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ABSTRACT
Uncontrolled metastasis significantly contributes to high lethality of patients suffering from ovarian
cancer. To date, the detailed molecular mechanisms which account for ovarian tumor cell spreading
and metastasis remain largely unknown. In a recent study, we have demonstrated that aberrantly
high expression of the non-receptor tyrosine kinase FER is responsible for ovarian tumor cell
metastasis both in vitro and in vivo. Mechanistically, we indentified Hepatocyte Growth Factor
Receptor HGFR/MET as a novel substrate of FER, and through which the kinase FER modulates
ovarian cancer cell motility and invasiveness in a ligand-independent manner. We also observed
aberrantly high expression of PAK1 kinase in cancer cells, and RNAi-mediated knockdown of FER
kinase inactivated the RAC1-PAK1 signaling pathway and decreased metastatic potential of CAOV4
ovarian cancer cells. Overall, our study revealed a previously uncharacterized, pro-metastatic role of
the kinase FER in ovarian cancer through the MET-RAC1-PAK1 pathway. Further efforts are essential
to investigating beneficial outcomes towards targeting the RAC1-PAK1 signaling pathway in
reducing metastatic burden of this deadly disease.
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Ovarian cancer is the leading cause of death resulting
from gynecological malignancies, and ranks the fifth
most frequent cause of cancer-related death for women.1

This year in the United States alone, more than 25000
women will be diagnosed with ovarian cancer, and more
than 16000 women will die of this disease. Five-year sur-
vival rates for women diagnosed with stage I or stage II
ovarian cancer are 90% and 70%, respectively. Unfortu-
nately, however, there is no reliable screening test for the
early detection of this ‘silent killer’,as less than 35% of
women are diagnosed before Stage III, with the five-year
survival for Stage III or IV being less than 25%.2 There-
fore, improvement in treatment is an urgent need for
this devastating disease.

One major impediment to successful treatment is the
inability to detect ovarian cancer at an early stage, result-
ing in disease progression to an advanced stage with
extensive metastasis. The unique feature of ovarian can-
cer metastasis where normal peritoneal fluid can be har-
nessed to transport exfoliated ovarian carcinoma cells
throughout the peritoneal cavity freely to adjacent organs
makes prognosis of ovarian cancer even worse.3 It is
almost impossible to render patients free of disease with
surgery due to this dispersive feature. Any effort(s) to
pinpoint the molecular basis for ovarian carcinoma

dissemination and metastasis will provide key informa-
tion to guide development of next-generation therapeutic
interventions which can effectively improve progression-
free survival after surgery.

For this purpose, we decided to apply both biochemi-
cal and biological approaches to elucidate the molecular
mechanism that controls ovarian cancer cell metastasis.
Interestingly, our preliminary results indicated aberrant
increase in Tyr142 phosphorylation and nuclear distri-
bution of b-Catenin in 11 ovarian carcinoma-derived
cell lines compared to two human ovarian surface epithe-
lial (HOSE) cell lines.4 Three tyrosine kinases have been
reported to be responsible for this phosphorylation-
induced nuclear translocation of b-Catenin, including
MET,5 FYN6 and FER.7 Compared to the controls, only
FER was significantly up-regulated in all 11 ovarian can-
cer cell lines examined, and this elevation was also con-
firmed by immunohistochemical staining of ovarian
tumor samples.4 Unexpectedly, neither Tyr142 phos-
phorylation of b-Catenin, nor transactivation of b-Cate-
nin regulated genes including tcf-1 and lef-1 was
decreased in FER knockdown cells, potentially due to
compensation from other tyrosine kinase(s). However,
this up-regulation of FER was very critical to cell motil-
ity, since shRNA knockdown robustly decreased
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migration ability of five different high-grade serous ovar-
ian cancer cell lines.4 This was also true in ovarian cancer
cell invasion assays. The impaired migration and inva-
sion ability upon FER loss was not due to a proliferative
rate decrease, since no overt change in cell growth was
noticed in Ki-67 staining.4

To further investigate the role of FER kinase in ovar-
ian cancer cell migration and invasion in vivo, we
employed two mouse models; one sub-cutaneous injec-
tion model in which cell movement is blood-dependent,
the other, an intraperitoneal injection model in which
cell movement is blood-independent.4 Consistent with
our previous cell-based assays, loss of FER showed no
effect on subcutaneous tumor growth, however, the abil-
ity of ovarian cancer cell metastasis to the lung was sig-
nificantly decreased in the absence of FER. In line with
the conclusion from this model, our blood-independent,
intraperitoneal injection model also demonstrated that
ovarian cancer cells with diminished levels of FER dis-
played a profound reduction in their ability to metasta-
size to surrounding organs/tissues, including peritoneal
wall, diaphragm, omentum, mesentery, ovary, stomach
and liver. Collectively, this evidence clearly suggested an
essential role of FER kinase in controlling ovarian cancer
cell metastasis.

