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ABSTRACT
The understanding of miRNA target interactions is still limited due to conflicting data and the fact that
high-quality validation of targets is a time-consuming process. Faster methods like high-throughput
screens and bioinformatics predictions are employed but suffer from several problems. One of these,
namely the potential occurrence of downstream (i.e. secondary) effects in high-throughput screens has
been only little discussed so far. However, such effects limit usage for both the identification of
interactions and for the training of bioinformatics tools. In order to analyse this problem more closely,
we performed time-dependent microarray screening experiments overexpressing human miR-517a-3p,
and, together with published time-dependent datasets of human miR-17-5p, miR-135b and miR-124
overexpression, we analysed the dynamics of deregulated genes. We show that the number of deregu-
lated targets increases over time, whereas seed sequence content and performance of several
miRNA target prediction algorithms actually decrease over time. Bioinformatics recognition success of
validated miR-17 targets was comparable to that of data gained only 12 h post-transfection. We
therefore argue that the timing of microarray experiments is of critical importance for detecting direct
targets with high confidence and for the usability of these data for the training of bioinformatics
prediction tools.
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Introduction

MicroRNAs (miRNAs) are a class of small ~22 nt non-coding
RNAs, which participate in the post-transcriptional regulation of
gene expression. Currently, nearly 2700 mature human miRNAs
are annotated in the miRBase [1,2], suggested to regulate the
majority of human genes in a tissue- and context-dependent
manner [3–5]. Identifying miRNA target genes is crucial for
understanding their regulatory functions in health and disease.
Therefore, numerous techniques were developed in the last years.
Targets are usually validated using luciferase dual reporter assay,
qPCR or western blotting, that are considered as strong experi-
mental evidences. However, these methods are applicable for low-
to medium-throughput, which makes the investigation labour-
intensive and time-consuming. Large-scale detection of miRNA
targets can be done by new generation sequencing (NGS) [6],
microarrays [7] or crosslinking, ligation, and sequencing of hybrid
(CLASH) methods [8]. Currently, around 95% of the experimen-
tally reported miRNA target interactions, listed in miRTarBase,
a database dealing with experimentally detected targets [9,10],
come from high-throughput approaches. Despite being effective

in data generation, these techniques are costly and produce data
that need further experimental validation due to the substantial
fraction of false positives. Therefore, bioinformatics target predic-
tion algorithms are necessary for speeding up miRNA-mediated
regulatory network analysis and reducing the associated costs.

A number of algorithms were introduced in the last
15 years, and all of them primarily rely on rules representing
the formation of perfectly matched miRNA-mRNA duplexes.
Some of them extend the seed sequence (2–8 nt) and consider
neighbouring positions 1, 9 and 10 as the relevant recognition
determinants [11]. Furthermore, the conservation of seed
sequences throughout a number of species, accessibility of
the binding site within the mRNA, the change in free energy
(ΔGbinding) of the putative miRNA-mRNA duplex, the second-
ary and tertiary structure of the miRNA-mRNA duplex within
the RISC complex can be considered [12–17]. Some of the
methods (e.g., TargetScan [18], DIANA microT-CDS and
miRmap) are ‘classical’ algorithms, which are based on
a scoring function. This function is derived by weighing the
impact of the above listed miRNA-mRNA binding determi-
nants on the overall binding probability via the usage of
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multiple linear regressions. Recently, a number of machine
learning-based tools, such as MirTarget3 (support vector
machine, SVM-based [19]), miRNATip (self-organizing map,
SOM-based [20]) and TarPmiR (random-forest-based [21])
were developed.

However, all of the above approaches only result in
a moderate efficiency in target prediction. For instance,
a target prediction accuracy of only 10-50% for five selected
tools was reported some time ago [22]. Several major reasons
have been identified so far: firstly, the rules of miRNA–mRNA
interaction are not completely understood, especially in
a context-dependent manner. For example, CLASH experi-
ments revealed that a seed matching may be not necessary for
some miRNA interactions with their targets [8]. Secondly,
large-scale data are usually used for training the algorithms
as a lot of true positives and negatives are needed in order to
ensure reliable scoring. Thus, gene expression microarrays
following miRNA overexpression are the most frequently
utilized. However, numerous false positives may be intro-
duced as deregulation of miRNA and their targets are prone
to cause downstream secondary effects [23,24]; meaning that
direct physical targets, i.e. deregulated mRNAs will in turn
influence the expression of other genes. Furthermore, it was
recently shown, that in large-scale experiments some genes
may be deregulated to an extent which is much smaller than
the inter-sample (or inter-replicate) variability [25], resulting
in false-positives. On the other hand, the only modest dereg-
ulation of hundreds of transcripts as well as proteins following
miRNA overexpression [26–29] may be overlooked during the
hit calling and generate numerous false negatives.

Target prediction efficiency according to the features pre-
sent in the algorithms has been analysed regularly
[11,14,16,20,30]. This in turn helped to steadily improve the
performance of the tools. Recently, it was demonstrated that
considering and weighing conserved miRNA binding sites
causes target over-
prediction because these sequences are short and also occur in
other contexts or simply by chance when placed in regions
protected from unwanted miRNA binding [25]. In general,
side-to-side comparison of algorithms is non-trivial due to
their different rules for target scoring and overall organiza-
tion. Furthermore, the comparison is frequently done on very
large datasets [31], which in return would require extensive
efforts to individually validate those interactions. In addition,
a comparative analysis may be biased in some cases when
datasets, optimal only for one algorithm, are used (e.g.
[20,21]).

