CIDR first performs a logarithmic transformation of gene expres-
sion data for each cell C;. It then characterizes the distribution of the
transformed expression values through a peak at zero. The sample-

dependent threshold, T;, is then found that separates the peak from
the rest of the expression distribution. The entries in cell C; with
expression values smaller than T; are possible dropouts, and the
entries with expression values of less than T; are considered as
expressed.

Step 2. Estimate the association between the dropout rate
and the gene expression level.

Considering the two cells C; and C;, CIDR defines their
observed expression for a feature Fy as oy and oy;, respectively.
Tiand T; are respective dropout candidate thresholds. If of; < T;
and oy > Tj, then of; needs to be imputed and the imputation
value, 0y, can be defined as

ki = ﬁ(okj)okj + (1 - ﬁ(okj))okia

where P(0y;) is the probability of oy being a dropout and
ﬁ(okj)) is the estimation of P(oyj) on the whole dataset.

Step 3. Calculate the dissimilarities among the expression
profiles of the imputed genes for C; and C;.

For the cells C; = (01, 02i, ..., 04i) and C; = (01}, 03j, ..., 0j),
some entities are set as zeroes when relevant genes may be either
not expressed in reality or a dropout value. CIDR computes

their dissimilarities based on the Euclidean distance.
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Figure 2. Flowchart of single-cell RNA-seq profiling analysis.

Step 4. Conduct a Principal Coordinates Analysis (PCoA)
with the dissimilarity matrix.

CIDR performs a PCoA with the distance matrix obtained
from Step 3 to reduce the dimensionality of the data.

Step 5. Cluster with the top principal coordinates.

CIDR performs hierarchical clustering using the top prin-
cipal coordinates from the PCoA (Fig. 3).

2.3.2.4. Corr. Jiang et al. [25] posited that a key problem in
scRNA-seq clustering is quantifying the associations between
cells. However, scRNA-seq data are generally sparse, noisy,
exhibit high dimensionality, and are heterogeneous. These
characteristics seriously impact the effectiveness and reliability
of conventional (dis)similarity measure methods when clus-
tering single cells. Therefore, the authors exploited a new
single-cell clustering algorithm by integrating cell-cell simila-
rities and hierarchical clustering analysis. The methods com-
prise four steps (Fig. 4).

Step 1. Define a ‘differentiability correlation’ (Corr)
between two cells based on differential expression patterns
of genes in order to measure cell-cell similarities:

Ei:l (Uijk - U"j)(Ujik - UJ}‘)
VI U =TS (U - Ty

where Uj represents the differential status of the kth gene
in cell &

Corryj =

1, ke V,j
Up=q -1, keV,
0, otherwise

V* (or V) denotes genes in the ith cell, and the expres-
sion level of each gene in V™ (or V™) are all larger (or
ij ij

smaller) than the average value across all other cells except
the jth cell.

Step 2. The dissimilarity between two cells is calculated by

Sij =1- Corrij

Step 3. Determine the optimal number of clusters from the
level that cell subpopulations are separated:
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Detecting possible dropouts

Step1: Performing a logarithmic transformation
Step2: Characterizing the distribution of the transformed expression values
Step3: Finding possible dropouts based on a sample-dependent threshold

)

Estimating the association between dropout rate and gene expression level

For two cells C; and C;, supposing their dropout candidate thresholds: T; and T
and defining imputation value 0,; = P(ij)ij el I ﬁ(ij))Oki

J

Calculating the dissimilarities based on Euclidean distance after implicating
imputation

Performing PCoA to implement dimension reduction

U

Clustering with the top few principal coordinates

Figure 3. Flowchart of imputation and dimensionality reduction framework.

SSB
P
7 SST;

where SSB = 3" n;(Y; — Y).
=1

J
SST = Zi: (Y; —Y)
j=1 i=1

Yj; represents the random response of the ith (i = 1,2, ...
observation in thejth (j = 1,2, ...,s) treatment group.

Step 4. Cells are grouped into several subpopulations based
on hierarchical clustering.

7”]')

2.3.2.5. CellBIC. Kim et al. [26] investigated intrinsic multi-
modality features of heterogeneous scRNA-seq data and pre-
sented a single-Cell BImodel Clustering (CellBIC) method to
detect cellular subpopulations. CellBIC combines a top-down
hierarchical clustering algorithm and a bimodal expression
pattern of scRNA-seq data (Fig. 5).

2.3.3. Consensus clustering

2.3.3.1. SC3. Kiselev et al. [27] developed a Single-Cell
Consensus Clustering method (SC3). The robust method dis-
played high accuracy by combining multiple clustering

techniques. SC3 is performed by the following six basic steps
(Fig. 6).

Step 1. Gene filtering.

Genes are removed that are either expressed in less than a
% of cells or expressed in at least (100-a)% of cells, because
these ubiquitous and rare genes, respectively, are not often
informative for clustering.

Step 2. Distance calculation.

