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Shedding new light on RhoA signalling as a drug target in vivo using a novel
RhoA-FRET biosensor mouse
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ABSTRACT
The small GTPase RhoA is a master regulator of signalling in cell-extracellular matrix interactions.
RhoA signalling is critical to many cellular processes including migration, mechanotransduction, and
is often disrupted in carcinogenesis. Investigating RhoA activity in a native tissue environment is
challenging using conventional biochemical methods; we therefore developed a RhoA-FRET
biosensor mouse, employing the adaptable nature of intravital imaging to a variety of settings.
Mechanotransduction was explored in the context of osteocyte processes embedded in the calvaria
responding in a directional manner to compression stress. Further, the migration of neutrophils was
examined during in vivo “chemotaxis” in wound response. RhoA activity was tightly regulated
during tissue remodelling in mammary gestation, as well as during mammary and pancreatic
carcinogenesis. Finally, pharmacological inhibition of RhoA was temporally resolved by the use of
optical imaging windows in fully developed pancreatic and mammary tumours in vivo. The RhoA-
FRET mouse therefore constitutes a powerful tool to facilitate development of new inhibitors
targeting the RhoA signalling axis.
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The small GTPase RhoA has been linked to a wide range
of cellular processes such as adhesion, migration, cell
cycle progression, apoptosis and mechanotransduction
[1]. RhoA is activated by the hydrolysis of GTP and in
turn modulates a number of downstream effectors [2].
The rapid, and often fleeting, nature of this process
makes it challenging to assess using conventional bio-
chemical methods (Fig. 1A). F€orster Resonance Energy
Transfer (FRET) biosensors have become a vital tool to
study in vivo protein interactions with high spatial and
temporal resolution [3–5] and several biosensors of
RhoA regulation have been demonstrated to date [6–10].
These FRET-biosensors have played a critical role in the
investigation of RhoA signalling dynamics in vitro. Here,
using fluorescence lifetime microscopy (FLIM) we moni-
tored the changes in FRET when RhoA was activated,
however, it should be noted that intensity based
approaches to monitor FRET in vivo have also been
employed recently. This type of analysis can further be
performed using this biosensor mouse as previously
achieved with other FRET biosensor mice [11–15]. To
provide a spatio-temporal read-out of RhoA activity in
native tissues we created a new RhoA-FRET mouse [15]

using a modified version of the Raichu-RhoA biosensor
[10]. Here, the original CFP/YFP fluorophore pair was
replaced by EGFP and mRFP respectively [15,16] in
order to avoid potential problems with recombination
from tandem repeats of related fluorescent protein
sequences during mouse generation [17] (Fig 1). In the
RhoA-FRET ‘OFF’ mouse, the biosensor construct is
flanked by a lox-stop-lox site (LSL), which allows for
conditional expression of the reporter using tissue spe-
cific Cre recombinases. We then created a RhoA-FRET
‘ON’ mouse that expresses the biosensor constitutively
by removing the LSL site with a deleter CMV-Cre.

RhoA has been shown to transduce mechanical stim-
uli from the surrounding extra-cellular matrix (ECM)
via attachment sites, such as integrins, to downstream
intracellular signalling pathways e.g.: ROCK [18,19]. In
particular, RhoA has been implicated in the cellular
response to mechanical loading in the bone [20]. To
explore its involvement in mechanotransduction we
examined RhoA activity in osteocyte processes in their
native environment embedded in canaliculi of the mouse
calvaria (Fig. 1B). The application of »1% lateral com-
pression by an in-house compression apparatus to
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Figure 1. (For figure legend, see page 3.)
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freshly excised calvaria of Col1a1.3.6-Cre;RhoA-FRET
mice revealed activation of RhoA in processes oriented
perpendicular to the direction of applied force but not in
processes oriented parallel to the force or in uncom-
pressed samples (for further details of the apparatus and
compression procedure see Nobis et al. 2017 [15]). This
illustrates an active role for RhoA in directional signal
transduction of mechanostimuli, potentially mediated by
the differential shear forces experienced by the dendritic
processes in the fluid-filled lacunae upon application of
pressure [21,22].

