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ABSTRACT
Noncoding RNAs (ncRNAs) play critical roles inmany critical biological processes andhave become anovel class
of potential targets and bio-markers for disease diagnosis, therapy, and prognosis. Annotating and analysing
ncRNA-disease association data are essential but challenging. Current computational resources lack compre-
hensive database platforms to consistently interpret and prioritize ncRNA-disease association data for biome-
dical investigation and application. Here, we present the ncRPheno database platform (http://lilab2.sysu.edu.
cn/ncrpheno), which comprehensively integrates and annotates ncRNA-disease association data and provides
novel searches, visualizations, and utilities for association identification and validation. ncRPheno contains
482,751 non-redundant associations between 14,494 ncRNAs and 3,210 disease phenotypes across 11 species
with supporting evidence in the literature. A scoring model was refined to prioritize the associations based on
evidential metrics. Moreover, ncRPheno provides user-friendly web interfaces, novel visualizations, and pro-
grammatic access to enable easy exploration, analysis, and utilization of the association data. A case study
through ncRPheno demonstrated a comprehensive landscape of ncRNAs dysregulation associated with 22
cancers and uncovered 821 cancer-associated common ncRNAs. As a unique database platform, ncRPheno
outperforms the existing similar databases in terms of data coverage and utilities, and it will assist studies in
encoding ncRNAs associated with phenotypes ranging from genetic disorders to complex diseases.

Abbreviations: APIs: application programming interfaces; circRNA: circular RNA; ECO: Evidence &
Conclusion Ontology; EFO: Experimental Factor Ontology; FDR: false discovery rate; GO: Gene
Ontology; GWAS: genome wide association studies; HPO: Human Phenotype Ontology; ICGC:
International Cancer Genome Consortium; lncRNA: long noncoding RNA; miRNA: micro RNA; ncRNA:
noncoding RNA; NGS: next generation sequencing; OMIM: Online Mendelian Inheritance in Man; piRNA:
piwi-interacting RNA; snoRNA: small nucleolar RNA; TCGA: The Cancer Genome Atlas
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Introduction

Noncoding RNAs (ncRNAs) play critical roles in many critical
biological processes across species, and their dysregulation could
be related to a broad spectrum of diseases [1]. Based on their
physical properties, biological functions, and cellular locations,
ncRNAs can be grouped into five main categories, namely, long-
noncoding RNA (lncRNA), micro-RNA (miRNA), circular RNA
(circRNA), small nucleolar RNA (snoRNA), and piwi–interacting
RNA (piRNA) [2]. With the fast development and the broad
applications of high-throughput technologies, the number of
ncRNA-related publications in PubMed has unprecedentedly
increased by about 20,000 publications annually over the past
three years (Fig. 1A). The majority of these publications have
suggested associations between ncRNAs dysregulation and
human diseases. Evidently, ncRNAs have become a novel class
of bio-markers and potential drug targets for disease diagnosis,
therapy, and prognosis [2–9].

Due to the functional and clinical significance of ncRNAs,
many public databases (Fig. 1B) have been established to annotate

ncRNAs and collect various ncRNA-disease associations with
biomedical information from peer-review publications, such as
NONCODE [10], RNAcentral [11], miRbase [12],
lncRNADisease v2.0 [13], miR2Disease [14], circRNADisease
[15], NSDNA [16], dbDEMC [17], and OncomiRDB [18]. In
recent years, more publications have suggested that ncRNAs
have complex interactions with a wide spectrum of exposures
involved in human diseases, including complex diseases [1].
Consequently, a number of databases have been developed to
manually annotate ncRNA-disease association data with expo-
sures from publications, such as SM2miR [19],
miREnvironment [20], and DLREFD [21]. With the development
of next-generation sequencing (NGS) technologies, abundant var-
iants in ncRNAs have been discovered in the studies of complex
diseases. Several databases, such as lncRNASNP [22], LincSNP 2.0
[23], miRdSNP [24], and miRNASNP [25], focus on the disease/
trait-related variants in human lncRNAs and miRNAs. In addi-
tion, some databases provide experimentally verified functional
interactions between ncRNAs and their targets, includingNPInter
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v3.0 [26], miRSponge [27], and LncReg databases [28]. Chen et al.
recently discussed the importance of ncRNAs to human diseases
and reviewed the available databases and prediction models in
detail for miRNA-disease and lncRNA-disease associations [7,8].