What’s the molecular mechanism adopted by FER to
modulate ovarian cancer cell motility and invasiveness?
To answer this question, we applied global tyrosine
phosphorylation comparison between cells with and
without FER.4 To our surprise, results from a series of
biochemical analyses confirmed hepatocyte growth fac-
tor receptor, HGFR/MET, as a novel substrate of FER,
and its function is key to FER-mediated cell migration
and invasion. Furthermore, we demonstrated that FER
phosphorylated a signaling relay site on MET, Tyr1349.
This promoted a kinase-independent scaffolding func-
tion of MET to recruit GAB1. Upon recruitment, FER
can further phosphorylate GAB1 at Tyr627, a key motif
for SHP2 binding, and activate the downstream SHP2-
ERK signaling pathway.

It has been well-characterized that both MET and
GAB1, within the HGF-MET pathway, play an indispen-
sible role in cell migration, invasion and metastasis. Par-
ticularly, the bidentate docking site of Tyr1349&1356 in
MET is important to the functional role of MET in
metastasis. Experimental mutation of these sites pro-
foundly prevents metastasis induced by TPR-MET, the
constitutively active form of MET, in vivo in mice.8

Meanwhile, loss-of-function analysis using both GAB1-
null fibroblasts and GAB1 RNAi-mediated knockdown
in tumor cells also demonstrated its necessity in MET-
mediated invadopodia formation and cell invasion.9 Our
results demonstrated that a non-receptor tyrosine kinase

could harness molecular components from this signaling
pathway to modulate cancer cell metastasis in a ligand-
independent manner. Importantly, we also illustrated
that the output signaling from this alternative regulation
was comparable to those from ligand-dependent regula-
tion, further highlighting the physiological significance
of this new regulation. Lastly, although potent and effec-
tive inhibitors of the receptor protein tyrosine kinase
MET are available, many HGF-MET antagonists fail to
abolish downstream signal propagation.10–13 We believe
this novel ‘ligand- and autophosphorylation-indepen-
dent activation of MET’ model could shed some light on
this conundrum and potentially guide future improve-
ment of related therapy.

In addition, accumulating evidence suggests that
RAS-MAPK and RAC1 signaling, downstream of the
receptor tyrosine kinase MET and GAB1, are important
in the early steps of metastasis.14 There are two GTPase-
involved signaling pathways downstream of MET and
GAB1; the RAS-RAC1-PAK pathway and the RAP1-
FAK pathway. RAC1, along with RAC2, RAC3 and
RhoG, form a Rac subfamily within the Rho family of
GTPases.15 Rac proteins stimulate lamellipodium and
membrane ruffle formation, and induce membrane
extension.16 It has been shown that in T cells, dominant-
negative RAC1 inhibits chemokine-induced adhesion to
integrin ligands.17 Alternatively, RAP1 is a member of
the RAS superfamily of small GTPases, whose function
has been implicated in a variety of integrin-mediated
‘inside-out’ signaling events.18 Signals through the
RAC1-PAK and RAP1-FAK pathways propagate to the
cell membrane and modulate cadherin and integin adhe-
sion molecules and thereby impact cell migration.14 Con-
sistently, we observed an active form of RAC1 in ovarian
cancer cells, and this activation was compromised in the
absence of FER.4 On the contrary, by using FAK as a
downstream effector of RAP1, we did not observe any
change in FAK phosphorylation and activation upon
FER loss in ovarian cancer cells, indicating RAC1 is the
major GTPase downstream of the MET-GAB1 pathway
that regulates ovarian cancer cell metastasis.

The GTPase RAC1 regulates cell motility directly
through the Ser/Thr kinase PAK (p21-activated kinase).
Interestingly, PAK was initially identified as a binding
partner of RAC1 and CDC42, and this binding is impor-
tant for kinase activation.19,20 Biochemically, RAC1
interacts with the PBD (p21-binding domain) of PAK,
and this association releases the PBD from the kinase
domain thereby activating the kinase.20 Active PAK can
further phosphorylate LIM kinase (LIMK), which in-
turn phosphorylates and inhibits cofilin, thus regulating
actin dynamics and cell motility.15 In our study, we
observed robustly elevated expression of PAK1, but not
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PAK2 or PAK4, in most ovarian cancer-derived cells
compared to both normal HOSE controls.4 We could
not detect any expression of PAK3 in the same cell
extracts, probably due to its restricted expression within
dendritic cells.21 Furthermore, loss of FER led to inacti-
vation of PAK1, illustrated by the decreased phosphory-
lation of its activating site Ser1444. These results are
consistent with the reduced activation of RAC1 we
observed in FER-deficient ovarian cancer cells, and high-
light the importance of the RAC1-PAK1 signaling path-
way in regulating ovarian cancer cell motility.