In this study, we took an effort to analyse target prediction
efficiency by seven freely accessible and recently updated
algorithms: TargetScan, microT-CDS, miMap, miRTar,
MirTarget3, miRNATip and TarPmiR. In order to achieve as
objective as possible comparison, we used microarray data
after overexpression of miR-17 [32], miR-517a, miR-135b
[33] and miR-124 [27] along with the set of 42 validated
targets of miR-17. We compared these tools conferring
a straightforward criterion of a presence of the perfectly
matching canonical 7-mer seed sequences among the down-
regulated targets. In our study, we show the surprisingly
varying performance of the selected algorithms in target

prediction regardless the type of analysed data. For the first
time, target recognition efficiency was systematically analysed
as a function of time after miRNA overexpression. We could
unambiguously demonstrate that the timing of gene expres-
sion data is of key importance for accurate prediction of
miRNA targets and should be considered carefully when
choosing such type of data for training of target prediction
algorithms.

Materials and methods

Transfection of miRNA

miR-517a-3p (PM12660) and the negative control (AM17120)
were purchased from Thermo Fisher Scientific. miRNAs were
transfected into HeLa cells at a final concentration of 50 nM
using Lipofectamine 2000 transfection reagent (Thermo Fisher
Scientific) according to the manufacturer’s recommendations.

qRT-PCR of miR-17-5p expression level

For qRT-PCR of miR-17-5p total RNA from HeLa cells was
isolated 24 h, 48 h and 72 h after the transfection. Reverse
transcription of miR-17-5p and the housekeeping control
RNU6B RNA was carried out using the TaqMan MicroRNA
Reverse Transcription kit with 15 ng of total RNA and 50 nM
RNA-specific stem-loop Reverse Transcription primers. qRT-
PCR reactions were carried out in 96-well ABgene PCR Plates
(Thermo Fisher Scientific) in the Real-Time PCR 7500 system
using miRNA TaqMan Assay (all reagents and the equipment
were from Thermo Fisher Scientific). The ΔΔCT method for
quantification of miR-17-5p expression level was applied as
described elsewhere (Livak and Schmittgen, 2001), using an
expression level of RNU6B RNA as a reference for
normalization.

mRNA expression microarrays

Total RNA of two biological replicates of each experimental
condition was extracted 12 h, 24 h and 48 h after miRNA
transfection and submitted for mRNA expression profiling
with human Sentrix-8 BeadChip arrays (Illumina). The arrays
were scanned on Beadstation array scanner (Illumina). Data
analysis of mRNA microarrays was accomplished by normal-
ization of the averaged signals of all specific probe replicates
using the quantile normalization algorithm without back-
ground subtraction. The analysis was performed by means
of the Chipster analysis platform v1.4.7 [34]. Expression
level fold change (log2) of the respective transcripts was
defined as a difference between the normalized mean intensity
of the respective probes from the samples transfected with
miR-517a-3p and negative control samples. The statistical
significance of the expression level fold changes was estimated
by calculating a p-value using the empirical Bayes method and
Benjamini-Hochberg multiple testing correction. Next, the
log2 expression fold changes were transformed to linear
expression fold changes and cut-off values of ±1.5 corre-
sponding to an adjusted p-value ≤0.01 were applied to identify
significantly deregulated transcripts. To account for the gene
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expression changes equally for all the datasets, a cut-off value
of 1.5 was applied for the previously published gene expres-
sion datasets used in this study as well.

Computational analysis of time-resolved mRNA
expression data

We implemented the pipeline, in which mySQL databases for
RefSeq identifiers, miRNA target predictions and BLAST
databases for RefSeq RNA (release 87 [35]) mRNA sequences
and CDS locations were created locally from publicly available
tab-delimited output files. For the search of miRNA binding
sites in mRNA sequences, BLAST+ [36] was used with the
following parameters: at least 5 nt-long perfect match of
sequence, complementary to 2–8 nt of miRNA, with
a threshold of E-value set to E = 50. In the computational
analysis, we defined that a gene is supposed to contain
a certain seed sequence if there is at least one transcript
variant that contains this seed sequence. Ensembl 91 [37] for
mapping of identifiers was accessed by remote SQL calls. For
the analysis of seed sequence conservation in validated miR-
17 targets, BLAST+ search against species-constrained RefSeq
RNA database was used. Detected highly homologous tran-
scripts in Mus musculus, Gallus gallus, Drosophila melanoga-
ster and Caenorhabditis elegans were aligned using MAFFT
[38] and checked for seed sequence identity. False discovery
rates (FDR) were calculated as follows: Npredictions�NTPs

Npredictions
, where

true positives (TPs) are defined as all the unique experimen-
tally downregulated genes. As TarPMiR is available as
a software tool only, FDR calculations were performed using
the output of a scan against full human transcriptome, pro-
vided in RefSeq. For querying transcription factor-mediated
gene interactions, RegNetwork [39] and Human Protein
Reference Database [40] were used.