These computational resources are helpful for the studies in
ncRNAs dysregulation of specific human diseases and their
comorbidities, as well as for the discoveries of therapeutic actions
and its adverse effects. However, several challenges remain and
hinder the future integration and application of ncRNA-disease
association data. First, different ontologies or terminologies are
used to describe disease phenotypes and ncRNA symbols in
different computational resources. The heterogeneous description
hinders data integration, visualization, and application.
Fortunately, several ontologies or terminologies have been estab-
lished to annotate ncRNAs with controlled vocabularies, disease
phenotypes, and their relationships, such as NONCODE [10],
RNAcentral [11], miRbase [12], and Experimental Factor
Ontology (EFO) [29]. Second, how to derive new ncRNA-
disease associations from known associations based on limited
available information is another challenge. Third, current compu-
tational resources lack scoring models to prioritize and interpret
ncRNA-disease associations based on the available evidence, such
as the strength of experimental data in publications, and the
parent-child relationships of disease phenotypes and their proper-
ties. Therefore, computational resources consistently integrating
and homogeneously annotating ncRNA-disease association data
are essential for the identification and validation of disease-related
ncRNAs.

To tackle these challenges, we developed the ncRPheno
database platform, which comprehensively integrates and
annotates ncRNA-disease association data, and web applica-
tions to visualize and analyse the association data (Fig. 2).
ncRPheno has not only retrieved and integrated fundamental

data from 15 ncRNA-disease association databases and nine
terminological databases [11–16,19-22,25–38] but also derived
new associations from known associations using the disease
parent-child relationships. A scoring model has been refined
based on evidential metrics and integrated into ncRPheno to
prioritize the RNA-disease associations. ncRPheno provides
user-friendly web interfaces and novel visualizations to enable
an easy exploration and application of the ncRNA-disease
association data. As a case study, we investigated the land-
scape of ncRNAs dysregulation associated with different can-
cer types through ncRPheno and uncovered 821 common
ncRNAs dysregulation in 22 types of cancer.

Results

Data content

The ncRPheno database contains 482,751 non-redundant asso-
ciations between 14,494 ncRNAs and 3,210 disease phenotypes
across 11 species (Table 1). We integrated 50,681 of the associa-
tions from manually curated databases, and 432,070 were newly
derived based on the disease parent-child relationships in EFO.
For the ncRNA distribution, ncRPheno contains 2,984
miRNAs, 10,547 lncRNAs, 848 circRNAs, 107 piRNAs, and 13
snoRNAs (Table 1). Of the 482,751 associations, approximately
54.48% and 41.97% associations are related to miRNAs and
lncRNAs, respectively (Fig. 3A), and approximately 86.36%,
9.80%, and 3.32% are related to Homo sapiens, Mus musculus,
and Rattus norvegicus, respectively (Fig. 3B). ncRPheno covers
the majority of disease subtypes, such as neoplasm, genetic
disease, nervous system disease, abnormality of phenotype,
and cardiovascular disease. In addition, ncRPheno provides
extra 4,077 disease-related SNPs, including 2,002 GWAS Tag-

Figure 1. The status of ncRNAs investigation and ncRNAs databases. (A) The increasing number of ncRNA-related publications over the past few decades. The
numbers of ncRNA-related publications obtained from the PubMed database by searching the combined keywords ‘ncRNA OR noncoding RNA OR miRNA OR
microRNA OR lncRNA OR long noncoding RNA OR lincRNA OR circRNA OR piRNA OR snoRNA OR ceRNA.’ (B) The development history of ncRNAs databases over time.
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SNPs mapped to 1,771 lncRNAs and 2,075 SNPs mapped to
1,034 miRNAs (Table 1). Moreover, 1,801 ncRNAs in
ncRPheno were annotated with one or more experimentally
verified targets (Table 1).