RhoA has been shown to be actively involved in the
migration of cells at both the leading and retracting edges
of cells [23–25]. RhoA and another small GTPase Rac1
are thought to be reciprocally active at the edge of moving
cells [26]. RhoA and Rac1 are mutually inhibitory and
modelling has predicted that the RhoA-Rac1 signalling
network can exhibit bistability [27,28] with stable states
associated with different modes of migration such as mes-
enchymal-like migration, generally driven by Rac1 and
amoeboid-like migration, typically driven by RhoA
depending on their surrounding microenvironment
[27,29–32]. Having previously explored the oscillatory
activation of Rac1 during migration in isolated neutrophils
of the Rac-FRET mouse [14], we characterized the activity
of RhoA here during chemotaxis in vivo in LysM-Cre;
RhoA-FRET mice by intravital imaging. Neutrophil egres-
sion to and regression from a site of microbial infection
have been described recently [33], highlighting the role of
neutrophils as primary infection responders. Following
enrichment of the local neutrophil population by bacterial
particle inoculation of the ear, a resident dendritic cell was
laser-ablated creating a damage site to which neutrophils
swarm (Fig. 1B). Oscillations of RhoA activity were
observed [15] and noted to be similar to those measured
for Rac1 in an in vitro chemotaxis assay [14], demonstrat-
ing the active role both small GTPases play during coordi-
nated neutrophil migration. Furthermore, active
rearrangement of the collagen network by the neutrophils
during this acute damage phase was observed, suggesting
a role for immune-based ECM remodelling in addition to
the known role fibroblasts play in this process [34,35]. For
further and concise overview of the other applications of

the biosensor in distinct tissue settings achieved previously
[15] see Fig. 1C.

RhoA activity also plays a key role during a variety of
tissue remodelling processes and during disease progres-
sion such as cancer. In mammary tissue the downstream
effector of RhoA PKN1 has been shown to play a role
during gestation and lactation [36]. Using the condi-
tional RhoA-FRET biosensor mouse crossed to a mam-
mary specific Cre-driver line (MMTV-Cre), we tracked
RhoA activity through the gestation cycle. This revealed
an initially high RhoA activity during virgin branching
morphogenesis, which progressively decreased during
alveoli formation in pregnancy and in the mature milk-
producing alveoli during lactation. During involution
following weaning, RhoA activity was upregulated again
as the alveoli break down and the gland returns to the
pre-pregnancy state [15]. RhoA activity was further
examined during cancerous transformation of the mam-
mary gland in a genetic polyoma-middle-T antigen
(PyMT) driven breast cancer model. In this model,
RhoA activity was upregulated compared to the wildtype
virgin mammary gland during tumourigenesis, pointing
to a potential co-option of RhoA in invasive and meta-
static breast cancer [15]. RhoA activity can further be
tracked in PyMT driven mammary cancer during pro-
gressive stages from early adenoma, late adenoma, carci-
noma and in metastases of the lung. This revealed a
progressive down-regulation of RhoA activity during
tumour progression (Fig. 2A). An increase of RhoA
activity, however, was revealed at the invasive edges of
primary PyMT tumours, again pointing to its potential
co-option in the metastatic cascade of this tumour type
(Fig. 2B). This is in line with similar discoveries in inva-
sive pancreatic cancer, illustrating the role of RhoA in
invasion [15,16]. Finally, by intravenous injection of the
contrast dye (Qtracker655), as previously achieved [37]
the local tumour vasculature was visualized and RhoA
activity in cells mapped within distinct tissue regions in
relation to the local vessels (Fig. 2C).