Results

Overexpression of miRNAs increases the number of
deregulated mRNAs over time

In order to analyse the dynamics of miRNA induced expression
changes in more detail, we used three previously published data
sets [27,32,33], which were obtained at several time points,
spanning 12–48 h after miRNA overexpression. Despite being
publically available, none of them was analysed as a function of

time in detail to the date. De novo overexpression of miR-124 in
HeLa cells [27] induced the deregulation of hundreds of tran-
scripts: 294 were down- and 114 genes upregulated at 12 h post
transfection, while 721 were down- and 606 genes upregulated
after 24 h using a threshold of fold difference of 1.5 (Table 1). In
contrast, the overexpression of miR-135b was done in its natural
environment, prostate adenocarcinoma cells LNCaP [33]. Some
targets may be missed due to their repression via the natural
presence of miR-135b in these cells. Therefore, it is not surpris-
ing that the number of deregulated transcripts was lower com-
pared to the de novo overexpression of miR-124; however, the
raise in deregulated mRNAs over time was also sizable (Table 1).
Considerably smaller numbers of significantly deregulated tran-
scripts were scored upon the overexpression of both miR-17
(HeLa cells [32]) and miR-135b in their natural environment.
In the first case, observing only modest numbers of deregulated
transcripts, we ensured that there is still a significant elevation of
miR-17 levels after pre-miR-17 transfection via qRT-PCR
(Supplementary Fig. 1).

In addition to the above described three published datasets,
we performed our own gene expression studies after the over-
expression of miR-517a, functions of which are little known to
date. The data were collected at 12 h, 24 h and 48 h following
transfection, and the negative control pre-miR oligonucleotide
was included as a reference for each time point. Similarly, to
miR-124, de novo expression of miR-517a in HeLa cells
induced a large time-dependent increase in downregulated
transcripts (more than sevenfold) when comparing data
between 12 h and 48 h (Table 1). An even higher increase
in upregulated transcripts was observed: from 109 mRNAs at
12 h time point to 1103 mRNAs at 48 h (Table 1,
Supplementary Table 1). Even though there are only a few
validated targets of miR-517a known, one of them, namely the
transcription activator Forkhead box J3 (FOXJ3, [41]), was
identified as a downregulated transcript in our experiments at
all three time points measured.

We then analysed whether the observed increase in deregu-
lated mRNAs is rather linear with time or nonlinear.
Therefore, we analysed the differences between sequential
time points. Remarkably, for three out of four tested
miRNAs a fold-change of the downregulated transcripts
between two time points for two sequential periods remained
in a range of 2–2.9. Also, a similar fold-change for the upre-
gulated transcripts between early and late time points was
registered for miR-17 and miR-517a. In contrast, 5- to 10-

Table 1. Overexpression of miRNAs induces the increase of deregulated transcripts over time. The cut-off value of fcj j � 1:5 was applied to identify significantly
deregulated mRNAs. Fold change in transcript numbers shows the difference between two sequential time points.

miRNA Time point
Down-

regulation
Fold-change in transcript

numbers Upregulation
Fold-change in transcript

numbers

hsa-miR-17-5p 12 h 35 10
24 h 41 1.2 18 1.8
48 h 43 1.1 33 1.83

hsa-miR-517a-3p 12 h 123 109
24 h 351 2.9 379 3.5
48 h 964 2.8 1103 2.9
12 h 42 13

hsa-miR-135b 24 h 86 2.1 135 10.4
36 h 186 2.2 174 1.3

hsa-miR-124 12 h 294 114
24 h 721 2.5 606 5.3
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fold increases in the upregulated transcripts were observed
upon overexpression of miR-135b and miR-124 between 12 h
and 24 h, suggesting different dynamics of miRNA target
interactions. Interestingly, the fold increase in the deregulated
mRNAs between sequential time points is similar for de novo
and endogenously expressed miRNAs, in contrast to the
strongly varying absolute numbers of the altered transcripts
(Table 1).

Eventually, the fractions of transcripts that are deregulated by
1.5-fold at single time points compared to all time points were
calculated.miR-124 was excluded from the analysis as data of only
two time points were available. For miR-17, miR-517a and miR-
135b, around 70% of the downregulated transcripts were scored at
a single time point (Figure 1). The majority of these may be
indirect targets as the largest fraction of them were deregulated
at 48 h post-transfection. Around 10% of mRNAs was down-
regulated in all three time points and possibly indicate direct and
long-lived targets. Only few transcripts were downregulated at
12 h and 36/48 h but not at the intermediate 24 h time point and
we speculate that these could also be assigned to the group of
potential direct and long-lived targets and that the failure to
confidently detect their expression changes at 24 h time point
might be due to experimental details. Surprisingly constant is
also the fraction ofmRNAs (16-18%), whose expression is reduced
between two subsequent time points. The majority of such tran-
scripts are detected at 24 h and 48 h for miR-517a and miR135b,
but at 12 h and 24 h in the case ofmiR-17 (Figure 1). Curiously, the
change among the upregulated transcripts was similar in some
aspects (Supplementary Fig. 2). For instance, the largest fraction of
such mRNAs appeared at a single late time point of 36/48 h. In
contrast to the downregulated transcripts, the upregulated ones at
all time points constitute a smaller fraction of 3-6% with miR-17
having none of that sort (Fig. S2a). All in all, the changes of the
deregulatedmRNAs over time share a number of similarities upon
overexpression of different miRNAs in different experimental
setups.

Occurrence of the seed sequence in the deregulated
transcripts decreases over time

As the next step in investigating the commonalities and differ-
ences for chosen miRNA cases, we analysed the occurrence of
perfectly matching seed sequences over the whole length of the

deregulated transcripts (Supplementary Table 1). In our own
experiments, the overexpression of synthetic pre-miRs elevated
levels of miR-17-5p [32] and miR-517a-3p. The situation is less
clear after the expression of miR-124 and miR-135b, as either
−5p or −3p forms of these miRNAs may have been generated.
Thus, we considered the seed sequences of those miRNA iso-
forms that are shown to be higher expressed in cells according to
miRBase: namely, miR-135b-5p and miR-124-3p. In agreement
with previous observations [42], the vast majority of potential
miR-124 targets was lost when using perfect seed matching;
therefore, we excluded this miRNA from the following analysis.
Canonical 7mer seed sequences at 2ʹ-8ʹ position of the selected
miRNAs were used to identify the presence of respective com-
plementary sequences.