Web applications

A previous user experience survey [39] has shown that most
biomedical scientists and researchers are primarily interested
in the answers of two critical questions by searching associa-
tion data. (1) Starting from an interesting ncRNA (e.g.,
HOTAIR), which diseases are associated with the ncRNA?
(2) Starting from an interesting disease (e.g., breast cancer),
which ncRNAs are associated with this disease? To answer
these questions, ncRPheno offers user-friendly web interfaces,
novel visualizations, and RESTful APIs to enable users to
search, browse, prioritize, and analyse the association data,
as well as to download and submit new associations for
further integration.

Browse, search, and visualization
The ‘Browse’ webpage allows users to browse interesting
ncRNAs and disease phenotypes easily. By clicking on
a particular node, the corresponding association data can
be displayed. The ‘Search’ webpages allow users to quickly

retrieve ncRNA-disease associations through searching the
ncRNA name or the disease phenotype. The search function
allows users to filter associations by selecting criteria and
facilitates smart assistance with keyword tips of expected
ncRNAs or disease phenotypes. The resulting association
data are displayed in a brief table, showing essential informa-
tion, including association identifiers (IDs), ncRNA symbols,
disease phenotypes with ontology identifiers, and association
scores for prioritization (Fig. 4A). The resulting association
data of a disease search allow visualizing the data in a word-
cloud diagram (Fig. 4B). Similarly, the resulting association
data of a ncRNA search can be visualized in disease-tree and
disease-network diagrams (Fig. 5A, B). The association IDs
in the table (Fig. 4A), the ncRNA symbols in the word-cloud
diagram (Fig. 4B), and the circle nodes in the disease-tree
diagram (Fig. 5A) link further information to the ncRNA,
the disease phenotype, and the supporting evidence in pub-
lications (Fig. 6). External links to other reference resources
are also provided, such as PubMed, miRBase, Ensembl,
and EFO.

ncRNA prioritization on disease-related RNA sequencing
datasets
A typical case-control RNA sequencing analysis can find
thousands of significant RNA dysregulations, many of which

Figure 2. The data integration and annotation framework of ncRPheno and the web applications in ncRPheno. (A) Integrating ncRNA-disease association data and
deriving new associations. (B) Data resources for ncRNA annotation. (C) EFO and other ontologies for disease annotation. (D) The key evidential and biological
information in publications supporting ncRNA-disease associations. (E) The web applications and visualizations based on the data in ncRPheno.
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are ncRNA-related, but identifying their clinical significance
remains challenging. For example, we analysed the miRNA-
seq quantification data of breast cancer samples from The
Cancer Genome Atlas (TCGA) [40] and found that 553
miRNAs are significantly dysregulated between 768 cases of
breast cancer and 97 controls. However, how to promptly
identify and prioritize the experimentally validated breast
cancer-associated miRNAs from these large-scale miRNAs is
not a trivial task. To deal with this problem, a ncRNA prior-
itization application was implemented in ncRPheno to iden-
tify and prioritize a set of ncRNAs to a corresponding disease
phenotype (Fig. 7). We input the 553 miRNAs with the
phenotype of breast cancer in the ncRNA prioritization appli-
cation. The application completed the analysis in a few min-
utes and output 201 miRNAs that are experimentally
validated to associate with breast cancer. The resulting top
five miRNAs are hsa-mir-21, hsa-mir-155, hsa-mir-200 c, hsa-
mir-200b, and hsa-mir-210 (Fig. 7). The result table also

allows data sorting by association scores and data filtering
by specific ncRNA (Fig. 7), and it provides links to further
webpages for detailed information (Fig. 6). In addition, the
ncRNA prioritization application allows users to input one
ncRNA and one disease phenotype for data retrieval at the
same time to determine whether there is an association
between them.

Network visualization to explore relationships between
different diseases and ncRNAs
A network visualization application was implemented in
ncRPheno for the relationship exploration between different
diseases and ncRNAs. The application allows users to enter
a set of diseases or ncRNAs and generate an interaction network
to display the association data. For example, we entered the
diseases ‘ovarian serous carcinoma,ovarian adenocarcinoma,
ovarian serous tumor’ in the input box and generated an inter-
action network for the different subtypes of ovarian cancer with

Table 1. Database contents and features of ncRPheno compared with the MNDR database.