RhoA has also been shown to be activated at both the
rear and leading edge of cells in a mutant p53R172H driven
invasive pancreatic cancer model in vivo [16]. Activation
of RhoA via its upstream regulators, such as RhoA GEF-

Figure 1. (see previous page) Studying RhoA activity dynamics in a range of tissues. (A) Conventional single snap-shot based biochemi-
cal approaches to analysing RhoA activity in two examples tissues of the mammary gland and intestine. These included bead-based pull-
down of RhoA-GTP in tissue lysate and a recently developed immunofluorescence of fixed tissue samples using a RhoA-GTP specific
antibody [15,19]. scale bars, 25 mm (B) With the generation of the new RhoA-FRET biosensor mouse RhoA activity could be monitored
live in osteocytes of the calvaria, in vivo in pancreatic ductal adenocarcinomas, mammary tumours and during neutrophil migration
(RhoA-FRET biosensor, green; collagen-derived second harmonic generation (SHG) signal, magenta) with corresponding fluorescence
lifetime imaging microscopy (FLIM) images of RhoA activity (high RhoA activity: blue to green; low RhoA activity: yellow to red). scale
bars, 50 mm (C) A summary of the new insights gained by the use of the new RhoA-FRET biosensor mouse in a variety of tissues and
applications. Adapted from Nobis et al. 2017, Cell Reports and adapted from Servier Medial Art, licensed under the Creative Commons
Attribution 3.0 Unported license (https://creativecommons.org/licenses/by/3.0/).
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H1, has been implicated in the progression and metastasis
of pancreatic cancer, amplifying MAPK signalling [38].
Recently a mutant isoform D133 of p53 has been linked to
pancreatic tumour cell invasion and metastasis via inter-
leukin-6 activation of the JAK-STAT and RhoA-ROCK
signalling pathways [39]. This led to the utilization of the
conditional RhoA-FRET biosensor mouse in tracking
RhoA activity in a genetic model of pancreatic cancer
with the initiating mutation of KRasG12D and mutant
p53R172H driven by Pdx1-Cre (KPC), resulting in invasive
pancreatic ductal adenocarcinoma (PDAC) [40,41]. This
model closely recapitulates the human histopathology,
where the initiating KRASmutation is found in up to 90%
of patients, while loss of P53 or mutant P53 occurs in 50–
75% of tumours [42,43]. Intravital imaging of pancreatic
tissue as the disease advanced revealed a progressive inac-
tivation of RhoA from pancreatic intraepithelial neo-
plasms (PanINs) to fully developed PDAC [15]. In the
invasive mutant p53 driven KPC model RhoA activation
was observed both at the invasive edges of the primary
tumour as well as at distant metastatic sites of the liver,

revealing a spatially coordinated switching of activity that
may facilitate cancer cell movement [15]. Comparing the
invasive fronts of both non-invasive KPflC (p53 null) and
invasive KPC tumours revealed that an increase in RhoA
activity was confined to mice carrying the mutant gain of
function (GOF) p53 allele (p53R172H/+) and, this was
absent in mice with non-invasive PDAC driven by loss of
p53 (Fig. 3A+B) [41,44,45].

RhoA is a promising potential therapeutic target as it
plays an active role in the progression and invasive
potential in both mammary and pancreatic cancer mod-
els. Therapeutic intervention targeting RhoA indirectly
has been shown previously, particularly targeting down-
stream effectors of RhoA such as ROCK1 and ROCK2,
which are upregulated and associated with poor progno-
sis in pancreatic cancer [46–50]. In our biosensor mouse
study, we tracked RhoA activity using optical windows
[51,52] where we could see a sub-organ resolution dis-
tinct difference in RhoA activation states in acinar versus
PDAC cells (Fig. 3C+D). This allows for possible future
studies on the role of RhoA in acinar to ductal metaplasia

Figure 2. Spatially defined RhoA acitivty during the progression of PyMT-driven mammary carcinomas. (A) RhoA-FRET mice crossed to
MMTV-polyoma-middle-T antigen (PyMT) mice allow for the tracking of RhoA activity during the progression of invasive mammary carci-
noma (n = 1 mouse, 280 cells). (B) RhoA activity is increased at the invasive borders of primary PyMT tumours (white dashed line) com-
pared to tumour core regions (n = 1 mouse, 180 cells). (C) Intravenous injeciton of a contrast dye (Qtracker655) allows for monitoring of
RhoA activity in cancer cells in relation to their proximity to local vasculature (n = 2 mice, 130 cells). Dots, single cells; line, mean; error
bars, SD; scale bars, 50 mm.
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(ADM), which is thought to play a partial role in early
phases of this disease [53]. We administered small mole-
cule drugs which affect the ECM-tumour cell feedback
loop, such as Src activity, integrin engagement and
EGFR signalling and monitored the effect on RhoA
activity. For example, RhoA activity in response to Src
inhibition via the administration of the Src/Abl kinase
inhibitor dasatinib was monitored over a 24 h period
[15]. After spontaneous pancreatic tumour development
at approximately 125 days in the genetically engineered
KPC pancreatic cancer model, mice were engrafted with
an abdominal imaging window positioned above the pri-
mary tumour. Repeated intravital imaging of the RhoA-
FRET biosensor in the pancreatic KPC model upon dasa-
tinib treatment revealed effective inhibition of RhoA
activity 7 h hours after the final dasatinib administration.
In the PyMT-driven mammary cancer model, mammary
imaging windows were implanted in the skin above the
developing primary tumours after an average of 85 days.