The presence of the seed sequence among the deregulated
transcripts induced by miRNA overexpression was distinct for
the miRNAs analysed. 77 and 69% of the mRNAs with
reduced expression levels contained the relevant seed
sequences following the overexpression of miR-17 and miR-
135b at 12 h, respectively (Table 3). In contrast, less than 25%
of such transcripts were found in case of miR-517a at the
same time point. Despite this difference, the fraction of down-
regulated transcripts containing the relevant seed sequences
was decreasing from 12 h to 36/48 h for all miRNAs. The
change was miRNA-specific. For instance, overexpression of
miR-135b and miR-17 induced a moderate decrease (1.8- and
1.2-fold, respectively) for down-regulated transcripts contain-
ing seed sequences. In contrast, a 3.2-fold drop of seed
sequence present in the respective subset of transcripts was
observed after miR-517a overexpression over time. As
expected, the majority of seed sequences were found in the
3ʹUTR of all mRNAs (Figure 2). Some were nevertheless
located in the coding part (CDS) and only few transcripts
contained the seed sequences in their 5ʹUTRs. For all
miRNAs, we observed a common trend of a notable decrease
in downregulated transcripts with the seed sequences in
3ʹUTR over time while a fraction of those with seed sequence
in the CDS remained relatively unchanged.

Surprisingly, the seed sequences were also found in upregu-
lated transcripts, which are usually not considered as potential
targets upon miRNA overexpression. The prevalence of the
respective seed sequences was fairly high, except for miR-517a
(Supplementary Fig. 3) and correlated well to that observed for

miR-517a

0.9% 0.9%

13.2%

1.6%

9.2%

12h 24h 48h

0.3% 8.5% 65.8%

miR-17

4.8%

12.0%

8.3%

12h 24h 48h

20.2% 21.4% 33.3%

miR-135b

0.6% 0.6%

17.9%

0.6%

11.9%

12h 24h 36h

7.1% 7.1% 54.2%

A B C

Figure 1. Downregulation of transcripts over multiple time points upon miRNA overexpression. Total number of the downregulated transcripts after the over-
expression of miR-17 (a), miR-517a (b) and miR-315b (c) was considered as 100% and their occurrence at the individual time points is shown as the respective
percentages. Dark blue colour indicates the transcripts whose expression is reduced at 12 h, 24 h and 36/48 h, light blue colour – at 24 h and 36/48 h, orange
colour – at 12 h and 24 h and yellow colour – at 12 h and 36/48 h. The fractions of downregulated transcripts at single time points are indicated below the respective
time point.
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the downregulated transcripts. The numbers of upregulated
transcripts containing seed sequences followed the general
trend of getting diminished over time. In contrast to the down-
regulated mRNAs (Figure 2), the seed sequences in upregulated
transcripts were distributed quite equally between 3ʹUTR and
CDS (Fig. S3).

A considerable fraction of downregulated mRNAs bore
multiple miRNA binding sites (Table 2). Among these, we
observed varying frequencies of seed sequence occurrence
among the tested miRNAs. Downregulated transcripts follow-
ing miR-17 and miR-135b overexpression carried two to five
seed positions, whereas, a maximum of three seed positions
per transcript were found in the case of miR-517a. Multiple
seed sequences were harboured either exclusively at 3ʹ-UTR of
the transcript or at least one of them was located in the 3ʹ-
UTR (Table 2). In agreement with the previously described
data (Table 1, Figures 1 and 2), the occurrence of down-
regulated transcripts containing several seed positions was
declining over time. Multiple seed sequences in upregulated
transcripts were found even more frequently (Supplementary
Table 2) but were also predominantly located at the 3ʹ-UTR or
CDS. mRNAs upregulated by miR-17 overexpression pos-
sessed a greater number of seed sequence binding sites
(more than five), whereas the maximum number of binding
sites in mRNAs upregulated after miR-135b overexpression
was two. Upregulated potential targets of miR-517a were
nearly completely devoid of transcripts with multiple seed
positions.

Performance of miRNA target prediction algorithms on
time-resolved gene expression data

After having analysed the changes in deregulated transcripts
over time, we then tested how efficiently target prediction
algorithms work on this type of data. For this, we focused
on a set of publically accessible algorithms, which were
reported to be updated in the last 5 years: DIANA microT-
CDS, MirTarget3, TargetScan, miRmap, miRNATip, miRTar
and TarPMiR. We have created a computational pipeline to
automate the mapping of various identifiers for the tran-
scripts, handling of datasets and matching of true positives
between experimentally downregulated mRNAs and compu-
tational predictions (see Materials and Methods for a more
detailed description).

At first, we compared the performance of so-called ‘classi-
cal’ target prediction algorithms (Table 3(a)). Notably, the
fractions of the predicted targets varied significantly among
the algorithms applied for the same miRNA. For instance,
88% of the downregulated mRNAs after the overexpression of
miR-17 at 12 h were recognized as targets by miRmap, but
only 34% by miRTar. Prediction efficiency by TargetScan and
microT-CDS was comparable to each other’s, reaching over
50% of target calling for miR-17 overexpression at 12 h.
Machine learning-based tools performed more uniformly
than the ‘classical’ ones (Table 3(b)). The highest target pre-
diction rate of 88% at 12 h time point after miR-17 over-
expression was similar to that obtained with miRmap and the

miR-135b-5p
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Figure 2. Time-dependent occurrence of the seed sequences following the overexpression of miR-17-5p (a), miR-517a-3p (b) and miR-135b-5p (c). Seed sequence
presence and localization within the transcript were determined as described in Materials and Methods. Data are provided as a percentage of all the experimentally
determined downregulated genes, transcripts of which possess respective seed sequence complements for miR-17-5p (‘GCACUUU’), miR-517a-3p (‘UGCACGA’) and
miR-135b-5p (‘AAGCCAU’).