Content and features ncRPheno MNDR ncRPheno/MNDR (fold)

Associations 482,751 51,704 9.34
miRNAs 263,012 42,721 6.16
lncRNAs 202,616 8,824 22.96
circRNAs 15,257 None –
piRNAs 1,282 118 10.86
snoRNAs 584 67 8.72
Homo sapiens 416,904 42,717 9.76
Mus musculus 47,318 6,218 7.61
Rattus norvegicus 16,006 2,549 6.28
Macaca mulatta 739 63 11.73
Sus scrofa 715 111 6.44
Pan troglodytes 654 45 14.53
Callithrix jacchu 180 None –
Gallus gallus 150 None –
Canis familiaris 45 None –
Danio rerio 28 None –
Oryctolagus cuniculus 12 None –

Total ncRNAs 14,494 11,153 1.30
Disease phenotypes 3,210 920 3.49
Publications 25,642 11,555 2.22
Species 11 6 1.83
Association score Yes Yes –
ncRNAs annotated with targets 1,801 None –
SNPs 4,077 None –
Features Search and browse; ncRNA

prioritization; networks,
disease-tree and word-cloud
visualization; web service APIs

Search and browse only –

Figure 3. The data distribution in ncRPheno. (A) The distribution of ncRNA-disease associations across different classes of ncRNAs. The ‘Others’ ncRNAs include
circRNA (15,257 associations; 3.16%), piRNA (1282; 0.27%), and snoRNA (584; 0.09%). (B) The distribution of ncRNA-disease associations across species. The ‘Others’
species include Macaca mulatta (739 associations; 0.15%), Sus scrofa (715; 0.15%), Pan troglodytes (654; 0.14%), Callithrix jacchu (180; 0.037%), Gallus gallus (150;
0.031%), Canis familiaris (45; 0.009%), Danio rerio (28; 0.006%), and Oryctolagus cuniculus (12; 0.002%).
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ncRNAs (Fig. 8A). The resulting network indicates that seven
ncRNAs are associated with both ovarian serous tumour and
ovarian adenocarcinoma and two ncRNAs associated with both
ovarian adenocarcinoma and ovarian serous carcinoma.
Interestingly, no ncRNA is associated with both ovarian serous
tumour and ovarian serous carcinoma. Similarly, we also
entered the ncRNAs ‘hsa-mir-3007a, hsa-mir-1268a’ to generate
an interaction network for the different ncRNAs with disease
phenotypes. The resulting network clearly shows that hsa-mir
-3007a and hsa-mir-1268a are both associated with neoplasm
(Fig. 8B). Interestingly, hsa-mir-3007a is associated with bladder
carcinoma, while hsa-mir-1268a is specifically associated with
breast carcinoma (Fig. 8B).

Web services
The ncRPheno website offers the RESTful application pro-
gramming interfaces (APIs) to access the data programmati-
cally. All resources are accessible through simple RESTful
URLs by querying and retrieving an individual entry as well
as sets of entries. Output data are available in universal JSON
and text formats. Documentation of APIs is available online.
All the association data in ncRPheno can be freely down-
loaded. In addition, ncRPheno encourages users to submit
their new association data for future data integration. Once
checked by our professional curators and approved by the

submission review committee, the submitted records will be
included in a future release. Furthermore, a detailed tutorial is
available on the help webpage.

Case study: the landscape of ncRNAs dysregulation in 22
cancer types

The association data in ncRPheno are an invaluable resource
that can be used to investigate the features of ncRNAs for
molecular typing in diseases. In ncRPheno, 61.1% of ncRNAs
are associated with neoplasm. Due to the critical role and
heterogenicity of ncRNAs dysregulation in different cancer
types, we investigated the differences and commonalities of
the ncRNAs dysregulation profile among 22 common cancer
types [41] to discover the potential common ncRNA bio-
markers. The investigation found that many ncRNA dysregu-
lations are associated with cancers, with numbers ranging
from 23 to 4,830. The numbers of common ncRNAs of each
pair of cancer types range from 1 to 267 (Supplementary
Figure 1). The common ncRNAs of each pair of cancer
types are listed in Supplementary Table 1.