Over-expression and hyper-activation of PAK1 has
been reported in many malignancies, including breast,
colon and ovarian cancer.21,22 The gene loci of PAK1,
which resides within region 11q13, is frequently ampli-
fied, particularly in ovarian cancer.23 Importantly, this
chromosomal amplification is associated with poor prog-
nosis in patients suffering from ovarian and breast can-
cers.24,25 In addition to migration and invasion, cell
survival can be modulated through the activity of PAK1
over the pro-apoptotic protein BAD.26 Activation of
PAK1 has also been identified as a component of the
DNA damage response, indicating its function in cellular
sensitivity to ionizing radiation.27 Recent work from
Chernoff’s group demonstrates that PAK1-amplified
ovarian cancer cells are significantly more sensitive to
genetic and pharmacologic inhibition of PAK1, implying
PAK1 amplification could serve as a potential patient
selection criterion for PAK1-targeted therapy.22 Consis-
tent with our current study, we also found aberrantly
high expression of PAK1 in the majority of ovarian can-
cer cell lines we tested, and furthermore, that the FER-
mediated MET-GAB1 signaling axis is important for
activation of PAK14. Together, this evidence provides
insight for future molecular-targeted therapies in ovarian
cancer, and offers the potential for exploring combinato-
rial therapeutic avenues.

The fact that we suggest FER could impact GTPase
activity of RAC1 in an indirect, MET-GAB1-dependent
model doesn’t necessarily mean this regulation couldn’t be
direct. A study from the Heisterkamp group illustrated
that FER could phosphorylate RhoGDIa (Rho GDP-Dis-
sociation Inhibitor a), and this tyrosine phosphorylation
prevents subsequent binding of RAC to RhoGDIa.28 Over-
expression of FER also correlated with enhanced tyrosine
phosphorylation and activation of Vav2,29 a RAC guanine
exchange factor (GEF).Work from the Craig group further
demonstrated the residue on Vav2 that undergoes FER
regulation is Tyr172.30 We are actively investigating
whether or not FER couldmodulate RAC1 activity in ovar-
ian cancer through a direct manner.With the development
of phospho-tyrosine antibodies against RhoGDIa, Vav2
and FER, we could apply immunohistochemical staining

to those xenograft tumor samples (in the presence/absence
of FER) previously collected. Further investigation into
these regulatory modules in ovarian tumor microarray
samples will establish subtype(s) of ovarian cancer which
are subject to this direct regulation. Efforts from these stud-
ies will definitely enhance our understanding of the impor-
tant role that the tyrosine kinase FER plays in ovarian
tumor maintenance, progression and metastasis, and shed
light on better treatment regimes for ovarian cancer
patients (Fig. 1).

Up-regulation and activation of FER has been
reported in many malignancies, including lung,31

hepatic,32 prostate,33 breast34 and ovarian cancer.35 Fur-
thermore, the oncogenic function of FER in controlling
cell motility, invasion, suppression of apoptosis, and
drug resistance36,37 have been well-characterized. Our
recent work has also made important fundamental dis-
coveries that raise several testable and translational ques-
tions for the near future, including simultaneous
targeting FER and MET in ovarian cancer, the resolution
of which may ultimately justify the development of
appropriate FER inhibitors.
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Figure 1. Working model: In the absence of the ligand HGF, the
receptor HGFR/MET serves as a scaffold protein on plasma mem-
brane. Non-receptor tyrosine kinase FER binds to phospholipids
through its F-BAR domain. Meanwhile, the kinase also directly
interacts with and phosphorylates MET on Tyr1349, and this
phosphorylation equips the receptor with the ability to recruit
GAB1. Upon recruitment, GAB1 could be further phosphorylated
by FER on Tyr627, a key motif for SHP2 binding. The signaling
relay eventually leads to activation of the RAS-MAPK pathway, as
well as the CDC42/RAC1-PAK1 pathway, both of which are impor-
tant to modulate cell motility and invasiveness. Evidence also
suggest FER could regulate RAC1 in a direct manner.
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