Table 2. Changes in localization and appearance of multiple seed sequence positions over time. Position-wise distribution is reported as a fraction of all the
experimentally determined downregulated genes. Three main combinations of seed sequence localization (3ʹ-UTR only, 3ʹ-UTR and CDS, CDS only) are provided
explicitly, while the ‘others’ graph contains the cases that are rarer: 5ʹ-UTR-only, 5ʹ-UTR and CDS, 3ʹ-UTR and 5ʹ-UTR and 3ʹ-UTR, CDS and 5ʹ-UTR.

miRNA Time point

Transcripts with multiple seed sequence positions # of unique seed sequences

3ʹ-UTR-only 3ʹ-UTR and CDS CDS-only Others2 3 4 ≥5# % of total

hsa-miR-17-5p 12 h 24 68.6 7 6 4 7 6 17 0 1
24 h 23 56.1 9 6 2 6 3 15 2 3
48 h 20 46.5 7 6 2 5 3 9 4 4

hsa-miR-517a-3p 12 h 6 4.9 5 1 0 0 4 2 0 0
24 h 13 3.8 12 1 0 0 9 3 1 0
48 h 1 0.1 1 0 0 0 0 0 1 0

hsa-miR-135b-5p 12 h 20 45.2 9 2 3 6 9 9 1 0
24 h 44 45.3 10 9 8 17 12 23 2 2
36 h 30 16.1 19 6 4 1 9 16 5 0
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one generated by miRNATip. The lowest target prediction
rate of 54% was achieved by MirTarget3 at the same time
point (Table 3(b)). Uniformly, nearly all software tools recog-
nized less targets at later time points. This drop for all
miRNAs and algorithms between two sequential time points
was in the range of 1.2- to 3-fold (Table 3). Only TarPMiR
showed some deviations from these observations. Firstly, it
predicted an increasing fraction of the potential targets over
time for miR-135b. Secondly, nearly the same fraction of
targets was predicted for miR-17 at 24 h and 48 h (Table 3
(b)) in agreement with the small change (68% to 65%) in the
downregulated transcripts containing the seed sequence at
these two time points.

In general and not surprisingly, we observed a positive rela-
tionship between target prediction efficiency and the fraction of
downregulated transcripts containing the relevant seed
sequences when analysing the gene expression profiles at 12 h
after miRNA overexpression (Figure 3). However, this relation
varied strongly among different miRNAs and algorithms.
miRmap and miRNATip recognized the highest fraction of the
potential targets not only for miR-17 but also for miR-517a and
miR-135b (Table 3). However, the data show they clearly over-
predicted due to calling hits with mRNAs without a perfect seed
sequence. This effect is especially pronounced for the target pool
of miR-517a (Figure 3(b)), which is deprived of seed sequences,
compared tomiR-17 andmiR-135b. On the other hand, miRTar,
which recognized the least targets at 12 h time point, failed to call
a substantial fraction of the mRNAs with the seed sequences as

hits. Nearly 50% of such downregulated targets after overexpres-
sion of miR-17 and miR-135b were missed (Figure 3(a)).
microT-CDS, TargetScan and mirTarget3 performed fairly uni-
formly on the potential targets of miR-17 with lower target
recognition percentage (51-57%) than the presence of the perfect
seed sequence (77%) (Table 3). Recognition efficiency for other
miRNAs was varying and may be seed sequence-dependent. For
instance, lower prediction rate of miR-135b targets by
TargetScan and MirTarget3 compared to that of miR-17 (Table
3) can be explained by a higher fraction of false negatives (Figure
3(b)). Interestingly, in terms of perfect seed sequence presence,
TarPmiR generated no false positives with the data on miR-17
(Figure 3(a)). Finally, to quantify the overall performance of the
algorithms, we also calculated the false discovery rates (FDR),
using the experimental hits, pooled from different time points, as
true positives. Strikingly, for most of the algorithms, the FDR
reached >90% for any given miRNA, with a notable exception to
miRTar (Supplementary Table 4). This also does not change
significantly, if only earlier time-points are considered. The
‘overpredictors’ miRmap and miRNATip showed the highest
FDRs, approaching the seed sequence-based FDR reference
values (Table S4, rightmost panel).

Next, we analysed how many algorithms recognized the
same transcript downregulated at 12 h (Figure (4)).
Surprisingly, the patterns of recognition frequency varied
a lot among the analysed miRNAs. mRNAs deregulated after
miR-17 overexpression were recognized by one to six algo-
rithms (Figure 4(a)). None of the potential targets, however,

Table 3. Target recognition by ‘classical’ (a) and machine learning-based (b) detection algorithms on the downregulated transcripts in time-resolved microarray
experiments and on the validated miR-17 targets (c).