In addition, we found that 821 ncRNAs are dysregulated in
one or more cancer types (Supplementary Table 2). Based on
the patterns of 821 ncRNAs dysregulation status, the 22 can-
cer types are classified into four groups (Fig. 9A) by Euclidean

Figure 4. The web interface of browse and search applications. (A) A table indicates the prioritized disease phenotypes associated with hsa-mir-103b. (B) A word-
cloud diagram shows the prioritized ncRNAs associated with the disease phenotype. Larger sizes and more central locations of the ncRNAs indicate a higher
association score between the ncRNA and the disease phenotype.
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distance-based hierarchical clustering using the heatmap
package in R-project (http://www.r-project.org/). Here, the
status of a ncRNA dysregulation means that the ncRNA
dysregulation associated with cancer either has supporting
publications (Yes) or not (No) in ncRPheno. In Fig. 9, astro-
cytoma and medulloblastoma as nervous system neoplasms
are classified into Group 1 since sharing many same ncRNAs.
Breast carcinoma and lung carcinoma are classified into
Group 2 due to their highly similar patterns of ncRNA dysre-
gulation status. For the same reason, hepatocellular carci-
noma, leukaemia, and prostate carcinoma are classified into
Group 4. It is not surprising that gastric carcinoma and colon
carcinoma belong to the same group (Group 3); however, it
was interesting to find that melanoma and colon carcinoma
have a very similar pattern of ncRNA dysregulation. These
patterns of ncRNAs dysregulation status provide new clues for
molecular typing in cancers, and further investigation on
these ncRNAs might guide future cancer diagnosis, therapy,
and prognosis.

We further discovered 14 ncRNAs that are commonly
dysregulated in more than 14 of 22 (63.6%) cancer types,
including hsa-mir-21, HOTAIR, hsa-mir-126, and H19
(Supplementary Table 2). Furthermore, 77 ncRNAs, includ-
ing 65 miRNAs and 12 lncRNAs, are commonly associated
with more than 50% (11 of 22) cancer types (Supplementary
Table 2). To discover common mechanisms of the ncRNAs
involved in the development of cancers, we annotated these
77 ncRNAs with biological processes using Gene Ontology

(GO) [42]. In line with previous studies [43], our results
suggested that these ncRNAs majorly involve in biological
processes of angiogenesis, inflammatory response, cell
migration, cell proliferation, apoptosis, gene silencing, and
translation regulation (Fig. 9B and Supplementary Table 3).
Indeed, the biological processes for the ncRNAs were fre-
quently reported in cancer development [43]. These
ncRNAs may become potential bio-markers to guide drug
design, disease diagnosis, and therapies.

Discussion and conclusion

ncRNAs have become a novel class of potential targets and bio-
markers for disease diagnosis, therapy, and prognosis [2–6]. In this
study, we developed the ncRPheno database platform, aiming to
provide comprehensive and up-to-date data of ncRNA dysregula-
tion associated with disease phenotypes. The ncRPheno database
consistently integrates and annotates ncRNA-disease associations
from 24 curated databases and derives new associations from
known associations. Compared with other similar platforms,
such as Open Targets Platform [39], DisGeNET [44], Monarch
Initiative [45], andMalaCards [46], which cover coding genes and
regulatory regions, ncRPheno focuses on ncRNAs dysregulation
associated with disease phenotypes. ncRPheno outperforms other
similar ncRNA-related databases, such as MNDR (Table 1),
HMDD v3.0, and lncRNADisease v2.0 (Supplementary Table 4),
in both data coverage and web application features.