Distances are calculated between two cells using Euclidean,
Pearson, and Spearman metrics.

Step 3. Transformation.

All distance matrices are transformed with PCA or the
eigenvectors of the connected graph Laplacian matrix.

Step 4. K-means clustering.

A K-means clustering algorithm is applied on the first d
eigenvectors of the transformed distance matrices.

Step 5. Consensus clustering

A consensus matrix is calculated with a cluster-based simi-
larity partitioning algorithm [57] via two steps. A binary
similarity matrix is first constructed from cell labels for each
individual K-means cluster result and all similarity matrices
are then averaged for individual clustering results to obtain
a consensus matrix. In the former, the SC3 similarity between
the two cells is set as 1 if the two cells are clustered into the
same subpopulation; otherwise, the similarity is set as 0.
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Figure 4. Flowchart of differentiability correlation methods.

Calculating Boolean membership using a Gaussian mixture model

v

Capturing a gene group

A 4

Dissecting cells into two groups

A4

Finding a top-down hierarchical cluster

Figure 5. Flowchart of single-cell bimodel clustering (CellBIC) method.

Step 6. Hierarchical clustering. 2.3.3.2. The SAFE-clustering method. Yang et al. [58] devel-
The resulting consensus matrix is clustered using oped the SAFE-clustering method based on aggregated (from
a hierarchical cluster method with complete agglomeration, ensemble) clustering. The method comprises two components,
followed by inference of the clusters at the k level of hierarchy. with the first employing the SAFE-clustering of clustered



772 (&) L. PENG ET AL.

Gene filtering

3y

Calculating distances between two cells with Euclidean,
Pearson and Spearman measurements

U

Transforming all distance matrices

L

Vv

Performing k-means clustering algorithm

4

Consensus clustering

Constructing a binary
similarity matrix

Averaging all similarity
matrices of individual

$

Clustering the resulting consensus matrix

Figure 6. Flowchart of single-cell consensus clustering method.

scRNA-seq data using four state-of-the-art algorithms (SC3 [27],
CIDR [24], Seurat [59] and tSNE+K-means). In the second
component, SAFE-clustering performs cluster ensemble aggre-
gation to obtain consensus cluster labels using three hypergraph-
based partitioning methods (HGPA, MCLA, and CSPA). The
details of the SAFE-clustering method are shown in the algo-
rithm outlined below (Table 2), wherein ANMI represents the
Average Normalized Mutual Information (ANMI) in the SAFE-
clustering algorithm.

2.3.3.3. GiniClust2. Tsoucas and Yuan [60] developed a new
computational model, GiniClust2, to identify rare and common
cell types. GiniClust2 effectively combines the advantages of two
complementary clustering algorithms including the Gini index-
based technique and the Fano factor-based technique. The
model assigns the more reliable subpopulations higher weights
based on the following steps (Fig. 7).

Step 1. Filter genes and cells by removing genes expressed in
less than three cells, and cells with expression of less than 2,000
genes. GiniClust2 then performs the following four steps.

Step 2. Infer cell subpopulations based on the Gini index-
based features.

In the Gini index-based clustering algorithm, GiniClust2 uses
a two-step LOESS regression model and removes the trend with
the maximum expression levels to normalize raw Gini index

values. Genes with Gini index values significantly larger than
zero after normalization are considered as high Gini value genes.
The high Gini value genes are then used to calculate the dis-
tances between cells with the Jaccard metric. The distances are
used to cluster cells with density-based spatial clustering.

Step 3. Infer cellular subpopulations based on Fano factor-
based features.

The Fano factor-based clustering algorithm first defines the
Fano factor as the variance in mean expression levels for each
gene. The 1,000 genes with the highest Fano factor values are
then reserved for further analysis. The top 50 principal com-
ponents from principal components analysis (PCA) are then
chosen for clustering analysis from the gene expression
matrix. Finally, cellular subpopulations are inferred using
the K-means clustering algorithm.

Step 4. Integrate the results from the Gini index-based
method in Step 2 and the Fano factor-based method in Step
3 through a cluster-aware and a weighted consensus method
to compute the probability that two cells belong to the same
cluster.

PS and PF are the partitions obtained from the Gini index-
based and Fano factor-based clustering algorithms, respec-
tively. Each partition consists of cluster sets:

C®={Cy,Cy,...,Ce Y and C" = {C},C}, ..., CL }.



Table 2. The SAFE-clustering algorithm.