In this model the dynamics of RhoA modulation were
very different from the pancreatic cancer model with
RhoA inhibition observed as little as 2 h post-adminis-
tration [15]. These differences underline the importance
of pre-clinical optimisation of drug targeting in the
native tissue microenvironment [4]. The delayed RhoA
inhibition in the pancreatic model may be due to delayed
drug penetrance of the dense desmoplasia often found in
pancreatic cancer [35,54]. Recent studies in pancreatic
cancer have aimed to reduce this fibrosis by targeting
FAK, YAP/TAZ, Cdk4, PAK1, JAK/STAT and hyalur-
onic acid [55–60] as well as characterized the cross-talk
of tumour-stroma interactions of patient derived xeno-
grafts revealing potential new targets [61]. The RhoA-
FRET biosensor mouse could prove an indispensable
tool to optimise targeting of these pathways by providing
a live readout of the effect of drug targeting on ECM-
cancer cell reciprocity via RhoA activity. More recently,
a study investigating Crohn’s disease demonstrated that

Figure 3. In vivo imaging of RhoA activity in the pancreas and KPC tumours reveals spatial activation at the invasive border of mutant
p53 driven KPC tumours. (A) RhoA is inactive in non-invasive p53-null PDACs both at the tumour center and borders (white dashed line)
(n = 2 mice, 163 cells). (B) RhoA acitvity is increased at the invasive border of p53 mutant (p53R172H/+) tumours compared to tumour
center regions (n = 2 mice, 77 cells). (C) Schematic of an abdominal imaging window (AIW) to examine RhoA activity in the pancreas
and in primary pancreatic tumours. (D) RhoA activity during tumour progression of primary mutant p53 driven PDACs imaged intravi-
tally through optical windows (n = 3 mice, 293 cells). Columns, mean; error bars, SEM; �p < 0.05; ��p < 0.01; scale bars, 50 mm.
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fibrosis in the intestinal tract caused by RhoA-ROCK
pathway upregulation in myofibroblasts in Crohn’s dis-
ease can be effectively reversed by ROCK inhibition [62].
Fine-tuning of this targeting could potentially be
achieved in the future with the RhoA-FRET mouse,
which we previously used to observe spatial regulation of
RhoA in intestinal crypts by in vivo imaging [15].

With the use of the RhoA-FRET biosensor mouse, new
insights into several key aspects of this prototypical small
GTPase may be obtained in in vivo settings ranging from
mechanotransduction, migration, ECM remodelling, can-
cer progression to the spatiotemporal response to drug
targeting. This new biosensor mouse therefore lends itself
to a wide range of applications exploring the activity of
RhoA in native tissue contexts in the future and may
reveal new insights into the switch-like rapid behaviour of
this small GTPase in vivo. Other elegant approaches to
imaging RhoA activation have been reported previously,
such as using optogenetic activation of RhoA using the
CRY2/CIBN light-gated dimerizer system. This allowed
for light induced control of traction and tension within
cells and their surrounding tissue [63]. Future applications
in an intravital setting of other RhoA-biosensors that are
available, such as cytoplasmic DORA sensors with RhoA
binding to a PKN1 domain [9] or the RhoA-2G biosensor
that can report on GDI activity [6,8], have the potential to
reveal intricate changes of this vital signalling node in nor-
mal and disease settings.
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