Figure 5. The visualizations of disease tree (A) and disease network (B) for the hsa-mir-103b dysregulation associated with disease phenotypes. The values by the
lines are the association scores between the ncRNA and the disease phenotypes.
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In terms of the comprehensive integration of ncRNA-
disease associations from various data sources, MNDR [47]
is the resource most similar to our ncRPheno database plat-
form. However, as a comprehensive data resource, ncRPheno
contains more data content, including ncRNA-disease asso-
ciations with experimental factors from SM2miR [19],
miREnvironment [20], and DLREFD [21]. These additional
data cover the effects of environmental factors on human
health, cicrRNA-disease associations from circRNADisease
[15], and the complex disorders/trait-lncRNA associations
from the GWAS Catalogue [32]. Like the Open Target
Platform [39], ncRPheno derives new associations using dis-
ease parent-child relationships in EFO that may not have
direct supporting publications [29]. In short, the numbers of
associations, ncRNAs, disease phenotypes, and publications
included in ncRPheno are approximately 9.34-, 1.30-, 3.49-,
and 2.22-fold of those in MNDR, respectively [47]. Moreover,
ncRPheno contains extra 4,077 disease-related SNPs, includ-
ing 2,002 GWAS Tag-SNPs mapped to 1,771 lncRNAs and
2,075 SNPs mapped to 1,034 miRNAs. In ncRPheno, 1,801 of
ncRNAs are annotated with one or more experimentally ver-
ified targets (Table 1). Furthermore, ncRPheno offers web

applications for further analysis and visualization of the asso-
ciation data, including the prioritization of associations and
the visualizations of network, disease-tree, and word-cloud.
The comparison of data content and features between
ncRPheno and MNDR is detailed in Table 1.

The current ncRPheno database includes ncRNA-disease
associations with supporting evidence from publications. The
resulting associations with high-confidence missed out some
of the potential and essential associations. In the future, we
will improve the database to provide additional data by
enriching new association data through manually curated
associations from new peer-review publications, analysing
multi-omic data in TCGA [40] and ICGC [48], and integrat-
ing more computational prediction models and tools [49–55].
For example, IMCMDA [53] predicts missing miRNA-disease
associations based on the known associations and the miRNA
similarity and disease similarity. MDHGI [54] discovers new
miRNA-disease associations by integrating the predicted asso-
ciation probability from matrix decomposition. EDTMDA
[55] offers a computational framework integrating ensemble
learning and dimensionality reduction for miRNA-disease
association prediction. Furthermore, LncDisease [49] predicts

Figure 6. The association information of the ncRNA hsa-mir-1225 and the glioma disease. (A) The key information of the hsa-mir-1225-glioma association. (B) The
information of the hsa-mir-1225 ncRNA. (C) The information of the glioma disease. (D) The supporting evidence in the publications for the hsa-mir-1225-glioma
association.
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the lncRNA-disease associations based on the crosstalk
between lncRNAs and miRNAs, and MFLDA [56] identifies
lncRNA-disease associations through Matrix Factorization.

To serve the research communities, wewill update the database
every sixmonths and constantly improve itwithmore features and
functionalities. In September 2019, the ncRPheno platform was
updated from version 1.0 to version 2.0. Compared to version 1.0,
the number of associations in version 2.0 increasedmore than four
times (a 4.64-fold difference). Version 2.0 contains the recently
updated data from HMDD v3.0, lnc2 Cancer v2.0, and
lncRNADisease v2.0, and derived associations based on the par-
ent-child relationships of disease phenotypes in EFO. Moreover,
version 2.0 offers additional web applications for further analysis
and visualization of the association data.

In conclusion, ncRPheno comprehensively integrates and
annotates ncRNA-disease association data for the identification
and validation of disease-related ncRNAs. Its web applications
offer advanced search capabilities and novel visualizations to
enable easy exploration, analysis, and utilization of the associa-
tion data, as well as web service APIs for programmatic data
access. A case study through ncRPheno demonstrated
a comprehensive landscape of ncRNAs dysregulation associated
with 22 cancers and uncovered 821 cancer-associated common
ncRNAs. Further investigation on these interesting ncRNAs for
molecular typing in cancers might guide drug design, cancer
diagnosis, and therapies. As a unique database platform,
ncRPheno outperforms the existing similar databases and plat-
forms in terms of data coverage and utilities, and will assist
studies in encoding ncRNAs associated with phenotypes ranging
from genetic disorders to complex diseases.