1: Run SC3, CIDR, Seurat and t-SNE+K-means to generate a Yy, matrix of
cluster labels

: Transform the output labels of each clustering method into a hypergraph

: For k = 2 t0 Kiax//Kmax is either specified by the user or is the maximum
value across these four individual methods

w N

4:  If MCLA = = TRUE

5: Do MCLA 5

6: Compute the Jaccard similarity matrix Sjic = m for two
hyperedges A, and A, P

7 k — way partitioning using the gpmetis program in the hMETIS

package

8: Compute the association index (MC;), c =1,2,...,k,i=1,2,...,n,and
assign each single cell to the meta-cluster ¢ with the largest Al metric

9: If there are empty clusters

10: Re-label into k' non-empty meta-clusters

11: End

12: End

13: If HGPA = = TRUE

14: Do HGPA

15: k — way partitioning using the sbmetis program in the hMETIS
package

16: End

17: If CSPA = = TRUE

18: Do CSPA

19: Compute and normalize the similarity matrix S

20: k — way partitioning using the gpmetis program in the hMETIS
package

21: End

22:  Calculate ANMI across ensemble methods
23:  Return consensus cluster labels L, and ANMI
24: End A —~
25: Return the optimal consensus result Lo_qp: Of ke_opr Clusters with the
highest ANMI: (Le—opt, Ke—opt) = arg max ANMI,,
Ly Ke,me{HGPAMCA.and /orCSPA}

GiniClust2 defines the weighted consensus associated
score as,

My = wiMy;(P9) + wiM;(P")
where M;;(P®)and M;;(P")denote the connectivity matrices:

1, (i,j) € Ck(PY) .
0, otherwise
1, (i,j) € Ck(PF)

0, otherwise

M;(P®) = { nd

M (PF) = {

Connectivity between two cells is set as 1 if the two cells are
grouped into the same cluster; otherwise, the value is set as 0.
and

Gini Fini
W, w..
1 s . 1
wo=—"2 — andwi" = —2
j Gini Fini

) Gini Fxm'
Wy + Wy

G

ij

i(;ini , ch;mi )) w

Gim'

where w;™ = max(w 7" (x;) denotes the cell-

!
Xt

specific Gini index-based weightsw " (x;) =1 —1/(1+¢ 7 ),
wg-"”‘ =1-1/(1+ e%), x; is the proportion by which cell i
belongs to the Gini index-based cluster, 4 represents the
proportion by which the Gini index-based and Fano factor-
based clustering algorithms have effectively identical ability to

find rare cell types, and s denotes how quickly the Gini index-
based clustering algorithm loses its ability to find rare cell

types above 4.
Step 5. Determine the final clustering assignment.
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GiniClust2 builds the following non-negative matrix fac-
torization model to produce a soft clustering,

min||M — U|?
i

where M represents the probability that two cells belong to
the same cluster. And an orthogonality constraint is used to
obtain a hard clustering similar to K-means.

2.3.3.4. ZINB-WaVE. Risso et al. [61] developed the general
and flexible model termed the Zero-Inflate Negative
Binomial-based Wanted Variation Extraction (ZINB-WaVE)
to represent single-cell data in low dimensionality while
accounting for dropouts and over-dispersion (Fig. 8).

ZINB-WaVE comprises the following steps.

For anyrm € [0,1], 4 > 0 and 6>0, ZINB-WaVE is first
defined as the probability mass function of the ZINB distribu-
tion by,

Janp(ysp, 0, ) = mdo(y) + (1 — m)fnp(y; p, 0)
wBere 0o(+) is the Dirac function, fyg(y;u,60) = (y(ﬁ%) (Weﬂ)g
(Ha), VY EN.

Given p genes (features) in n cells (samples), Y;; represents
the count of features j in sample i. ZINB-WaVE is then
modelled as Yj, representing a random variable following
the ZINB distribution where the parameters are satisfied by
the following regression models:

T
ln([,[l]) = (Xﬁﬂ + (Vy‘u) + W{X‘M + O}i)
logit () = (Xﬂn + (Vyn)T + Wa, + On)

In(6y) = g;
where logit(n) = In(n/(1 —n)), X is a known nx M
matrix corresponding to M cell-level covariates, V is
a known m x L matrix corresponding to m gene-level covari-
ates, W is an unknown n x K matrix corresponding to K

unknown cell-level covariates, O, and O, are known n
matrices of offsets, and B = (B,,B,) is associated with M

matrices of X from regression parameters.

y

)
y

2.3.4. Other cluster methods

2.3.4.1. The SNN-clique algorithm. Xu et al. [62] developed
the SNN-clique algorithm that combines shared nearest
neighbour (SNN) and quasi-clique-based clustering models.
The authors first established that the SNN method is relatively
robust and can obtain stable performances, and then devel-
oped a quasi-clique-based clustering model to capture cell
subpopulations with different shapes and densities (Fig. 9).

2.3.4.2. ScImpute. Li W. V. and Li J. J. [63] introduced
a statistical model, scImpute, that automatically detects possi-
ble dropouts and outlier cells. ScImpute comprises four steps
(Fig. 10) as follows.

Step 1. Data processing and normalization.