(a)
Positives, % of all experimentally downregulated genes

miRNA Time point microT-CDS miRmap miRTar TargetScan Seed sequence presence, %

hsa-miR-17-5p 12 h 51.4 88.6 34.3 57.1 77.1
24 h 31.7 70.7 26.8 31.7 68.3
48 h 23.3 48.8 16.3 18.6 65.1

hsa-miR-517a-3p 12 h 29.3 57.7 8.9 37.3 23.6
24 h 16 31.6 6.6 20.4 20.2
48 h 6.2 13.9 3.3 8.7 4.6

hsa-miR-135b-5p 12 h 59.5 66.7 26.2 35.7 69
24 h 62.8 72.1 23.3 29.1 69.8
36 h 49.5 53.8 17.2 18.3 38.7

(b)
Positives, %

miRNA Time point MirTarget3 miRNATip TarPmiR

hsa-miR-17-5p 12 h 54.3 88.6 60
24 h 36.6 75.6 40
48 h 16.3 53.5 41.5

hsa-miR-517a-3p 12 h 11.4 54.5 22
24 h 5.4 36.8 16.5
48 h 1.8 22.4 14.3

hsa-miR-135b-5p 12 h 31 57.1 19
24 h 31.4 61.6 22.1
36 h 19.4 52.2 27.4

(c)
Algorithm Positives, % of validated miR-17 targets

microT-CDS 59.5
miRmap 88.1
miRTar 26.2
TargetScan 50
MirTarget3 45.2
miRNATip 83.3
TarPMiR 64.3
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was predicted by all seven algorithms. Four to five algorithms
recognized nearly 53% of the downregulated mRNAs after
miR-135b overexpression (Figure 4(c)). One target of miR-
135b, namely, steroid hormone receptor ESRRA was recog-
nized by all algorithms. The most interesting case presents
mRNA downregulated after miR-517a. We observed
a decrease in the number of transcripts along with increasing
true positive rate. Nearly 25% of the downregulated tran-
scripts were not recognized as targets, around 10% of them
were recognized by three and four algorithms, and only 1.8%
of them were recognized by six algorithms. Collectively taken,
a large fraction of 24 out of 31 non-recognized downregulated
transcripts lacked the respective seed sequences.

Performance of miRNA target prediction algorithms on
the validated targets of miR-17

To further elaborate our observations, we tested the algo-
rithms' performance on the list of validated targets of miR-
17. This molecule has been intensively investigated due to its
role in apoptosis, cell survival, growth, viral infection and,
lately, in membrane trafficking [43]. Deregulation of these
processes was shown to lead to various diseases and play an
important role in ageing [4,44]. As a result, the list of the
known targets is one of the longest known for individual
human miRNA and comprises more than 50 target proteins

validated by low-throughput methods. Here, we collected the
information about the targets that were validated at least by
two independent methods and arrived at a manually curated
list of 42 proteins which are known to be affected by miR-17
(Supplementary Table 3). Some of these targets were validated
based on the changes of mRNA expression levels (‘mRNA
only’), protein expression levels (‘protein only’) or both
(‘mRNA and protein’). Despite being a popular experimental
approach to support miRNA-based effects, it should be noted
that perturbations at the protein level do not necessarily arise
from the direct miRNA-mRNA binding. For instance, in
some cases, miR-17 targeting was tested only on a protein
level and the issue of changes in the mRNA level is not yet
resolved. Those entries are indicated as ‘protein’ in Table S3.
In the end, the data we compiled suggest that a larger part,
namely, 43% of the known miR-17 targets (18 out of 42
targets), is regulated at the protein level and 29% of these
were validated as being perturbed at mRNA level (12 out of 42
targets). The pattern of regulation for the remaining 28% of
the targets is not yet clarified to the end. It is important to
mention that we have considered targets of both miR-17-5p
and miR-17-3p. Over 80% of the proteins in this list are
validated as targets of miR-17-5p. As expected, the vast major-
ity of miR-17-mRNA interactions were reported to be located
at 3ʹ-UTR. On one hand, it may reflect the most frequent
position of the targeting; however, it introduces a certain bias

A B C

Seed+ Recognition+ Seed+ Recognition- 
Seed- Recognition+ Seed- Recognition-

Figure 3. Bioinformatics target detection by different algorithms with respect to the presence of seed sequences. Downregulated transcripts at 12 h post-transfection
of miR-17-5p (a), miR-517a-3p (b) and miR-135b-5p (c) were analysed. Black colour represents a fraction of targets possessing at least a single seed sequence and
detected as true positives by a respective algorithm, white colour corresponds to not recognized mRNAs with seed sequences. Red colour shows transcripts without
seed sequences but predicted as targets and blue colour – not recognized targets without seed sequence.
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Figure 4. Fraction of experimental miR-17 (a), miR-517a (b), miR-135b (c) and low-throughput-validated miR-17 (d) targets recognized by varying number of target
prediction algorithms.
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as the targeting sites were searched for and tested only con-
sidering the 3ʹ-UTR part of the mRNAs in most of the studies.
A similar situation may occur with the assignment of the
targets to miR-17-5p over miR-17-3p. Finally, miR-17-
mediated targeting was predominantly validated considering
a perfect matching of the respective seed sequences.