Materials and methods

Data integration and annotation

The ncRPheno database integrated association data from
15 ncRNA-disease association databases and nine termi-
nological databases [11–16,19-22,25–38] (Fig. 2). Since
different databases employ different ontologies or ter-
minologies to describe the same ncRNAs and diseases,
consistent annotation for ncRNAs and diseases is greatly
needed. Therefore, several controlled terminologies and
ontologies were used to homogenize the information of
ncRNAs and diseases in ncRPheno. For the ncRNA
homogenous annotation, six types of ncRNA symbols
were used (Fig. 2B): (I) the lncRNA identifiers were
annotated with Ensembl [33] and RNAcentral [11]; (II)
the miRNA identifiers were annotated with miRBase [12];
(III) the circRNA identifiers were annotated with circBase
[35]; (IV) the piRNA identifiers were annotated with
piRNABank [34]; and (V) the snoRNA identifiers were
annotated with RNAcentral [11] and snoRNA-LBME-db
[36]. The information of ncRNAs such as disease-related
SNPs and experimentally verified ncRNA targets was
included to annotate the ncRNAs (Fig. 2A) homoge-
nously. The data sources of lncRNASNP2 [22],
miRNASNP [25], and GWAS Catalogue [32] were
included in a pipeline to assign disease-related SNPs to
ncRNAs systematically. The data of NPInter [26],
miRSponge [27], and LncReg [28] were used to assign
experimentally verified targets to the ncRNAs systemati-
cally. For homogenous disease annotation, EFO [29] was

Figure 7. The web interface of the ncRNA prioritization application.
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adopted to consistently describe diseases, phenotypes, and
trait terms (Fig. 2C). The annotation includes disease
parent-child relationships, EFO IDs, definitions, syno-
nyms, cross-references from OMIM [57], disease ontology
[58], Orphanet Rare Disease Ontology [37], Human
Phenotype Ontology (HPO) [59], and MeSH [60].

Deriving new ncRNA-disease associations

ncRPheno leveraged the EFO data [29] to interpret disease
parent-child relationships and propagate ncRNA-disease asso-
ciations with supporting publications along with parent nodes
(Fig. 2A). For example, both small cell lung carcinoma and
non-small cell lung carcinoma are lung carcinoma. The direct
evidence of ncRNAs associated with small cell lung carcinoma
and non-small cell lung carcinoma was propagated to lung
carcinoma to allow users to find common ncRNAs across
a group of related diseases. Other ncRNA-disease associations

were also derived based on the EFO’s inferred-by-property
classification: disease location (e.g., lung, brain, and liver),
disease cell lines (e.g., lung cancer cell lines), and disease
phenotypes (e.g., intestinal polyposis in Lynch syndrome).
These properties enable deriving and propagating new
ncRNA-disease associations.

Construction of association scoring model

The experimental evidence in the literature, such as experi-
ment methods, number of publications, and disease parent-
child relationships, was included to support the associa-
tions. An association scoring model (Fig. 2A) was refined
based on the evidential metrics according to the existing
methods used in Open Targets [39] and DisGeNET [44].
The resulting scores in ncRPheno can be used to prioritize
and interpret the ncRNA dysregulation-disease associations.

Figure 8. The interaction network visualization. (A) An interaction network to explore the relationships among different subtypes of ovarian cancer and ncRNAs. (B)
An interaction network to explore the relationships among different ncRNAs (hsa-mir-3007a and hsa-mir-1268a) and disease phenotypes. The values by the lines are
the association scores between the ncRNAs and the disease phenotypes.
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The association scoring model consists of four steps to
compute the association scores.