ScImpute takes a count matrix, X¢, providing the expres-
sion values of pgenes for n cells as the input and first nor-
malizes X with the library size of each cell (sample) to obtain
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Filtering of genes and cells

Inference of cellular subpopulations

Inferring cellular subpopulations
based on Gini index-based features

Step 1 Normalizing raw Gini index
values based on a two-step LOESS
regression model

Step 2 Selecting high Gini genes

Step 3 Calculating distances between
two cells with the Jaccard metric

Step 4 Using the distance as input to
cluster cells with density-based spatial
clustering

Inferring cellular subpopulations
based on Fano factor-based features
Step1 Defining Fano factor as variance
in mean expression level for each gene
Step2 Reserving 1,000 genes with the
highest Fano factor for further analysis
Step 3 Choosing top 50 principal
components for clustering analysis
with PCA

Step 4 Inferring cell subpopulations by
k-means clustering algorithm.

Integration of the results
Computing weighted consensus associated score:

Mij = Wi,(-;Mi/(PG)+ W:Mii(PF)

Figure 7. Flowchart of method combining gini index and fano factor.

XN. ScImpute then computes a matrix, X, to avoid infinite
values in parameter estimation using the following model:.

X :loglo(ijV+ 1.01);i=1,2,....,p,j = 1,2,...,n

Step 2. Detect cell subpopulations and outliers.

ScImpute performs PCA on X to achieve the ordination
results, Z. The distance matrix D, y, is then calculated from
similarities within the Zdataset. For L = {I;, L, ..,1,}, with [;
representing the distance of cell j to its nearest neighbour,
ScImpute denotes its first and third quartiles as Q; and Qs,
respectively. The outlier cells O are then defined as:
O=1{j:;>Q:s+1.5(Q;s — Qi)}. Finally, ScImpute clusters
the remaining cells {1,2,...,n}\O into K subpopulations
with spectral clustering.

Step 3. Calculate dropout values.

ScImpute models the expression of gene i in cell cluster k
(k)

as a random variable, X;

;> with the density function as.

fXFk) (x) = A,(k)Gamma(Jﬁ “Ek)vﬁz(k)>

+(1- )Lgk)Normal(x; ‘ugk), ogk))
The dropout probability by which gene i in cell j belongs to
cluster k can then be estimated as.

=N A
)Lgk) Gamma(X;;; &ﬁk) B (k)

dj == - ”
! /\(k)Gamma(Xij;&\fk),ﬁw) +(1- lgk)Normal(X,'j;ﬁ(k),Efk))

i i i

Step 4. Impute dropout values.

Gene set A; in cell j requires imputation based on the
threshold ¢ value of dropout probabilities: A; = {i : d;j > t},
whereas the gene set Bj = {i:d;j<t} has accurate gene
expression data and does not require imputation. Given
these assumptions, ScImpute first computes the similarities
among cells based on the non-negative least squares from B;:

B(j) = argmin || Xp,; — X5 n,B8(j)l],

BG)
subject to S(j) > 0,
where N; denotes the indices of candidate neighbour

A
cells of cell j. B(j) is then used to impute the expression
values of genes in A; from cell j based on the expression
of the same genes in other similar cells from B;:

(X5, i€B
X = N .
XinB i € A
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Dimensionality reduction
mmmmmmmm———— e ——————— o
I ZINB-WaVE 1 | Zero-inflated factor : I PCA :
Normalization
I U R - |
! Total count ¥ Full-quantile : | Trimmed mean of 1
1 normalization : 1 normalization ! M values :
- ) BN ——— TP
Clustering
-------——------——----ﬁ---------------------------I
: OE data set: :: 10 X Genomics 68k PBMCs data set, two :
: * Consensus cluster based on :: different clustering methods: :
| resampling cells and a :: * Clustering algorithm similar to Seurat 1
| sequential tight clustering :: [63] with ZINB-Wave instead of PCA; i
: approach Il * Sequential k-means clustering :
1 1 algorithm :
1 ! ]
- .

Figure 8. Flowchart of zero-inflate negative binomial-based wanted variation extraction.

2.3.4.3. RAFSIL. Pouyan et al. [64] exploited a random for-
est-based method, RAFSIL, to identify similarities among cells
via clustering of scRNA-seq data using the following three
steps.

Step 1. Use three types of filtering based on gene abun-
dances: all genes (ALL), frequency filtering (FRQ), and highly
expressed genes (HiE).

Step 2. Use FRQ to filter and cluster genes by treating
genes as observations and cells as features. The most repre-
sentative principal components via PCA are then chosen for
further analysis.

Step 3. Classification of all cells using a random forest-
based similarity learning method (Fig. 11).

2.3.4.4. SparseDC. Barron et al. [65] hypothesized that cell
types changed when micro-environments changed and
designed the Sparse Differential Clustering (SparseDC) algo-
rithm to evaluate these dynamics. SparseDC defines ‘condi-
tion A’ and ‘condition B’ as the conditions before and after
the change, respectively. The gene expression matrix X,x,
represents the expression of p genes in #n cells under condition
A. Ciindicates the indices of all cells contained in cluster k

under condition A, j € Ciindicates that cell j in condition A is
grouped into cluster k, j =1,2,...,n,k=1,2,...,K. In addi-
tion, N is the size of Cj with Zf;l Ni =n, pj as the cluster
centre for gene i and cluster k under condition A.
X', C}C,N,’(, y;k can similarly be defined for condition B.