Surprisingly, all target prediction algorithms showed simi-
lar prediction rates on the validated targets to those observed
on gene expression data following 12 h after miR-17-5p over-
expression (Table 3(c)). The most targets (around 85%) were
predicted by miRmap and mirRNATip. Interestingly, the non-
recognized targets by both algorithms were barely overlap-
ping: IRS1, KMT5B, RND3, SERPINE1 and TXNRD2 were
not recognized by miRmap and ADCY5, BLID, GPX2,
KMT5B, PDCD4 and HBP1 – by miRNATip. In accordance
with the time-resolved data, the worst prediction rates were
obtained with miRTar (26%). Less efficient target recognition
on validated targets than from gene expression data was
observed with four of the algorithms assessed. For instance,
mirTarget3 could predict 45% of the validated targets, but
54% – among the downregulated mRNAs of the microarray
experiments. In contrast, two algorithms (microT-CDS and
TarPmiR) predicted slightly more targets among the validated
ones than on microarray gene expression data. Efficiency of
target recognition by miRmap remained the same with both
data sets (Table 3). All in all, we have observed high non-
uniformity among the target prediction tools in dealing also
with the validated targets of miR-17.

The majority of the validated targets (69%) are recognized
by three to five algorithms (Figure 4(d), Supplementary
Table 3). All seven tested algorithms recognized only 7% (3
out of 42) of the validated targets at the same time: RBL2,
STAT3 and SQSTM1. These three are targeted by miR-17-5p
at their 3ʹ-UTR and validated as targets rather on protein
expression level [23,45,46]. Six algorithms recognized nearly
12% of the validated targets that essentially carry the same
characteristics as mentioned before and collectively could be
called ‘frequent hits’. Only TBC1D2 was validated at mRNA
and protein level [32]. In agreement with the overall lowest
efficiency of target prediction (Table 3), miRTar recognized
targets the least frequently also in this group. Collectively, five
targets (BLID, GPX2, KMT5B, GBP3 and TXNRD2) were
recognized by one and two algorithms only, building
a group of ‘rare hits’. Curiously, two of them are targets of
miR-17-3p and only KMT5B is validated explicitly on
a protein level, but not on a transcript level. The remaining
four targets are either validated on mRNA level or the changes
of mRNA expression level were not investigated yet [47–50].
As expected, two of the most efficiently performing algo-
rithms (miRmap and miRNATip) recognized four out of
five ‘rare hits’. Finally, we could not find a single validated
target, which is not recognized at least by one target predic-
tion algorithm.

Among 42 validated targets and 35 potential targets down-
regulated after miR-17 overexpression at 12 h (Table 1), four
overlapping mRNAs were found. That includes TGF-beta
receptor type-2 (TGFBR2 [51]), p62 (SQSTM1 [46]), TBC1
domain family member 2A (TBC1D2 [32]) and low density
lipoprotein receptor (LDLR [32]). Curiously, p62 and

TGFBR2 were validated on protein level so far only [46,52].
These four overlapping targets derived by various methods
share several commonalities: firstly, they all are targeted by
miR-17-5p. Secondly, they are recognized by no less than five
target recognition algorithms.

Discussion

In this study, we analysed the dynamics of miRNA-mediated
changes of gene expression over time on previously published
and newly generated microarray data and recognition effi-
ciency of deregulated mRNAs by miRNA-target prediction
algorithms. Firstly, we compared the behaviour of downregu-
lated transcripts at 12 h, 24 h and 36/48 h post miRNA de
novo overexpression in the case of miR-124 and miR-517a as
well as in the presence of endogenous miRNA in the case of
miR-135b and miR-17. De novo expressed miRNAs deregu-
lated considerably more transcripts than the ones overex-
pressed in their natural environment (Table 1). However,
elevated levels of all miRNAs uniformly induced a time-
dependent accumulation of downregulated transcripts (Table
1, Supplementary Table 1, Figure 1). Regardless of the miRNA
considered, the numbers of significantly downregulated
mRNAs increased by 2 to 3 times when comparing two
sequential time points. Secondly, the earlier time point
taken, the higher fraction of downregulated mRNAs con-
tained respective perfectly matching 7-mer seed sequences
(Table 3(a)). When analysing the transcripts with seed
sequences in their 3ʹ-UTR and CDS separately, we observed
that only the ones with seed sequences at 3ʹ-UTR efficiently
decreased over time (Figure 2). In contrast, the frequency of
seed sites in the CDS was changing only little over time. It was
hypothesized that miRNA–mRNA interaction sites at 3ʹUTR
are more prone to lead towards the degradation of transcripts
[53], whereas, CDS localized sequences might act primarily
via translation inhibition [54]. In our datasets, the transcripts
with multiple copies of seed sequences indeed contained those
either at 3ʹ-UTR or both at 3ʹUTR and CDS (Figure 2,
Table 2).

In contrast to the previous studies (e.g. [42]), we analysed
not only downregulated but also upregulated mRNAs upon
miRNA overexpression. Normally, such transcripts are not
considered as direct targets of the overexpressed miRNA,
but rather as secondary or even tertiary effects [23].
Interestingly, the time-dependent appearance of upregulated
mRNAs was quite similar to that of the downregulated ones
(Table 1, Supplementary Tables 1 and 2, Supplementary
Figures 2 and 3). Curiously, the prevalence of seed sequences
was at the same level compared to the downregulated tran-
scripts or even higher. These observations could point to the
presence of regulatory mechanisms that could help in neutra-
lizing the elevated levels of miRNAs [55–57]. Simultaneous
increase of the transcripts that could sequester miRNA sur-
plus may act as a buffer against exaggerated repression of
target mRNAs and induction of potentially detrimental
outcomes.