Step 1: The experimentmethods indicated in publications were
manually annotated with the categories of Evidence & Conclusion
Ontology (ECO) [38] and then classified into different evidential
levels, including high-throughput expression level, low-
throughput expression level, function and mechanism analysis
level, and in vivo analysis level (Table 2 and Supplementary
Table 5). Each evidential level was given with an experiment score
(Ee) according to their reliability. In principle, experiment meth-
ods for in vivo analyses, mechanisms, and functional analyses
providemore reliable evidence thanRNA expression experiments.
Therefore, different methods in publications are empirically
defined as detailed in Table 2 and Supplementary Table 5. The

evidential value (Ep) of a supporting publication for a ncRNA-
disease association is summed up with experiment scores (Ee) as
the following equation (1):

Ep ¼
Xn

i¼1
Eei (1)

In Equation (1), ‘n’ represents the total number of supporting
experimentmethods in the publication, and Eei is the experiment
score for a supporting experiment method ‘i’ in the publication.

Step 2: A larger number of publications can enhance the
evidential values for the same ncRNA-disease association. The
evidential value (E) of an association with multiple supporting
publications is derived using a harmonic sum function [39,61]

Figure 9. The landscape of ncRNAs dysregulation profile in 22 cancer types. (A) The hierarchical clustering heatmap classifies the 22 cancer types into four groups by
using the 821 ncRNAs dysregulation status (Yes or No) profiles. (B) The top 30 common biological processes of the 77 ncRNAs dysregulation involved in cancer
development.
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to account for replication but also to dampen the effect of
a large number of publications, as calculated in the following
equation:

E ¼ Ep1 þ
Ep2
2

þ Ep3
3

þ . . .þ Epm
m

(2)

In Equation (2), ‘m’ represents the total number of supporting
publications, and Ep1, Ep2, Ep3, …, Epm are the sorted evidential
values of different supporting publications in descending order.

Step 3: Only the disease subclasses with direct supporting
publications can propagate the evidence along with the par-
ental nodes. For example, in the EFO database, ‘non-small cell
lung adenocarcinoma’ is a subtype of ‘non-small cell lung
carcinoma,’ which is a subtype of ‘lung carcinoma.’ When
‘non-small cell lung adenocarcinoma’ and ‘non-small cell
lung carcinoma’ have directly supporting evidence from pub-
lications, both pieces of evidence can be propagated to ‘lung
carcinoma.’ Similarly, other evidence information can be
derived based on the EFO data. Therefore, taking into con-
sideration all inferred evidence of EFO parent-child relation-
ships and properties, a final evidential value (F) is computed
using a harmonic sum function [39,61] to account for replica-
tion but also to dampen the effect of a large number of
inferred evidence:

F ¼ E1 þ E2
2
þ E3

3
þ . . .þ Ej

j
(3)

In Equation (3), ‘j’ represents the number of all the disease
subclasses and itself, and E1, E2, E3, …, Ej are the sorted eviden-
tial values of disease subclasses and itself in descending order.

Step 4: The final evidential value (F) above is normalized to
limit the range of final association scores (Score) from 0 to 1.0:

Score ¼ 1� 1
eF

(4)

In Equation (4), ‘e’ represents the natural constant e.

miRNA different expression analysis

We downloaded the miRNA-seq quantification data of breast
cancer samples from TCGA [40] data portal (https://portal.
gdc.cancer.gov/) (December 2017). The number of samples

included 768 cases and 97 controls. Read counts in miRNA-
seq quantification data were used to represent the miRNA
expression levels. The DESeq2 package [62] in R (http://www.
r-project.org/) was used to analyse miRNAs whose mean
expression level is significantly different between cases and
controls (FDR adjusted p-value < 0.05 and fold changes > 2).

Data storage and web implementation

All the ncRNA-disease association data in ncRPheno were
stored and organized in a MySQL database. The ncRPheno
web platform was built with the technologies of Spring MVC,
Mybatis, and jQuery AJAX framework, and deployed into an
Apache Tomcat web server. The programmes for data proces-
sing were written in Java. The web interface was built using
HTML5, CSS3, and JavaScript. The JqTree (http://mbraak.
github.io/jqTree/) as a jQuery widget was used to display
a tree structure in the webpages. The vis.js library (http://
www.visjs.org) as a jQuery widget was implemented to display
the networks on the webpages. The D3.js widget (http://d3js.
org/d3.v3.min.js) was used to implement disease-tree
visualization.
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