SparseDC then exploits the following optimization
problem:

M

min T(C, C',p, ) = 033 2 (X — ) +3 5 (X — )’

. P>

lk=1 ~jeG je€Ce
\/Vk/\1|#ik| + VN/k’\1|P,ik|
(VNi + VN/k)AZ}Mik - :u/ik|}7

+ +

where A; and A, are parameters.

SparseDC initializes C and C by randomly assigning each
cell to clusters and then detecting the final clusters by itera-
tively updating {C,C’} and {y, '} until the clustering results
do not change.

2.3.4.5. ScNN. Lin et al. [66] designed a neural network-
based (scNN) method to detect and analyse cellular clusters.
Given that the vector x(¥) is the input of the scNN algorithm



776 (&) L. PENG ET AL.

Ve NN(xi)m NN(xj)}

Constructing an SNN graph with weight of each edge e(x;, x;):

w(xi , xj) =max{k — %(rank(v, X; )+ rank(v, xj N |

¥

Extracting maximal quasi-cliques in the SNN graph -
using a greedy algorithm based on the local degree of e

on the overlapping rate:
__ISsins|
7 min(|S; 1] S, )

Finding clusters through merging quasi-cliques based

Identifying clusters
in the SNN graph

iyt

node V:

€|

Assigning nodes to unique clusters based on the
proximity between candidate cluster C and the target

Score(C,v) = ﬁz w(c,,Vv)

Figure 9. Flowchart of shared nearest neighbour (SNN) technique and quasi-clique-based clustering models.

and x() is the output of ith hidden layer, scNN explores the
following forward propagation:

0 = a(WOxliD) 4 -0y,

where a is the activation function, b is an intercept term,
and W is the weight matrix. scNN uses the tangent (tanh) as
the activation function due to its optimal performance and
subsequently focuses on learning W and b:.

1 —exp(—2x)

tanh(x) = T exp(—2x)

For the output layer, scNN uses a softmax activation func-
tion to conduct discrete classification:

exp(xi)  explxc)
Zc exp(xc) Zc exp(xf)

where C denotes the indices of all cell types in the training
dataset.

output(x) = soft max(x) =

The output f(x(?))_ for each node ¢ in the output layer
indicates the probability by which the sample x(*) in the input
layer belongs to cell type c:

f)e=ply = cx?).

2.3.4.6. ScVDMC. Zhang et al. [67] exploited a Variance-
Driven Multitask-based Clustering (scVDMC) algorithm to
solve the cross-cell-population clustering problem. scVDMC
utilizes multiple single-cell populations from different datasets
and identifies cell clusters by controlling the variance among
their subpopulations within each dataset and across all datasets.

scVDMC assumes that the matrix X@ € R”"" indicates
gene expression values of scRNA-seq from domain
d € {1,2,...D}, where each domain, d, represents a single-
cell population for clustering, p is the number of genes (fea-
tures) and n(@ is the size of single-cell samples from domain
d. U@ € RP** denotes the centres of clusters (cell types),

W) @ onT
vector YW = [UiJ s Uij's o Ui ]

entry of every U@, and V@ ¢ {0,1}”(d)Xk indicates the

represents the (i,j)—th
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Data processing and normalization
=log (X"+1.01); i=12,..,p,j=12,.

Detection of cell subpopulations and outliers

Step 1 Performing PCA on X
Step 2 Calculating distance matrix D,y
Step 3 Defining outlier cells O as
0={:>Q3+15(Q: — 1)},
Step 4 Clustering the remaining cells {1,2,...,n}\0

A

Computing a random variable Xi(k) with density function:
S (x) = N"Gamma(x;a”y B+ (1 —=N" Normal(x;pn, o)

Computation of
l dropout values

Computing dropout probability:
A (k) A (k)L (k)
_ A Gamma(X ;o B, )
i A NOGENG) NGCENG)

A Gamma(X ;o B, )+ (1= A" Normal(X ;p, ,0: )

v

Imputation of the dropout values

Step 1 Computing cells’ similarities:
"

B =argmin|X, -X B
50 / Wy
subjectto B >0

Step 2 Imputing expression values of genes:
6 4 ieB

A i J
Xy = i
XiN-ﬁ
b |

Figure 10. Flowchart of a new imputation model for scRNA-seq data.

assignments of each single cell into clusters while k is the

T
number of clusters. B € {0, 1}’ represents the indicators of de}) BZZ ||Dp(X ||F ZB Var(U')
feature selection where B; is set as 1 if the ith gene is selected “)
as a feature, and set as 0 otherwise. Dg is the diagonal matrix + “Zi,j B;Var(Y'")

on B. scVDMC then defines the following optimization
model: subject to ZB =A,
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Gene filtering by comprising one of the following:
All genes (ALL)