Following the initial statistical analysis, time-resolved
miRNA-mediated gene expression data were used to analyse
the efficiency of target recognition by seven publically
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accessible algorithms. Four of the algorithms are ‘classical’
(microT-CDS, miRmap, miRTar and TargetScan), i.e. primar-
ily sequence recognition based and three – ‘machine learning’
based (MirTarget3, miRNATip and TarPmiR); all of them
updated in the last 5 years at the time of preparation of this
manuscript. In general, target prediction rates for the tested
algorithms in this study were higher than for the tools avail-
able in 2006 that recognized no more than some 50% of
experimentally supported targets [22]. All the algorithms we
tested recognized less targets for all miRNAs with increasing
post-overexpression time (Table 3(a,b)). This observation
illustrates a fairly reasonable performance as a reduction of
their prediction efficiency was accompanied by the uniform
decrease in the fraction of downregulated mRNAs containing
seed sequences. Even cautiously, this latter fact can be inter-
preted in such a way that later time points after miRNA
overexpression tends to comprise a high number of secondary
or higher order effects as was also suggested in [24,42]. Just to
illustrate this further, we examined the data sets newly mea-
sured for this study for straightforward potential examples of
this scenario: One exemplary candidate is the transcription
factor NFIC, which we found to be downregulated upon miR-
517a overexpression at 12 h. The downregulation of a tran-
scription factor of course will cause further changes in gene
expression. Looking for known targets of NFIC in the list of
changed mRNA levels, we found 27 mRNAs at time point
48 h. Interestingly, also only one of these targets
(Supplementary Table 5), namely, CDK2AP1 possesses
a seed sequence for miR-517a.

Besides the data on time-resolved gene expression, we tested
the performance of the algorithms on 42 validated targets of
miR-17 carrying perfectly matching seed sequence
(Supplementary Table 3). These were molecules for which phy-
siological importance was demonstrated in many cases [3].
Notably, the fraction of recognized targets of this list (Table 3
(c)) was essentially the same as the ones truthfully predicted and
found at 12 h after miR-17 overexpression for all algorithms.

Taken together our results stress the importance of mea-
suring expression changes early in time after miRNA over-
expression in order to gain a more accurate target
identification. This is turn is of crucial importance for the
training of prediction algorithms and for judging the perfor-
mance of the algorithms. Our data support a previous obser-
vation where a three times larger fraction of targets was
recognized 8 h compared to 24 h after overexpression of
miR-124 [42]. Regardless of this knowledge, most groups
presenting miRNA-target prediction algorithms report using
microarray data, obtained at a time point no sooner than 24 h
post-transfection or even pool the data generated at different
time points [58,59]. Such data may already possess a large
fraction of indirectly deregulated targets and impair scoring
functions. Indeed, all algorithms, except miRTar, showed
a surprisingly high FDRs when dealing with the combined
targets from all three time points (Table S4). Even though
some algorithms (e.g., miRNATip or microT-CDS) are
trained on diverse types of data, including proteomics or
immunopurification [14,17], transcriptomics experiments
remain a central part of the data base, therefore, the timing
of the data collection need to be carefully considered.

Failure to select high-quality experimental data, representing
direct miRNA–mRNA interactions, in order to train the predic-
tion algorithms could arguably be a key point behind the highly
varying performance of both ‘classical’ and machine learning-
based algorithms on the same time-resolved datasets. For instance,
over 88% of the downregulated transcripts at 12 h after miR-17
overexpression were recognized by miRmap and miRNATip,
whereas only 34% of the transcripts were recognized by miRTar
(Table 3). In our work, the observed differences can be primarily
routed back to the generation of false positives and false negatives
with respect to the presence of the seed sequences (Figure 3).
miRmap and miRNATip called more targets than the actual pre-
sence of downregulated transcripts with the seed sequences would
have allowed. Furthermore, these two algorithms the targets in
a seed sequence-independent manner. The opposite situation was
observed for miRTar generating a fairly high number of false
negatives across all data sets. However, this very restrictive selec-
tion also leads to the best FDR of all algorithms. Finally,
TargetScan, microT-CDS, MirTarget3 were ‘under-predictors’,
but the extent of false negatives was rather varying among
miRNAs and may be seed sequence-dependent (Figure 3).
Similar performance was observed for TarPmiR, which training
was based onCLASH, PAR- andHITS-CLIP data exclusively [21].

Surprisingly, varying target recognition by the algorithms
was achieved among 42 validated targets of miR-17, all of
them containing a perfectly matching seed sequence mainly at
3ʹ-UTRs. Regrettably, analysis of the list of validated targets
could not reveal any straightforward reasons why the algorithms
failed to capture them uniformly and why miRmap and
miRNATip generated certain false negatives. Yet, going back
to the microarray data of gene expression profiling at 12 h, we
observed that the transcripts with multiple seed sequences were
recognized by four and more algorithms more frequently than
the ones with single seed positions. For example, 3.2 seed
sequences on average were found among the downregulated
targets of miR-135b, recognized by more than four algorithms,
whereas, only 1.3 seed sequences were present among the ones
recognized by one to three algorithms. Also, as observed for the
time-resolved data, frequently recognized targets (by ≥4 tools
out of 7) preferentially bore the seed sequences at their 3ʹ-UTRs,
which can obviously be attributed to the fact that the majority of
the algorithms consider only this part of the transcript.

One way or another, our data demonstrate striking differ-
ences in target recognition efficiency by various bioinformatics
tools. Since only checking for the presence of the seed sequence
results in too many false-positives (see above), it is of utmost
importance to be able to distinguish experimentally discovered
targets as direct or secondary targets and using the first to train
the algorithms or extract the important sequence information.
A combination of early time-points or time-courses for mea-
surements and using data analysis on the measured deregulated
mRNA lists that explicitly searches for networks of secondary
effects might be a potential remedy in the future which might
lead to better FDRs and/or less false negatives.
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