Frequency filtering (FRQ)

Highly expressed genes (HiE)

v

RAFSIL: feature construction

RAFSIL gene filtering and clustering:

Step 1 Obtaining gene-filtered expression matrix x using FRQ

Step 2 Obtaining the most informative principal components using PCA
Step 3 Deriving gene clusters applying k-means clustering

-

RAFSIL Spearman feature space construction:

Step 1 Decomposing the column space of x into orthogonal sub-spaces based on gene
clustering

Step 2 Calculating n X n cell-cell similarity matrices {C;, Cs, ..., C.} using Spearman rank
correlation

Step 3 Obtaining m; informative principal components by performing PCA for each C;
Step 4 Yielding k matrices {F; € R™ ™} based on genes in cluster i

Step 5 Constructing a final feature matrix F by juxtaposing matrices from individual gene
clusters: F = (Fy, F,, ..., Fy)

Step 6 Representing each cell j as a feature vector f; € RP (P = Z{-‘zl m;)

[
RAFSIL: Radom Forest-based Similarity Learning v

RAFSILI1: RAFSIL2 (without the need for

Step 1 Generating ‘synthetic’ dataset by
shuffling the values of each feature
independently;

Step 2 Distinguishing the shuffled data
from the unshuffled data with RF
classifier;

Step 3 Defining the RF based similarity
matrix S’ and dissimilarity matrix D*;
Step 4 Repeating the above three steps B
times and aggregating individual S¢ and
D! into a final matrix S and D.

synthetically generated datasets):

Step 1 Driving class labels for all cells by
selecting a single feature j and quantizing its
values;

Step 2 Removing the jth column from F
and learning the obtained class labels with
the reduced dataset base on RF classifier;
Step 3 Yielding similarity matrix St and
dissimilarity matrix D*;

Step 4 Repeating the above steps for all
features and aggregating individual St and
D' into a final matrix S and D.

x

v

Using similarities as a vector embedding
for each cell and performing K-means
clustering to identify cell labels

Using learned dissimilarities and
running hierarchical clustering with

average linkage to identify cell labels

Figure 11. Flowchart of random forest-based single-cell clustering method.

Z Vi(j) —1,Vi=1,2,...n) . Vd=1,2,...,D. 2.4. Evaluation metrics
j

To evaluate clustering methods, several popular metrics
can be used including the Adjusted Rand Index (ARI) and
the Normalized Mutual Information (NMI) metrics based
on known labels of single cells.

Zhang et al. [67] solved the optimization problem using an
alternating updating strategy, thereby addressing the cross-
population clustering problem.



2.4.1. ARl

Given that n cells are grouped into k clusters, {u;}!
represents the inferred cluster labels, and {v;}._, is the
pre-annotated labels. Then,

o(%)-(=(3)=(3)(0)

e =) GO0

where | and s denote the k clusters, n, = > " I(u; =1),
ng =37 I(vi=s), and ms = > 21 I(u; = DI(v; = s)with I(x =
y) as an indicator function with value of 1 for x =y, but 0
otherwise. The ARI decreases with increasing disagreement
between the inferred labels and the known labels, with a value
of 1 when the inferred labels perfectly coincide with the
known labels.

2.4.2. NMI

Given that p =7, g¢,=7%, and z,=7, then
h(u) = = > pilog(pr)and  h(v) = — 3 q.log(qs) are the
entropies of the two subpopulations, respectively, and
i(u,v) = >, zislog(zis/pi/qs) is their mutual information.
The NMI is used to measure the level of perfect overlap
between subpopulations, and also decreases with increasing
disagreement between the inferred and known labels. The
NMI is defined as:

NMI = i(u,v)//h(u)h(v)

3. Results

scRNA-seq technologies allow numerous avenues for reveal-
ing novel and potentially unexpected biological discoveries.
For example, scRNA-seq has been used to capture subclones
via transcriptomic comparisons of neoplastic cells. The strat-
egy holds enormous prospects for applied and basic biology,
including clinical trials [23]. scRNA-seq clustering aims to
elucidate cell-to-cell heterogeneity and uncover cell sub-
groups and cell dynamics at the group level. More impor-
tantly, scRNA-seq clustering analysis can allow the discovery
of new subtypes of cells and marker genes for existing cell
types.

Two aspects of scRNA-seq data analysis were discussed in
the present review: relevant datasets and analytical tools. In
particular, we discussed scRNA-seq clustering models includ-
ing K-means clustering, hierarchical clustering, consensus
clustering, and other similar methods. Two primary evalua-
tion metrics (e.g. ARI and NMI) were used to evaluate these
methods.

We performed extensive experiments to evaluate the
performances of seven state-of-the-art scRNA clustering
methods on five public available datasets. These seven
methods are CIDR [24], SC3 [27], tSNE+k-means (tSNE
[68] followed by k-means clustering), RaceID [53],
scImpute [63], SAFE [58], and GiniClust2 [61], respectively.
These five datasets are from human brain [69], cerebral
cortex [70], IPF [71], peripheral blood mononuclear cells
[58], and mouse 2-cell and 4-cell embryos [72],
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respectively. They can be downloaded from the GEO or
SRA  database (GSE67835, SRP041736, GSE86618,
SRP073767 and GSE57249). The experiments were per-
formed on an iMAC with 2.4 GHz Inter Core i5, 8GB
2133 MHz CPDDR3 of RAM and OS Catalina 10.15.2
operating system.

We preprocessed scRNA-seq data based on the prepro-
cessing steps provided by the corresponding papers. The
results are shown in Table 3. In the human brain dataset
[69], samples with library size more than 10,000 were
retained. In the cerebral cortex dataset [70], genes
expressed in less than 2 cells were removed. In the periph-
eral blood mononuclear cells [58] and mouse 2-cell and
4-cell embryos [72] datasets, the raw tag table were normal-
ized by size factor and transformed by log,,(X + 1). In the
human IPF dataset [71], each expression profile was trans-
formed by z-scores (2%; = @, where ¢°; and y°; repre-
sent the standard and mean deviation, respectively). The
results of comparison were shown in Table 4-8.

In the human brain scRNA-Seq dataset [69], GiniClust2
obtained an ARI of 0.9121 and can correctly identify most
cells for each cell type. SC3 obtained the best NMI of 0.9921
(Table 4). In the human cerebral cortex scRNA-Seq dataset
[70], SC3 had the highest score of ARI, and was followed by
tSNE+k-means. SC3, tSNE+k-means and scImpute achieved
the best results in terms of NMI. But tSNE+k-means (48.10
secs) was faster than SC3 (53.55 secs) (Table 5). In the human
IPF scRNA-Seq dataset [71], SC3 achieved the best perfor-
mances on both ARI and NMI, which were far better than
other methods (Table 6). In the peripheral blood mononuc-
lear cells scRNA-Seq dataset [58], these seven methods
obtained better performances. tSNE+k-means obtained the
best performances on both ARI and NMI (Table 7). In the
2-cell and 4-cell mouse embryos scRNA-Seq dataset [72],
tSNE+k-means obtained the best performances (1.0) on both
ARI and NMI. More importantly, CIDR was the fastest on
these five scRNA-seq datasets (Table 8). The experimental
results from these five dataseets shows that CIDR usually
has the least runtime, and SC3 and tSNE+k-means usually
have better clustering accuracy.

Table 3.The summary statistics of the five scRNA-seq datasets after
preprocessing.

Dataset Cell types Cells Genes
human brain 8 420 21,517
human cerebral cortex 11 300 8,686
human IPF 9 540 56,650
peripheral blood mononuclear cells 3 500 32,738
2-cell and 4-cell mouse embryos 3 49 25,737

Table 4. The performance comparison of seven methods on the human brain
dataset.

Method ARI NMI Runtime
CIDR 0.8977 0.9467 6.95s

SG3 0.7985 0.9921 1.95 min
tSNE+k-means 0.8408 0.8249 3035 s
RacelD 0.5029 0.8003 1.47 min
scimpute 0.5541 0.7388 2.60 min
SAFE 0.6498 0.7618 2.40 min
GiniClust2 0.9121 0.9492 39.71s
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Table 5. The performance comparison of seven methods on the human cerebral
cortex dataset.

Method ARI NMI Runtime
CIDR 0.7374 0.4469 243 s
SC3 0.8933 1.0 53.55s
tSNE+k-means 0.8897 1.0 48.10s
RacelD 0.5649 0.2199 1.32 min
scimpute 0.7548 1.0 1.40 min
SAFE 0.6689 0.5950 59.97s
GiniClust2 0.5819 0.7754 22.14s

Table 6. The performance comparison of seven methods on the human IPF
dataset.

Method ARI NMI Runtime
CIDR 0.2183 0.3917 12.01s

Sa3 0.7096 0.9820 3.51 min
tSNE+k-means 0.1736 0.4591 4633 s

RacelD 0.1009 0.2852 4,99 min
scimpute 0.2930 0.7702 13.62 min
SAFE 0.2187 0.4375 4.66 min
GiniClust2 0.4871 0.9370 2.06 min

Table 7. The performance comparison of seven methods on the peripheral
blood mononuclear cells dataset.

Method ARI NMI Runtime
CIDR 0.9210 0.9752 8.11s
N &) 0.8546 0.9446 2.71 mins
tSNE+k-means 0.9884 0.9871 20.83 s
RacelD 0.8386 0.0933 57.77 s
scimpute 0.9826 0.9628 1.88 min
SAFE 0.8920 0.9136 3.27 min
GiniClust2 0.9826 0.9814 29.12 min

Table 8. The performance comparison of seven methods on the 2-cell and 4-cell
mouse embryos dataset.

Method ARI NMI Runtime
CIDR 0.8606 09114 2.03s

SC3 0.9483 09114 21.90 s
tSNE+k-means 1.0 1.0 231s

RacelD 0.1268 09114 13325
scimpute 1.0 0.9114 5419 s
SAFE 0.7731 0.6877 24.07 s
GiniClust2 0.9483 09114 16.45 s

4. Discussion and further research

Current computational models for clustering scRNA-seq data
effectively identified cellular subpopulations, however, they
have a number of challenges encapsulated within the seven
following categories.

4.1. Lacking gold-standard benchmark datasets

scRNA-seq technologies have rapidly developed, and scRNA-
seq clustering techniques have efficiently been able to capture
cell subpopulations. However, the lack of gold-standard
benchmark datasets severely limits systematic comparisons
of performance of various clustering algorithms. Thus, inte-
grating existing experimental data and generating single-cell
dataset benchmarks may be a major challenge for advancing
single-cell data analysis [10,73,74].

4.2. Identifying a cluster number

Almost all clustering algorithms require a parameter for the
number of desired clusters. Indeed, the parameter has impor-
tant effects on clustering outcomes. Although RacelD [53],
SNN-cliq [62], and SC3 [27] provide estimations of cluster
numbers, K, these methods have other limitations. RaceID
[53] performs poorly when no rare cell types are present,
while SNN-cliq [62] and SC3 [27] have high complexity and
are not scalable. Consequently, selecting an appropriate clus-
ter parameter is a challenging task.

4.3. Reclustering cell subpopulations

Many algorithms (e.g., RaceID [53] and GiniClust2 [60])
exhibit good performances when clusters are roughly equal
in size. Unfortunately, decreased performance in identifying
rare cell types occurs when more frequent cell types are
clustered. To solve this problem, many solutions have used
a divide-and-conquer technique to recluster large cell popula-
tions after an initial clustering [75,76,]. However, a critical
problem arises with regard to how to determine whether
a large cell subpopulation should be reclustered [22].

4.4. Dimension reduction

scRNA-seq dataset components contain abundant cells. While it
is feasible to cluster these large datasets, visualizing and inter-
preting these results remains a challenge. Linear dimensional
reduction techniques (e.g., PCA) can not accurately uncover
potential associations between cells due to dropout and noise.
In contrast, nonlinear dimensional reduction strategies (e.g.,
t-SNE [52,68,77,,] and UMAP [77]) can produce outcomes that
are easier to interpret. However, they incorporate parameters
requiring manual adjustment, and this severely affects visualiza-
tion. Thus, using an appropriate method for choosing para-
meters to perform dimensional reduction in scRNA-seq
clustering is an unsolved problem [22].

4.5. Validation and visualization of clustering results

The validation of scRNA-seq clustering results may be one of
the most pressing challenges in analysing these data. The cur-
rently optimal validation method is to confirm cell types by
other methods like screening cells from different cell lines [70]
or during the first stages of embryonic development [78], or by
evaluating tissues that are well studied (e.g., peripheral blood
mononuclear cells) [58]. These cell types or tissues can serve as
useful ground-truthing benchmarks but are, however, unlikely
to be complex, and there are also limited tissue examples [22].
In addition, there are numerous analysis tools for identifying
gene enrichment analysis tools, but tools to analyse cell type
enrichment are scarce. Consequently, exploiting visualization
tools to identify cell type enrichments may be a promising
area of alternative research.



4.6. Ensemble clustering

Experiments have confirmed that no individual scRNA-seq
clustering algorithm can capture true clusters and achieve
optimal performance in all situations. For example, SC3
[27], SINCERA [55], and pcaReduce [79] performed better
than other models in the dataset investigated in Biase et al.
[72]. In contrast, tSNE+k-means and SC3 [27] exhibited more
robust performances when analysing the dataset provided by
Klein et al. [27,80,]. Ensemble clustering produces several
clustering results for a given dataset and identifies final solu-
tions based on the associations observed across the ensemble.
The solutions from ensemble clustering are more stable and
robust than every individual solution within the ensemble.
Consequently, it may be an important area of future research
to leverage ensemble clustering to integrate gene expression
data from all individual cells and diverse clustering methods
given that individual clustering algorithms are less likely to
achieve as optimal of performances.

4.7. Personalized medicine

More extensive research into individual cellular dynamics
can increase our understanding of the developmental pro-
cesses and pathogenesis mechanisms of various complex
diseases. These findings can then be effectively applied in
personalized medicine and contribute to the development
of the field. For example, scRNA-seq clustering has been
used to identify intra-tumoural heterogeneity [73,81-84]
and cluster tumour cell subpopulations [85,86,].
Nevertheless, the application of these methods in adult
somatic stem cell research is currently restricted due to
limited knowledge about individual stem cells [86-89].
Thus, a significant challenge of the field may be to design
novel statistical quantification techniques to detect cell sub-
populations and design personalized treatment options for
individual patients.
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